荔枝果汁加工和贮藏过程中酚类物质及抗氧化活性的变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,自由基学说与疾病预防和延缓衰老的研究上受到广泛的关注。现代流行病学调查研究表明富含水果和蔬菜的膳食可减少心血管病和癌症等慢性疾病的发生,其作用主要源于果蔬中含量丰富的酚类物质等天然抗氧化活性物质。探寻和研究果蔬及其加工制品的酚类物质和抗氧化能力已成为食品、医药等多个学科领域共同关注的课题。荔枝是我国华南地区特色水果,其种植资源丰富,但目前对荔枝酚类物质的研究主要集中在果皮果核等副产物上,而对不同荔枝品种果肉抗氧化活性和酚类化合物含量的研究则鲜有报道;加工和贮藏过程中荔枝果汁抗氧化能力及酚类物质的变化规律尚不明晰。为此,本文通过研究不同品种荔枝果肉抗氧化能力及酚类物质含量,筛选出抗氧化活性强、酚类物质含量高的品种:分析荔枝果汁在不同加工单元操作和贮藏过程中理化性质,抗氧化能力和酚类物质的变化规律,为加工高品质荔枝果汁提供科学依据。主要研究结果如下:
     1不同荔枝品种酚类物质特性和抗氧化能力比较:比较和分析了13个不同荔枝品种果肉提取物的总酚含量、总黄酮含量、酚类组成、DPPH自由基清除能力和FRAP抗氧化能力及其之间相关性。结果表明不同荔枝品种果肉提取物的总酚含量、总黄酮含量、酚类组成、DPPH自由基清除能力和FRAP抗氧化能力存在显著的差异性(p<0.05),其中不同荔枝品种果肉游离酚、结合酚和总酚含量变幅分别为66.17-226.03、11.18-40.54和101.51-259.18 mg GAE/100 g,游离酚占总酚比例变幅为63.1%-91.4%,总酚含量变异系数为29.1%;不同荔枝品种果肉游离黄酮、结合黄酮和总黄酮含量变幅分别为16.68-110.33、10.48-22.75和39.43129.86 mg CE/100 g,游离黄酮占总黄酮比例变幅为42.3%-87.4%,总黄酮含量变异系数为34.5%;HPLC分析表明荔枝果肉中单体酚类物质包括没食子酸、绿原酸、儿茶素、咖啡酸、表儿茶素和芦丁,其中没食子酸和绿原酸以游离形式存在,儿茶素存在于结合酚中,咖啡酸、表儿茶素和芦丁则以游离态和结合态两种形式存在,表儿茶素和芦丁是主要的单体酚类物质。不同荔枝品种果肉游离部和结合部DPPH自由基清除能力变幅分别为23.02-58.03和29.13-44.75μg GAE/mL;不同荔枝品种果肉游离部、结合部和总的FRAP抗氧化能力变幅分别为61.99439.54、18.97-68.7和121.53-495.96 mg TE/100 g;不同品种荔枝果肉DPPH自由基清除能力和FRAP抗氧化能力与果肉中总酚含量和黄酮含量有显著相关性.表明酚类物质含量是荔枝果肉抗氧化能力重要的物质基础之一。
     2不同加工单元操作对荔枝果汁抗氧化能力及酚类物质影响的研究:研究在烫漂钝酶、榨汁、离心、精滤和UHT杀菌等加工单元操作中荔枝果汁的理化性质、抗氧化能力及酚类物质含量的变化。结果表明,酚类物质和抗氧化能力的损失主要集中在烫漂、榨汁粗滤和UHT处理单元。结果显示加工过程总酚含量、黄酮含量、表儿茶素、芦丁和绿原酸含量分别减少57.7%、81.4%、57.9%、58.7%和46.0%,FRAP抗氧化能力和ABTS抗氧化能力分别下降69.0%和64.2%,清除DPPH自由基能力的IC50从8.15上升为12.85μg GAE/g。
     研究普通热处理、UHT处理以及HPCD处理等杀菌方式对荔枝果汁理化性质、抗氧化能力及酚类物质含量的影响,结果表明,HPCD处理能较好的保持果汁的理化性质,而普通热处理、UHT处理会使荔枝果汁的褐变度显著增大:对比不同杀菌处理发现热杀菌处理造成果汁抗氧化能力及酚类物质有较大损失,而HPCD处理则相对较好的保持果汁的酚类物质含量及抗氧化能力,有助于保持果汁活性成分,提高其营养价值。
     3不同贮藏条件对荔枝果汁抗氧化能力及酚类物质影响的分析:以经UHT杀菌的荔枝果汁为原料,分析5周内在4℃、25℃和37℃3个不同贮藏温度下荔枝果汁中理化性质、抗氧化能力及酚类物质含量的变化。结果显示,5周内,在4℃、25℃和37℃等不同贮藏温度下荔枝果汁中总酚含量,黄酮含量,单体酚类物质与抗氧化能力均呈现显著下降趋势(p<0.05),总酚含量分别下降37.0%、25.8%和23.5%,黄酮含量分别改变2.9%、15.6%和9.7%,表儿茶素分别下降45.7%、54.0%和65.1%。,芦丁分别下降16.9%、45.5%和46.1%,绿原酸分别降低9.7%,16.9%,20.5%;FRAP抗氧化能力分别下降54.0%、64.7%和64.5%,ABTS抗氧化能力分别降低44.7%、29.1%和30.0%;双因素方差分析表明总酚含量受贮藏时间影响显著(p<0.05),总黄酮含量受温度影响显著(p<0.05),贮藏温度和时间均对对单体酚类物质和抗氧化能力影响显著(p<0.05)。不同贮藏条件对荔枝果汁中酚类物质含量和抗氧化能力存在显著影响,低温和短时贮藏有利于保持荔枝果汁中理化品质和酚类物质含量。
Recently, research about free radical theories and the prevention of disease and anti-aging are getting more and more attentions. Epidemiological studies have shown that diets rich in fruits and vegetables could reduce chronic diseases, such as cardiovascular disease and cancer, which is mostly due to the natural active substances with strong antioxidative activities, such as phenolics. Explore and research of phenolics and antioxidant activity in fruits and vegetables and their processed products has become a common concern in food and medicine. Litchi is a typical fruit and has diverse cultivars in southern China. Previous studies about phenolics and their antioxidant activity of litchi fruit mainly focused on litchi by-products which are usually discarded as a waste, including litchi pericarp, litchi seeds. However, antioxidant activity and phenolics profile of large groups of cultivars of litchi pulp is rarely reported; changes of phenolics and antioxidant activity of litchi juice during processing are not yet clear. In the current study. antioxidant properties and phenolics of different litchi cultivars were compared in order to select the outstanding cultivars that owned the relatively stronger antioxidant activity and higher phenolics contents; the changes of physicochemical properties, phenolics and antioxidant activity of litchi juice were analyzed during different processing units and storage conditions. The major results are as follows:
     1 Comparison of antioxidant properties and phenolic profiles of different litchi cultivars. Samples of 13 different litchi cultivars were evaluated for total phenolics, total flavonoids and phenolic compositions and tested for their antioxidant potential by DPPH and FRAP assays. The results show that DPPH and FRAP antioxidant activity, total phenolics contents, total flavonoids contents and phenolic compositions had significant different (p<0.05). The free, bound and total phenolic contents of 13 litchi cultivars ranged from 66.17 to 226.03, from 11.18 to 40.54, and from 101.51 to 259.18 mg of GAE per 100g, respectively. The percentage contribution of free fractions to the total was from 63.1% to 91.4%. The coefficient of variation of total phenolic content in 13 litchi cultivars was 29.1%. The free, bound and total flavonoid contents varied from 16.68 to 110.33,10.48 to 22.75, and 39.43 to 129.86 mg of CE per 100g, respectively. The percentage contribution of free fractions to the total was from 42.3% to 87.4%. The coefficient of variation of total flavonoid content in 13 litchi cultivars was 34.5%. The phenolic compositions through HPLC analysis included gallic acid, chlorogenic acid, (+)-catechin, caffeic acid, (-)-epicatechin and rutin. Gallic acid and chlorogenic acid were only in free fractions; (+)-Catechin was only found in the bound fractions; Caffeic acid, (-)-epicatechin and rutin were found in both free and bound fractions, (-)-epicatechin and rutin were the main phenolics in litchi pulp. The free and bound IC50 values of 13 litchi cultivars determined by DPPH assay varied from 23.02 to 58.03 and from 29.13 to 44.75μg GAE/ml. And the free, bound and total FRAP values ranged from 61.99 to 439.54. from 18.97 to 68.7, and from 121.53 to 495.96 mg TE/100g. respectively. Total antioxidant activities determined by DPPH and FRAP assays were significantly correlated to the contents of total phenolics,total flavonoids,respectively. All the findings suggested that phenolics was one of active substance contributing for the antioxidant activity of litchi fruit.
     2 Analysis of physicochemical properties, phenolics and antioxidant activity of litchi juice during different processing units. Changes of physicochemical properties, phenolics and antioxidant activity of litchi juice were studied after blanching(enzyme inactivation),squeeze(rough filtration), centrifugation, diatomite filtration and UHT sterilization. The loss of phenolics and antioxidant activity mainly focused on blanching, sterilization and squeeze. The results showed that the loss of total phenolics. total flavonoids. (-)-epicatechin, rutin and chlorogenic acid contents during processing were 57.7%,81.4%,57.9%,58.7% and 46.0%, respectively. The FRAP and ABTS antioxidant activities lost 69.0 % and 64.2% in processing, and the IC50 value of DPPH antioxidant activities became from 8.15 to 12.85μg GAE/g during processing. Comparison of physicochemical properties, phenolics and antioxidant activity of litchi juice with common thermal sterilization, UHT sterilization and HPCD processing. The study showed that HPCD could keep unremarkable differences on the physicochemical properties, but both common thermal sterilization and UHT sterilization caused a increase of browning index. Moreover, HPCD had fewer effects on phenolics and antioxidant activity of litchi juice, maintaining and improving the active substances and nutritional values of litchi juice.
     3 Analysis of physicochemical properties, phenolics and antioxidant activity of litchi juice during three different temperature storage conditions. The changes of total phenolics content, total flavonoids content, FRAP and ABTS antioxidant activity present in litchi juice treated with UHT were investigated during 5 weeks' storage times at 4℃,25℃, and 37℃. The results showed that during 5 weeks' storage times at 4℃,25℃. and 37℃,the decease of total phenolics contents were 37.0%、25.8% and 23.5%; the changes of total flavonoids were 2.9%、15.6% and 9.7%; the decrease of (-)-epicatechin contents were 45.7%、54.0% and 65.1%; the decrease of rutin contents were 16.9%、45.5% and 46.1%; the decrease of chlorogenic acid contents were 9.1%、16.9% and 20.5%; the losses of FRAP were 54.0%、64.7% and 64.5%; the losses of ABTS antioxidant activities were 44.7%、29.1% and 30.0%. The results of Two-factor ANOVA showed that total phenolics content and antioxidant capacity were significant decreased (p <0.05) with the extension of storage time; in contrast, total phenolics content was influenced mainly by time (p<0.05), total flavonoid content was influenced mainly by temperature (p<0.05); phenolics compositions and antioxidant capacity was influenced by both time (p<0.05) and temperature (p<0.05).The study indicated that different storage conditions had significant impact on phenolic compounds; low temperature and short storage time could help keep physicochemical properties and phenolics contents.
引文
1.陈智毅,徐玉娟,尹艳等.甜玉米多酚类成分的测定.食品科学,2010,31(10):235-238
    2.但俊峰,盛雪飞,陈健初.5种柚汁中主要抗氧化成分含量及其抗氧化能力的比较.食品科学,2008,29(7):90-92
    3.方雪花.鲜切南瓜生理特性与南瓜粉抗氧化活性.[硕士学位论文].杭州:浙江大学图书馆,2005
    4.葛毅强,蔡同一,胡小松.果汁中酚类物质的研究新思路.饮料工业,2003,6(4):1-4
    5.刘莉华,宛晓春,李大祥.黄酮类化合物抗氧化活性构效关系的研究进展.安徽农业大学报,2002,29(3):265-270
    6.刘野,张超,赵晓燕.高压二氧化碳抑制西瓜汁褐变的试验.农业工程学报,2010,26(8):373-377
    7.刘英.四季柚果实主要功能成分分析及抗氧化作用的研究.[硕士学位论文].杭州:浙江大学图书馆,2007
    8.李华,李佩洪,王晓宇等.抗氧化检测方法的相关性研究.食品与生物技术学报,2008,27(4):7-10
    9.李升锋,徐玉娟,张友胜等.不同荔枝品种果实品质、糖组分及抗氧化性的分析.食品科学,2008,29(3):145-147
    10.郝菊芳.荔枝汁加工中营养和典型香气成分的变化研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    11.何会,宋哲,谢碧秀等.荔枝皮花色苷体外抗氧化能力研究.食品科学,2009,30(11):22-25
    12.黄丽,孙远明,潘科等.超高压处理对荔枝果汁品质的影响.农业工程学报,2007,23(2):259-261
    13.黄婉玉.超滤对红枣汁理化性质和抗氧化活性的影响.[硕士学位论文].西安:西北大学图书馆,2010
    14.欧阳若,胡桂兵,王泽槐.我国早熟荔枝种质资源的发掘及研究利用.中国 热带农业,2005,5:30-32
    15.宋烨,翟衡,杜远鹏等.苹果加工品种多酚提取物的抗氧化效果分析.果树学报,2006,23(6):793-797
    16.苏学素,焦必宁,陈宗道等.超滤对血橙果汁中抗氧化成分及总抗氧化能力的影响.农业工程学报,20(2):185-188
    17.汤建萍.中药荔枝核活性成分的分离制备新工艺及其药效活性研究.[博士学位论文].长沙:中南大学,2007
    18.田金辉.黑莓果汁的研制.[硕士学位论文].无锡:江南大学图书馆,2006
    19.万鹏.荔枝果汁非酶褐变机理研究.[硕士学位论文].武汉:华中农业大学图书馆,2010
    20.王国莉,李远.广东省荔枝生产发展现状分析.中国农学通报,2004,20(6):358-360
    21.王新磊,吴继红,张燕等.高压CO2处理对西瓜汁的影响. 食品与发酵工业,2008,34(11):76-78
    22.王洋.荔枝核化学成分的研究(Ⅱ)--氨基酸及多酚测定.[硕士学位论文].广州:暨南大学图书馆,2008
    23.吴华慧,李雪华,邱莉.荔枝、龙眼果肉及荔枝、龙眼多糖清除活性氧自由基的研究.食品科学,2004,25(5):166-169
    24.吴淑娴.中国果树志(荔枝卷).北京:中国林业出版社,1998:1-3
    25.肖毅美.龙眼果肉酚类物质的抗氧化与免疫调节作用.[硕士学位论文].广州:华南农业大学图书馆,2010
    26.杨宝.荔枝壳功能性成分制备与生理活性研究.[博士学位论文].广州:华南理工大学,2006
    27.杨静.鲜切和加工甘薯的抗氧化特性研究.[硕士学位论文].杭州:浙江大学图书馆,2010
    28.易干军,霍合强,陈大成等.荔枝品种亲缘关系的AFLP分析.园艺学报,2003,30(4):399-403
    29.曾杨,曾新安.冷冻浓缩处理对荔枝汁品质的影响.食品科学.2010,31(3):91-93
    30.赵光远,高志松,郑坚强.苹果-刺梨混浊汁加工过程中的品质控制研究.食品科学,2009,30(16):127-130
    31.赵光远,王璋,许时婴.浑浊苹果汁加工过程中理化变化的研究.食品科学,2005a,26(10):71-75
    32.赵光远,王璋,许时婴.混浊苹果汁加工中影响果汁浊度因素的研究.食品科学,2005b,26(5):76-79
    33.赵光远,张露,王璋.苹果浑浊汁贮藏过程中浑浊稳定性的研究.农业工程学报,2007,23(5):220-225
    34.赵剪.PEF、冷冻浓缩荔枝汁感官评定及品质动力学研究.[硕士学位论文].福州:福建农林大学图书馆,2008
    35.郑公铭,义志忠,张际标等.荔枝果皮抗氧化作用研究.天然产物研究与开发,2003,15(4):341-344
    36.钟耕,尹礼国,曾凡坤.苦荞麦粉乙醇提取物抗氧化性及芦丁受热变化的研究.中国粮油学报,2004,19(3):31-34.
    37.钟会臻.荔枝果肉多酚及脂肪酸指纹图谱初步研究.[硕士学位论文].武汉:华中农业大学图书馆,2010
    38.周玮婧.荔枝皮原花青素的提取、纯化以及抗氧化活性研究.[硕士学位论文].武汉:华中农业大学图书馆,2010
    39.朱玉昌.橙汁杭氧化活性成分及总抗氧化能力的研究.[硕士学位论文].重庆:西南大学图书馆,2006
    40. Adom K K, Liu R H. Antioxidant activity of grains. J Agric Food Chem,2002,50 (21):6182-6187
    41. Ames B N, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA,1993,90(17):7915-7922
    42. Bazzano L A, He J, Ogden L G, et al. Fruit and vegetable intake and risk of cardiovascular disease in US adults:the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr,2002,76(1): 93-99
    43. Benzie I F F, Strain J J. The Ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":The FRAP assay. Anal Biochem,1996,239:70-76
    44. Brand-Williams W, Cuvelier M E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol,1995,28(1):25-30
    45. Damar S. Balaban M O. Review of dense phase CO2technology:microbial and enzyme inactivation, and effects on food quality.1 Food Sci,2006,71(1):1-11
    46. Dewanto V, Wu X, Adorn K K, et al. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J Agric Food Chem.2002. 50(10):3010-3014
    47. Duan X, Wu G, Jiang Y. Evaluation of antioxidant properties of phenolics from litchi fruit in relation to pericarp browning prevention. Molecules,2007,12(4):759-771
    48. Du G, Li M, Ma F, et al. Antioxidant capacity and the relationship with polyphenol and Vitamin C in Actinidia fruits. Food Chem,2009,113(2):557-562.
    49. Eberhardt M V, Lee C Y, Liu R H. Antioxidant activity of fresh apples. Nature (London, U. K.),2000,405:903-904
    50. Fabroni S, Amenta M, Timpanaro N, et al. Supercritical carbon dioxide-treated blood orange juice as a new product in the fresh fruit juice market. Innovative Food Sci Emerging Technol,2010,11(3):477-484
    51. Garcia-Alonso F J, Bravo S, Casas J, et al. Changes in antioxidant compounds during the shelf life of commercial tomato juices in different packaging materials. J Agric Food Chem,2009,57(15):6815-6822.
    52. Gasperi F, Aprea E, Biasioli F, et al. Effects of supercritical CO2 and N2O pasteurization on the quality of fresh apple juice. Food Chem,2009,115(1):129-136
    53. Guyot S, Marnet N, Laraba D, et al. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a french cider apple variety (Malus domestica Var. Kermerrien). J Agric Food Chem``1998,46(5):1698-1705
    54. Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem,1999,64(4):555-559
    55. Jiratanan T, Liu R H. Antioxidant activity of processed table beets (Beta vulgarivar, conditiva) and green beans (Phaseolus vulgaris L). J Agric Food Chem,2004,52(9): 2659-2670
    56. Joshipura K J, Hu F B, Manson J E, et al. The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med,2001,134(12):1106-1114
    57. Kubola J, Siriamornpun S. Phenolic contents and antioxidant activities of bitter gourd (Momordica charantia L.) leaf, stem and fruit fraction extracts in vitro. Food Chem. 2008,110(4):881-890
    58. Liu L, Xie B J, Cao S Q, et al. A-type procyanidins from Litchi chinensis pericarp with antioxidant activity. Food Chem,2007,105(4):1446-1451
    59. Liu M, Li X Q, Weber C, et al. Antioxidant and antiproliferative activities of raspberries. J Agric Food Chem,2002,50(10):2926-2930
    60. Liu R H. Whole grain phytochemicals and health. J Cereal Sci,2007,46 (3):207-219
    61. Liu S C, Lin J T, Wang C K, et al. Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers. Food Chem,2009,114(2):577-581
    62. Locatelli M, Gindro R, Travaglia F, et al. Study of the DPPH-scavenging activity: Development of a free software for the correct interpretation of data. Food Chem, 2009,114(3):889-897
    63. Luximon-Ramma A, Bahorunl T, Crozier A. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J Sci Food Agric,2003,83(5): 496-502
    64. Mahattanatawee K, Manthey J A, Luzio G, et al. Total antioxidant activity and fiber content of select Florida-grown tropical fruit. J Agric Food Chem,2006,54(19): 7355-7363
    65. Manzocco L, Calligaris S, Mastrocola D, et al. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci Technol,2001,11 (9/10): 340-346
    66. Meyers K J, Watkins C B, Pritts M P, et al. Antioxidant and antiproliferative activities of strawberries. J Agric Food Chem,2003,51(23):6887-6892
    67. Miller N J, Rice-Evans C A. Factors influencing the antioxidant activity determined by the ABTS.+radical cation assay. Free Radical Res,1997,26(3):195-199
    68. Moon J, Shibamoto T. Antioxidant assays for plant and food components. J Agric Food Chem,2009,57(5):1655-1666
    69. Morton L W, Caccetta R A, Puddey I B. et al. Chemistry and biological effects of dietary phenolic compounds:relevance to cardiovascular disease. Clin Exp Pharmacol Physiol,2000,27(3):152-159
    70. Naczk M, Shahidi F. Phenolics in cereals, fruits and vegetables:Occurrence, extraction and analysis. J Pharm Biomed Anal,2006,41(5):1523-1542
    71. Newmark H L. Plant phenolics as potential cancer prevention agents. AdV Exp Med Biol,1996.401:25-34
    72. Odriozola-Serrano I,Soliva-Fortuny R, Martin-Belloso O. Changes of health-related compounds throughout cold storage of tomato juice stabilized by thermal or high intensity pulsed electric field treatments. Innovative Food Sci Emerging Technol, 2008.9(3):272-279
    73. Perez-Vicente A, Serrano P. Garcia-Viguera C. Influence of packaging material on pomegranate juice colour and bioactive compounds, during storage. J Sci Food Agric, 2004,84(7):639-644
    74. Nagendra Prasad K, Yang B, Yang S, et al. Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem,2009.116(1):1-7
    75. Rivera-Lopez J, Ordorica-Falomir C, Wesche-Ebeling P. Changes in anthocyanin concentration in Lychee (Litchi chinensis Sonn.) pericarp during maturation. Food Chem,1999,65(2),195-200
    76. Robards K, Prenzler P D, Tucker G et al. Phenolic compounds and their role in oxidative processes in fruits. Food Chem,1999,66(4):401-436
    77. Sarni-Manchado P, Le Roux E, Le Guerneve C, et al. Phenolic composition of Litchi fruit pericarp. J Agric Food Chem,2000,48(12):5995-6002
    78. Singleton V L, Orthofer R, Lamuela-Raventos R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol,1999,299:152-178
    79. Slimestad R, Verheul M J. Seasonal variations in the level of plant constituents in greenhouse production of cherry tomatoes. J Agric Food Chem,2005,53(8): 3114-3119
    80. Sosulski F, Krygier K, Hogge L. Free, esterified, and insoluble-bound phenolic acids. 3. Composition of phenolic acids in cereal and potato flours. J Agric Food Chem. 1982,30(2):337-340
    81. Spanos G A, Wrolstad R E. Influence of variety, maturity, processing, and storage on the phenolic composition of pear juice. J Agric Food Chem,1990a,38(3):817-824
    82. Spanos G A, Wrolstad R E. Influence of processing and storage on the phenolic composition of Thompson seedless grape juice. J Agric Food Chem,1990b,38(7): 1565-1571
    83. Spanos G A, Wrolstad R E, Heatherbell D A. Influence of processing and storage on the phenolic composition of apple juice. J Agric Food Chem,1990c,38(7): 1572-1579
    84. Sun J, Chu Y, Wu X, et al. Antioxidant and Antiproliferative Activities of Common Fruits. J Agric Food Chem,2002,50(25):7449-7454
    85. Thaipong K, Boonprakob U, Crosby K, et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal,2006,19(6/7):669-675
    86. Vinson J A, Su X, Zubik L, et al. Phenol antioxidant quantity and quality in foods: fruits. J Agric Food Chem,2001.49(11):5315-5321
    87. Wolfe K L; Liu R H. Apple peels as a value-added food ingredient. J Agric Food Chem,2003,51(6):1676-1683
    88. Wolfe K, Wu X, Liu R H. Antioxidant activity of apple peels. J Agric Food Chem. 2003,51(3):609-614
    89. Xu G, Liu D, Chen J, et al. Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chem,2008,106(2):545-551
    90. Zhang D, Quantick P C. Grigor J M. Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biol Technol, 2000,19(2):165-172
    91. Zhao M M, Yang B, Wang J S, et al. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation to their antioxidant activities. Food Chem, 2006,98(3):539-544
    92. Zuo Y, Wang C, Zhan J. Separation, characterization, and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC-MS. J Agric Food Chem, 2002,50(13):3789-3794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700