甜菜夜蛾和斜纹夜蛾触角酯酶及褐飞虱气味结合蛋白的基因克隆及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在漫长的自然选择过程中,昆虫形成了非常精密的化学感受系统,得以从纷繁复杂的环境化学信号中,筛选并识别出与生命活动相关的信息,从而完成取食、交配、寻找产卵场、防御、种群密度调节等重要的行为和生理活动,研究昆虫化感机制具有重要的科学意义。从应用的角度看,害虫的防治长期以来依赖于化学农药,不但使害虫产生了抗性,同时农药残留给环境及人类安全带来重大隐患,因此急需更环保、更安全的害虫无公害防治新技术。而基于昆虫化学感受系统的行为调控技术,是害虫防治的重要组成并具有广阔的发展前景,深入研究害虫化学感受的分子机制,弄清化感相关蛋白基因及其功能,将有助于设计和开发更为高效的害虫行为调控技术。甜菜夜蛾(Spodoptera exigua)、斜纹夜蛾(Spodoptera litura)以及褐飞虱(Nilaparvata lugens)均是重要农业害虫,本文针对3种害虫的化感相关蛋白基因及其功能进行研究,主要结果如下:
     1甜菜夜蛾触角酯酶基因的克隆、序列分析和表达谱研究
     通过兼并引物克隆和转录组数据分析,获得8个甜菜夜蛾触角酯酶(CXE)基因片段。进一步通过RACE技术获得其全长cDNA,其基因名称和Genbank登录号分别为SexiCXE5(HQ116561)、SexiCXE10(JF728805), SexiCXE11(JF728804)、SexiCXE13(HQ116560)、SexiCXE14(JF728803)、SexiCXE17(HQ116559)、SexiCXE18(JF728802)和SexiCXE20(HQ116562)。对基因组DNA的克隆和分析发现,SexiCXE5含有10个内含子,其他7个SexiCXE各含有2个内含子。以实时定量PCR进行的表达量测定结果显示,SexiCXE10和SexiCXE17主要在触角中表达,其它组织中表达量很低;SexiCXE14除在触角中高表达外,在喙中也有较高表达;SexiCXE5和SexiCXE18以翅中的表达量最高;而SexiCXE11和SexiCXE13的表达量在检测组织中无明显差异。不同虫态(日龄)测定结果显示,8个SexiCXE在雄成虫触角的表达量都高于末龄幼虫头部;SexiCXE5、SexiCXE10及SexiCXE14的表达量从蛹末期(羽化前2天)到成虫3日龄持续上升,随后开始下降并维持较低水平;SexiCXE17则在1日龄(羽化当天)表达量最高,随后开始下降并维持较低水平;SexiCXE11和SexiCXE20在5日龄表达最高,其余日龄间无明显差异;SexiCXE13的表达量在不同日龄间无明显差异。
     2斜纹夜蛾触角酯酶基因的克隆、序列分析和表达谱研究
     通过同源克隆技术,从斜纹夜蛾雄蛾触角扩增到3个触角酯酶(CXE)基因片段,进一步通过RACE技术获得cDNA全长,其名称和Genbank登录号分别为SlituCXE13(HQ116556)、SlituCXE17(HQ116558)和SlituCXE18(HQ116557).以基因组DNA为模板进行扩增,发现SlituCXE13和SlituCXE18各含有2个内含子,SlituCXE17含有3个内含子。系统进化分析表明:SexiCXE14、SexiCXE17、 SlituCXE17、SexiCXE18、SlituCXE18和SexiCXE20聚到A簇(线粒体、胞浆酶及分泌酯酶),SexiCXE10和SexiCXE11属于B簇(双翅目α-酯酶),SexiCXE5归于D簇(表皮酶与触角酶),SexiCXE13和SlituCXE13则在E簇(β-酯酶与信息素酯酶)。组织表达谱分析表明,SlituCXE17为触角高表达,SlituCXE18为翅高表达,SlituCXE13在各组织的表达量相似;就雄蛾触角中的表达量而言,3个基因中以SlituCXE13最高。日动态测定发现,3个SlituCXE基因在成虫触角的表达量都高于末龄幼虫头部;SlituCXE13在整个成虫期的表达比较平稳;而SlituCXE18从羽化后开始逐渐上升,到3日龄到达峰值,随后逐渐下降;SlituCXE17则在羽化当天达到高峰,随后下降并维持一定的表达。
     3甜菜夜蛾和斜纹夜蛾触角酯酶基因的真核表达及纯化
     分别构建11个CXE基因的昆虫病毒表达载体pFastBacl的供体质粒,并利用High-Five昆虫细胞系进行体外大量表达。蛋白杂交结果表明,所有触角酯酶基因都成功表达,因为转染细胞的细胞裂解液在60kDa左右均出现目标条带;同时,转染SexiCXE10和SexiCXE14的细胞上清中也出现目标条带,说明这两个基因的表达产物可以分泌到细胞外。利用酯酶人工底物α/β-乙酸萘酯混合物进行活性染色检测,表明,所表达的酯酶均具有生物活性。利用粗酶液对20种酯类气味物质进行活性测定,发现SexiCXE10、11、13、14和SlituCXE13至少可以降解一种酯类气味物质。然后,利用Ni-NTA亲和层析柱对这5种粗酶液进行纯化,SDS-PAGE检测表明纯化后的酶蛋白在60kDa左右出现特异条带,纯度都在95%以上。
     4甜菜夜蛾和斜纹夜蛾触角酯酶的底物活性及酶动力学测定
     为明确CXE在酯类性信息素组分等感受中的功能,首先比较了不同组织粗提液对酯类组分的活性,发现雄虫触角的粗提液较其它组织的粗提液,能更有效地降解同种雌虫的酯类性信息素组分。进一步研究表明,甜菜夜蛾雄蛾触角粗提液对供试所有酯类组分均具有活性,且活性随底物碳原子数的减少而增高(乙酸叶醇酯除外)。SexiCXE14纯酶和触角粗酶液所得结果相似,但SexiCXE10只对≤12个碳的酯类物质有活性(乙酸叶醇酯除外)。两种昆虫的直系同源基因产物SexiCXE13和SlituCXE13,对性信息素的降解能力在被测酯酶中最强;两种酶对苯甲酸苯甲酯和顺3-己酸己烯酯无活性,但对7个碳和8个碳的酯类物质的活性较高,降解率在85%以上。SexiCXE11对所测酯类物质的降解率基本在50%以下。酶动力学参数测定表明:SexiCXE13、SexiCXE14以及SlituCXE13均对自身性信息素的亲和力最高;而SexiCXE10对酯类性信息素没有明显活性,对普通酯类气味活性较高,其中对乙酸叶醇酯的亲和力最强。当两种酯类性信息素组分同时存在的时候,相比甜菜夜蛾性信息素次要组分Z9-14:Ac, SexiCXE14更偏好降解主要组分Z9E12-14:Ac.不同pH条件下相对酶活力测定表明:SexiCXE13, SexiCXE14在pH6.5时酶活力最高;而SexiCXE10从pH6.5到9.0酶活力仍然保持缓慢上升。综合分析认为,SexiCXE10是普通气味降解酯酶,只参与降解普通酯类气味物质;SexiCXE14是双功能降解酯酶,不仅降解酯类性信息素,同时参与降解普通酯类气味物质;而SexiCXE11、SexiCXE13和SlituCXE13是表皮酯酶,主要起到清除吸附到虫体表面的酯类气味的作用,由此降低背景噪音、提高嗅觉的灵敏性。
     5褐飞虱气味结合蛋白基因的预测、克隆和序列分析
     昆虫气味结合蛋白Odorant Binding Protein (OBP)在气味的感受中具重要作用,但在褐飞虱这一重要农业害虫中尚未见报道。序列表达标签Express sequence tag(EST)数据库的不断丰富,为发现新的OBP基因提供了有利的平台。本文利用公共数据库National Center for Biotechnology Information (NCBI)的EST数据,从褐飞虱等57种昆虫的752,841条EST中发现142个OBP基因,其中117个属新发现基因,包括3个褐飞虱OBP新基因。在117个新发现的OBP基因中,88个具有完整的开放阅读框。随机选择来自8种昆虫的26条OBP序列进行PCR验证,22条OBP基因得以验证,成功率达85%,说明了预测方法的可靠性。
     6褐飞虱气味结合蛋白的序列分析及表达谱研究
     基于褐飞虱的3个OBP片段,进一步通过RACE技术克隆到cDNA全长。3个褐飞虱OBPX (NlugOBP)分别编码173、143和147个氨基酸,都具有典型OBP (Classic OBP)的序列特征,并与其它昆虫的同源基因有较高的相似性,但3个NlugOBP之间的相似性较低。利用qRT-PCR检测了3个NlugOBP在若虫不同龄期、成虫不同性别、翅型及组织间的相对表达量。NlugOBP1的表达量在成虫和若虫间没有明显差异,但NlugOBP2在成虫期显著高于若虫期,NlugOBP3则在若虫期(5龄除外)显著高于成虫期;雌雄虫相比较发现,NlugOBP2和NlugOBP3不管在长翅和短翅型成虫中均以雌虫表达较高,而NlugOBP1在雌雄间无明显差异;3个NlugOBP在长短翅型成虫间均无明显差异;就不同组织而言,NlugOBP2在触角中高表达,在其他组织中很低;NlugOBP1除在触角高表达外,在翅中也有一定的表达;而NlugOBP3不仅在触角高表达,在腹部也有较高的表达。3个OBP明显不同的表达特征,暗示其在功能上存在差异。
     7褐飞虱气味结合蛋白基因功能研究
     首先利用大肠杆菌表达系统大量获得了褐飞虱OBP重组蛋白,然后通过荧光竞争结合实验,测定了NlugOBP重组蛋白对不同结构气味物质的结合能力。结果表明,3个NlugOBP均以酮类和萜烯类气味物质的结合能力较高;3个NlugOBP相比较,NlugOBP3具有更宽的气味结合谱和更高的结合能力。通过对水稻挥发物的结合能力分析,并结合前期的表达量测定结果,推测NlugOBP3在褐飞虱对水稻气味的嗅觉中较另2个NlugOBP更为重要,因此进一步通过dsRNA喂食法对NlugOBP3进行RNA干扰研究。结果发现,dsRNA处理组褐飞虱NlugOBP3的表达量被显著抑制,处理后1天和2天时较对照组分别降低约60%和80%;同时,处理组褐飞虱对水稻植株的趋性显著降低,证实了NlugOBP3在褐飞虱感受水稻气味中的作用。此外还发现,dsRNA处理组褐飞虱的死亡率大幅度提高,说明NlugOBP3还具有嗅觉以外的生理功能。因此,NlugOBP3作为靶标基因,对于开发褐飞虱的行为调控和致死技术具有重要的利用价值。
     综上所述,本文综合运用分子生物学、生物化学和行为学分析技术,克隆了甜菜夜蛾和斜纹夜蛾的11个触角酯酶基因以及褐飞虱的3个气味结合蛋白基因,测定了这些基因的时空表达特征,并深入研究了这些基因的功能。研究结果为弄清3种昆虫的气味感受机制,以及开发新型、高效的害虫行为调控技术提供了重要依据。
In insects, the chemosensory systems have evolved to be highly sensitive during the long process of natural selection, enabling detection and discrimination among a diverse array of volatile chemicals that stimulate insect important behavioral and physiological responses such as finding of food, mate and oviposition sites, avoidance of predation, and regulation of population density. For a long time, pest control mainly depends on chemical control, which leads to not only the pest resistance to the insecticides, but also a potential threat to human health and environments. Therefore, the alternatives of pest control techniques are urgently needed. The chemosensation-based control techniques are important, and show prosperous perspective in integrated pest management. The deep understanding of the chemosensory mechanisms will undoubtedly be significant for the development of these chemosensation-based control techniques. The beet armyworm, Spodoptera exigua Hubner, the common cutworm Spodoptera. litura (Fabricius)(Lepidoptera:Noctuidae), and the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae) are all severe pests of agriculture. Here, we reported the molecular and functional characterization of chemosensory related genes from S. exigua, S. litura and N. lugens. The main results are as follows:
     1. Molecular cloning, sequence analysis and expression pattern of antennal esterases from S. exigua
     By homologous cloning and transcriptomic analysis, eight antennal esterase (CXE) cDNA fragments were obtained and their full-length sequences were further achieved by Rapid Amplification of cDNA Ends (RACE) procedure from S1. exigua. The names and Genbank numbers of these CXEs were SexiCXES (HQ116561), SexiCXE10(JF728805), SexiCXEll (JF728804), SexiCXE13(HQ116560), SexiCXE14(JF728803), SexiCXE17(HQ116559), SexiCXE18(JF728802) and SexiCXE20(HQ116562) respectively. The genomic DNA sequences of the eight SexiCXE genes were also obtained, showing10introns in SexiCXE5, and two introns in the other CXEs. To gain the functional clues, the temporal expression patterns of SexiCXEs were investigated using quantitative-polymerase chain reaction (qPCR) experiments. SexiCXE10and SexiCXE17mainly expressed in antennae and little in other tissues; SexiCXE14displayed not only high expression level in antennae but also considerable expression level in proboscises. SexiCXE20mainly expressed in antennae and also highly in wings, legs, proboscises and heads; SexiCXE5and SexiCXE18displayed dominant expression in wings; SexiCXEll and SexiCXE13had no obvious differences in expression among tested tissues. The temporal pattern showed that eight SexiCXEs had higher expression in male antennae than in larval heads of the last instar. SexiCXE5, SexiCXE10and SexiCXE14showed an increasing trend from the first day to the third day of the adult, and then dropped to a lower level until the sixth day; SexiCXE117had a peak expression at two days before the eclosion. SexiCXE11and SexiCXE20displayed the peak expression at the fifth day and no fluctuation in other days. SexiCXE13showed no difference among the tested daypoints.
     2. Molecular cloning, sequence analysis and expression pattern of antennal esterases from S. litura
     Based the homologue cloning, three SlituCXE fragments were obtained from male antennae of S. litura. Further RACE procedure was employed to obtain full-length sequences of CXE from S. litura. Their names and Genbank numbers were SlituCXE13(HQ116556), SlituCXE17(HQ116558) and SlituCXE18(HQ116557) respectively. The three SlituCXE genes were further cloned and sequenced from the genomic DNA preparation. SlituCXE17contained three introns, SlituCXE13and SlituCXE18contained two introns and all presented a similar intron/exon structure. Phylogenetic analysis showed SexiCXE14, SexiCXE17, SlituCXE17, SexiCXE18, SlituCXE18and SexiCXE20were classified into clade A (mitochondrial, cytosolic and secreted esterases); SexiCXE10and SexiCXE11were classified into clade B (dipteran a-esterases); SexiCXES into clade D (integumental/antennal esterases); SexiCXE13and SlituCXE13into clade E (β-esterases and pheromone esterases). Tissue expression pattern results showed that SlituCXE17mainly expressed in antennae, while SlituCXE17displayed dominant expression in wings; SlituCXE13had no obviously differences among tested tissues. In male antennae SlituCXE13showed the highest expression among the three SlituCXEs. For the temporal expression, three SlituCXEs had higher expression level in adult antennae than in larval heads of last instar. SlituCXE13displayed no obvious fluctuation during adult stage. SlituCXE18showed an expression peak at the third day, while. SlituCXE17had a peak expression at the first day of the adult.
     3. In vitro expression and purification of antennal esterases from S. exigua and S. litura
     11CXEs from S. exigua and S. litura were respectively constructed into insect baculovirus expression vector pFastBacl fused with N-terminal His-tag sequence in frame and successfully expressed in High-Five cells. The cell lysates for11recombinant proteins all showed an obvious band of about60kDa, and meanwhile SexiCXE10and SexiCXE14also expressed in cell supernatants, indicating that these two were secreted esterases. α/β-Naphthyl acetate assay revealed that all11CXEs had biological activity, but only five CXEs (SexiCXE10,11,13,14and SlituCXE13) could degrade at least one tested ester compound. These five CXEs were purified with a nickel affinity column. All purified proteins showed an obvious band at about60kDa and the purities were greater than95%checked by SDS-PAGE analysis.
     4. Measurements of kinetic parameters of antennal esterases from S. exigua and S. litura
     In order to investigate the function of these CXEs from S. exigua and S. litura for sex pheromone and other ester odors perception, first, the degradation activities of crude extracts of different tissues form S. exigua and S. litura were measured. Extracts of male antennae displayed higher activities for own sex pheromone compounds than other tested tissues in both moths. Crude extracts of male antennae from S. exigua could degrade all tested esters, and the degradation activity was positively correlated with carbon number of the esters (except for geranyl acetate). For purified enzymes, SexiCXE14displayed the most similar substrate activities with crude extracts of S. exigua than other purified enzymes, while SexiCXE10could degrade only ester compounds with carbon number less than or equal to12(except for geranyl acetate). SexiCXE13and SlituCXE13had highest degradation activities for sex pheromones among all tested enzymes. These two enzymes had high degradation activities with esters containing seven and eight carbon atoms (the percentages of degradation were above85%) and had no activity with phenyl benzoate and (Z)-3-hexenyl caproate; SexiCXEll showed low activity for most ester compounds with degradation percentage lower than50%. The measurements of kinetic parameters showed that SexiCXE13, SexiCXE14and SlituCXE13had higher affinity with own sex pheromones than other ester compounds, and SexiCXE14prefer to degrade the major compound Z9E12-14:Ac than the minor compound Z9-14:Ac when the two compound were mixed; SexiCXE10had no degradation activity with sex pheromones but had highest affinity with geranyl acetate. The optimal pH condition for enzyme activities of SexiCXE10, SexiCXE13and SexiCXE14were also measured. SexiCXE13and SexiCXE14showed highest activities at pH6.5, while SexiCXE10displayed a slow increasing trend in activity from pH6.5to pH9.0. Our results suggested that SexiCXE10functions as an enzyme for degrading the general odorants, SexiCXE14not only for sex pheromone components but also for general odorants, and other three enzymes (SexiCXEll, SexiCXE13and SlituCXE13) functions as integumental enzymes to clear out the odorants absorbed onto the insect body surface which could reducing background noise to enhance olfactory sensitivity.
     5. Prediction and validation of odorant binding proteins from N. lugens and other insects using Express Sequence Tags
     Odorant binding protein (OBP) plays important role in insect olfaction, but it is not reported in N. lugens which was an important agricultural pest. The increasing data of Express Sequence Tag (EST) supplied a good resource for finding new OBPs. To find new OBP genes, a computational pipeline was developed to use ESTs deposited in public database NCBI. In total,752,841insect ESTs were examined from54species covering eight Orders of Insecta. From these ESTs,142OBPs were identified, of which117OBPs are new including3OBPs from N. lugens (NlugOBPs). Of the117OBPs,88OBPs had complete ORFs.26OBPs from eight species of insects were randomly chosen for RT-PCR validation. As a result,22OBPs were confirmed, showing the efficiency and reliability of our prediction method.
     6. Sequence analysis and expression pattern of odorant binding proteins from N. lugens
     Based on the three NlugOBP cDNA fragments, full-length cDNAs were obtained using RACE strategy. Three NlugOBPs encoded173,143and147amino acids, respectively. Three NlugOBPs possessed typical sequence characters of "Classic OBP" and showed high identities with reported insect OBPs, although very low identities between three NlugOBPs. To find functional clues, the expression profiles were investigated by qRT-PCR, regarding to tissue, developmental stage, wing form and gender. NlugOBP1showed no much difference in expression level between nymph and adult stages. However, NlugOBP2expressed significantly higher in adult, while NlugOBP3significantly higher in nymph (except for fifth day-instar); NlugOBP2and NlugOBP3were obviously female biased in both short-and long-wing adults, whereas NlugOBP1was expressed in similar levels between females and males. All three NlugOBPs showed no much difference between long and short wing adults. Among tissues, NlugOBP2expressed high in antenna with little in other tissues; NlugOBP1dominantly expressed in antennae and also had considerable expression level in wings of both sexes; NlugOBP3expressed in high levels in antennae and abdomen. The distinct expression patterns among three NlugOBPs suggesting their functional differentiation.7. Functional research of odorant binding proteins from N. lugens
     To elucidate functions of NlugOBPs, high yields of recombinant and soluble NlugOBPs were achieved using a bacterial expression system. With the purified NlugOBPs, competitive fluorescence ligand binding assays were carried out. As results, all three NlugOBPs displayed higher binding abilities for Terpenes and Ketones than other chemicals. However, NlugOBP3showed markedly higher binding ability and wider binding spectrum than the other two NlugOBPs. According to the binding abilities for rice volatiles and the expression patterns of the three NlugOBPs, it was proposed that NlugOBP3was more important than the two others in perception of rice volatile and other possible functions, thus NlugOBP3was selected for further functional study by RNAi. Compared to the insects feeding on a normal artificial diet (CK) and an exogenous dsRNA mixed diet (dsGFP), the nymphs on OBP3-dsRNA diet (dsOBP3) showed a significantly reduced mRNA expression, with about60%and80%reduction at1day and2days after the treatment, respectively. At meanwhile, dsOBP3treated nymphs showed significant decrease in ability to locate the rice plants, providing the evidence that NlugOBP3is involved in perception of rice volatiles. Surprisingly, the dsOBP3treatment also resulted in a significant increase in the nymph mortality, indicating non-functions of NlugOBP3. Therefore, NlugOBP3is a potential target gene for use in designing and developing new deterrent and lethal agent.
     In conclusion, we for the first time characterized11antennal esterases from S. exigua and S. litura, and three odorant binding proteins form N. lugens; investigated the expression patterns of these genes; and explored their functions in olfaction of sex pheromone compounds and host plant volatiles. The results obtained in this study provided the important bases for the elucidation of the molecular mechanisms of insect olfaction and target genes for designing and developing effective pest control agents.
引文
1. Abuin L, Bargeton B, Ulbrich M H, et al. Functional architecture of olfactory ionotropic glutamate receptors. Neuron.2011,69(1):44-60.
    2. Ailor E, Takahashi N, Tsukamoto Y, et al. N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells:effects of mammalian galactosyltransferase. Glycobiology.2000,10(8): 837-847.
    3. Aldridge W N, Reiner E. Enzyme inhibitors as substrates:interactions of esterases with esters of organophosphorus and carbamic acids.1972.
    4. Augustinsson K B. Multiple forms of esterase. Ann N.Y. Acad Sci.1961,94:844-868.
    5. Augustinsson K B. Electrophoresis studies on blood plasma esterase:1. Mammalian plasmata. Acta Chem Scand.1959,13:571-592.
    6. Ban L, Scaloni A, D'Ambrosio C, et al. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell Mol Life Sci.2003,60(2):390-400.
    7. Bau J, Martinez D, Renou M, et al. Pheromone-triggered Orientation Flight of Male Moths can be Disrupted by Trifluoromethyl Ketones. Chem Senses.1999,24(5):473-480.
    8. Bengtsson J M, Trona F, Montagne N, et al. Putative Chemosensory Receptors of the Codling Moth, Cydia pomonella, Identified by Antennal Transcriptome Analysis. PLoS One.2012,7(2):e31620.
    9. Benton R, Sachse S, Michnick S W, et al. Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo. PLoS Biol.2006,4(2):e20.
    10. Benton R, Vannice K S, Gomez-Diaz C, et al. Variant ionotropic glutamate receptors as chemosensory receptors in Drosophila. Cell.2009,136(1):149-162.
    11. Benton R, Vannice K S, Vosshall L B. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature.2007,450(7167):289-293.
    12. Biessmann H, Andronopoulou E, Biessmann M R, et al. The Anopheles gambiae odorant binding protein 1 (AgamOBP1) mediates indole recognition in the antennae of female mosquitoes. PLoS One.2010,5(3):e9471.
    13. Boeckh J, Boeckh V. Threshold and odor specificity of pheromone-sensitive neurons in the deutocerebrum of Antheraea perny and A. polyphemus(Saturnidae). J of Comp Physiol A.1979, 132(3):235-242.
    14. Boeckh J, Ernst K D, Sass H, et al. Anatomical and physiological characteristics of individual neurones in the central antennal pathway of insects. J Insect Physiol.1984,30(1):15-26.
    15. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976,72:248-254.
    16. Breitbach K, Jarvis D L. Improved glycosylation of a foreign protein by Tn-5B1-4 cells engineered to express mammalian glycosyltransferases. Biotechnol Bioeng.2001,74(3):230-239.
    17. Calvello M, Guerra N, Brandazza A, et al. Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci.2003,60(9):1933-1943.
    18. Campanacci V, Krieger J, Bette S, et al. Revisiting the specificity of Mamestra brassicae and Antheraea polyphemus pheromone-binding proteins with a fluorescence binding assay. J Biol Chem.2001,276(23):20078-20084.
    19. Campanacci V, Longhi S, Nagnan-Le M P, et al. Recombinant pheromone binding protein 1 from Mamestra brassicae (MbraPBPl). Functional and structural characterization. Eur J Biochem.1999, 264(3):707-716.
    20. Chen J, Zhang D, Yao Q, et al. Feeding-based RNA interference of a trehalose phosphate synthase gene in the brown planthopper, Nilaparvata lugens. Insect Mol Biol.2010,19(6):777-786.
    21. Chenier J V R, Philogene B J R. Field responses of certain forest Coleoptera to conifer monoterpenes and ethanol. J Chem Ecol.1989,15(6):1729-1745.
    22. Ciccarone V.C., Polayes D, Luckow V A. Generation of Recombinant Baculovirus DNA in E. coli using Baculovirus Shuttle Vector. Humana Press, Reischt U, Totowa, NJ:1997.
    23. Clamp M, Cuff J, Searle S M, et al. The Jalview Java alignment editor. Bioinformatics.2004,20(3): 426-427.
    24. Coates P M, Mestriner M A, Hopkinson D A. A preliminary genetic interpretation of the esterase isozymes of human tissues. Ann Hum Genet.1975,39(1):1-20.
    25. Couto A, Alenius M, Dickson B J. Molecular, Anatomical, and Functional Organization of the Drosophila Olfactory System. Curr Biol.2005,15(17):1535-1547.
    26. Croset V, Rytz R, Cummins S F, et al. Ancient protostome origin of chemosensory ionotropic glutamate receptors and the evolution of insect taste and olfaction. PLoS Genet.2010,6(8): e1001064.
    27. Dahl A. The effect of cytochrome P-450-dependent metabolism and other enzyme activities on olfaction. Molecular Neurobiology of the Olfactory System, Margolis F, Getchel, Plenum, New York:1988,51-70.
    28. Damberger F F, Ishida Y, Leal W S, et al. Structural basis of ligand binding and release in insect pheromone-binding proteins:NMR structure of Antheraea polyphemus PBP1 at pH 4.5. J Mol Biol. 2007,373(4):811-819.
    29. Damberger F, Nikonova L, Horst R, et al. NMR characterization of a pH-dependent equilibrium between two folded solution conformations of the pheromone-binding protein from Bombyx mori. Protein Sci.2000,9(5):1038-1041.
    30. Dani F R, Iovinella I, Felicioli A, et al. Mapping the expression of soluble olfactory proteins in the honeybee. J Proteome Res.2010,9(4):1822-1833.
    31. Dickens J C, Callahan F E, Wergin W P, et al. Intergeneric distribution and immunolocalization of a putative odorant-binding protein in true bugs (Hemiptera, Heteroptera). J Exp Biol.1998,201(Pt 1):33-41.
    32. Dickens J C, Visser J H, Van Der Pers J N C. Detection and deactivation of pheromone and plant odor components by the beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera:Noctuidae). J Insect Physiol.1993,39(6):503-516.
    33. Distler P G, Boeckh J. Synaptic connection between olfactory receptor cells and uniglomerular projection neurons in the antennal lobe of the American cockroach, Periplaneta americana. J Comp Neurol.1996,370(1):35-46.
    34. Donaldson M S, Shuler M L. Effects of long-term passaging of BTI-Tn5B 1-4 insect cells on growth and recombinant protein production. Biotechnol Prog.1998,14(4):543-547.
    35. Dong S-L, Du J-W. Diel rhythms of calling behavior and sex pheromone production of beet armyworm, Spodoptera exigua (Lepidoptera:Noctuidae). Entomol Sin.2001,1(8):89-96.
    36. Du G, Prestwich G D. Protein Structure Encodes the Ligand Binding Specificity in Pheromone Binding Proteins. Biochem.1995,34(27):8726-8732.
    37. Dunkelblum E, Kehat M, Harel M,, et al. Sexual behaviour and pheromone titre of the Spodoptera littoralis female moth. Entomol Exp Appl.1987,44:241-247.
    38. Durand N, Carot-Sans G, Bozzolan F, et al. Degradation of pheromone and plant volatile components by a same Odorant-Degrading Enzyme in the cotton leafworm, Spodoptera littoralis. PLoS One.2011,6(12):e29147.
    39. Durand N, Carot-Sans G, Chertemps T, et al. Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant. PLoS One.2010,5(11):e15026.
    40. Durand N, Carot-Sans G, Chertemps T, et al. A diversity of putative carboxylesterases are expressed in the antennae of the noctuid moth Spodoptera littoralis. Insect Mol Biol.2010,19(1): 87-97.
    41. Ferkovich S M, Oliver J E, Dillard C. Comparison of pheromone hydrolysis by the antennae with other tissues after adult eclosion in the cabbage looper moth, Trichoplusia ni. Entomol Exp Appl. 1982a,31(2):327-328.
    42. Ferkovich S M, Oliver J E, Dillard C. Pheromone hydrolysis by cuticular and interior esterases of the antennae, legs, and wings of the cabbage looper moth,Trichoplusia ni(Hubner). J Chem Ecol. 1982b,8(5):859-866.
    43. Ferkovich S M, van Essen F, Taylor T R. Hydrolysis of sex pheromone by antennal esterases of the cabbage looper, Trichoplusia ni. Chem Senses.1980,5(1):33-46.
    44. Ferkovich S, Mayer M, Rutter R. Conversion of the sex pheromone of the cabbage looper. Nature. 1973a(242):53-55.
    45. Ferkovich S, Mayer M, Rutter R. Sex pheromone of the cabbage looper:reactions with antennal proteins in vitro. J. Insect Physiol.1973b(19):2231-2243.
    46. Feyereisen R. Insect P450 enzymes. Annu Rev Entomol.1999,44:507-533.
    47. Fishilevich E, Vosshall L B. Genetic and Functional Subdivision of the Drosophila Antennal Lobe. Curr Biol.2005,15(17):1548-1553.
    48. Foret S, Maleszka R. Function and evolution of a gene family encoding odorant binding-like proteins in a social insect, the honey bee(Apis mellifera). Genome Res.2006,16(11):1404-1413.
    49. Forstner M, Gohl T, Gondesen I, et al. Differential expression of SNMP-1 and SNMP-2 proteins in pheromone-sensitive hairs of moths. Chem Senses.2008,33(3):291-299.
    50. Fu Q, Zhang Z, Hu C, et al. A chemically defined diet enables continuous rearing of the brown planthopper, Nilaparvata lugens (Homoptera:Delphacidae). Appl Entomol and Zool.2001,36(1): 111-116.
    51. Gong D P, Zhang H J, Zhao P, et al. The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC Genomics.2009,10:332.
    52. Gong Z J, Zhou W W, Yu H Z, et al. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera:Pyralidae). Insect Mol Biol.2009,18(3):405-417.
    53. Graham S, Prestwich G. Tissue distribution and substrate specificity of an epoxide hydrase in the gypsy moth Lymantria dispar. Experentia.1992(48):19-21.
    54. Graham S, Prestwich G. Synthesis and inhibitory properties of pheromone analogs for the epoxide hydrolase of the gypsy moth. J Org Chem 1994(59):2956-2966.
    55. Green M T, Dawson J H, Gray H B. Oxoiron(IV) in chloroperoxidase compound II is basic: implications for P450 chemistry. Science.2004,304(5677):1653-1656.
    56. Grosjean Y, Rytz R, Farine J P, et al. An olfactory receptor for food-derived odours promotes male courtship in Drosophila. Nature.2011.
    57. Gu S-H, Wang S-P, Zhang X-Y, et al. Identification and tissue distribution of odorant binding protein genes in the lucerne plant bug Adelphocoris lineolatus (Goeze). Insect Biochem Mol Biol. 2011,41(4):254-263.
    58. Gu S-H, Wang W-X, Wang G-R, et al. Functional characterization and immunolocalization of odorant binding protein 1 in the lucerne plant bug, Adelphocoris lineolatus (GOEZE). Arch Insect Biochem Mol Biol.2011.
    59. Gu S-H, Sun Y, Ren L, et al. Cloning,expression and binding specificity analysis of odorant binding protein 3 of the lucerne plant bug, Adelphocoris lineolatns(Goeze). Chinese Sci Bull.2010, 55(34):3913-3923.
    60. Guerrero A, Rosell G. Enzyme inhibitors in biorational approaches for pest control. Mini Rev Med Chem.2004,4(7):757-767.
    61. Guerrero A, Rosell G. Biorational approaches for insect control by enzymatic inhibition. Curr Med Chem.2005,12(4):461-469.
    62. Han Z-J, Moores G D, Denholm I, et al. Association between Biochemical Markers and Insecticide Resistance in the Cotton Aphid, Aphis gossypii Glover. Pest Biochem and Physiol.1998,62(3): 164-171.
    63. Hansson B S, Ljungberg H, Hallberg E, et al. Functional specialization of olfactory glomeruli in a moth. Science.1992,256(5061):1313-1315.
    64. He X-L, Tzotzos G, Woodcock C, et al. Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components. J Chem Ecol.2010,36(12): 1293-1305.
    65. Healy M J, Dumancic M M, Oakeshott J G. Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochem Genet.1991,29(7-8):365-388.
    66. Hekmat-Scafe D S, Scafe C R, Mckinney A J, et al. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res.2002,12(9):1357-1369.
    67. Hemingway J, Coleman M, Paton M, et al. Aldehyde oxidase is coamplified with the World's most common Culex mosquito insecticide resistance-associated esterases. Insect Mol Biol.2000,9(1): 93-99.
    68. Hernandez H P, Hsieh T C Y, Smith C M, et al. Foliage volatiles of two rice cultivars. Phytochemistry.1989,28(11):2959-2962.
    69. Hildebrand J G. Olfactory control of behavior in moths:central processing of odor information and the functional significance of olfactory glomeruli. J Comp Physiol A.1996,178(1):5-19.
    70. Hildebrand J G. Analysis of chemical signals by nervous systems. Proc Natl Acad Sci U S A.1995, 92(1):67-74.
    71. Hildebrand J G, Shepherd G M. MECHANISMS OF OLFACTORY DISCRIMINATION:Converging Evidence for Common Principles Across Phyla. Ann Rev Neurosci.1997,20(1):595-631.
    72. Holmes R S, Masters C J. The developmental multiplicity and isoenzyme status of cavian esterases. Biochim Biophys Acta.1967,132(2):379-399.
    73. Homberg U, Christensen T A, Hildebrand J G. Structure and function of the deutocerebrum in insects. Annu Rev Entomol.1989,34:477-501.
    74. Hooper A M, Dufour S, He X, et al. High-throughput ESI-MS analysis of binding between the Bombyx mori pheromone-binding protein BmorPBPl, its pheromone components and some analogues. Chem Commun (Camb).2009(38):5725-5727.
    75. Horst R, Damberger F, Luginbuhl P, et al. NMR structure reveals intramolecular regulation mechanism for pheromone binding and release. Proc Natl Acad Sci U S A.2001,98(25): 14374-14379.
    76. Hoshi T, Lahiri S. Cell biology. Oxygen sensing:it's a gas!. Science.2004,306(5704):2050-2051.
    77. Ilg T, Cramer J, Lutz J, et al. The characterization of Lucilia cuprina acetylcholinesterase as a drug target, and the identification of novel inhibitors by high throughput screening. Insect Biochem Mol Biol.2011,41(7):470-483.
    78. Ishida Y, Leal W S. Rapid inactivation of a moth pheromone. Proc Natl Acad Sci U S A.2005, 102(39):14075-14079.
    79. Ishida Y, Leal W S. Cloning of putative odorant-degrading enzyme and integumental esterase cDNAs from the wild silkmoth, Antheraea polyphemus. Insect Biochem Mol Biol.2002,32(12): 1775-1780.
    80. Ishida Y, Leal W S. Chiral discrimination of the Japanese beetle sex pheromone and a behavioral antagonist by a pheromone-degrading enzyme. Proc Natl Acad Sci U S A.2008,105(26): 9076-9080.
    81. Jacquin-Joly E, Maibeche-Coisne M. Molecular mechanisms of sex pheromone reception in Lepidoptera.2009.
    82. Jacquin-Joly E, Merlin C. Insect olfactory receptors:contributions of molecular biology to chemical ecology. J Chem Ecol.2004,30(12):2359-2397.
    83. Jarvis D L. Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology.2003,310(1):1-7.
    84. Jiang Q-Y, Wang W-X, Zhang Z, et al. Binding specificity of locust odorant binding protein and its key binding site for initial recognition of alcohols. Insect Biochem Mol Biol.2009,39(7):440-447.
    85. Jin X, Ha T S, Smith D P. SNMP is a signaling component required for pheromone sensitivity in Drosophila. Proc Natl Acad Sci U S A.2008,105(31):10996-11001.
    86. Jones P L, Pask G M, Rinker D C, et al. Functional agonism of insect odorant receptor ion channels. Proc Natl Acad Sci U S A.2011.
    87. Kaissling K E. Chemo-electrical transduction in insect olfactory receptors. Annu Rev Neurosci. 1986,9:121-145.
    88. Kaissling K E. Olfactory perireceptor and receptor events in moths:a kinetic model revised. J Comp Physiol A Neuroethol Sens Neural Behav Physiol.2009,195(10):895-922.
    89. Kaissling K, Hildebrand J G, Tumlinson J H. Pheromone receptor cells in the male moth Manduca sexta. Arch Insect Biochem Mol Biol.1989,10(4):273-279.
    90. Kaissling KE, Thorson J. Receptors for transmitters hormones and pheromones in insects. Hildebrand JG, Sattelle DB, Hall LM:Elsevier/North-Holland, Amsterdam,1980,261.
    91. Kamikouchi A, Morioka M, Kubo T. Identification of honeybee antennal proteins/genes expressed in a sex-and/or caste selective manner. Zool. Sci.2004,21(1):53-62.
    92. Kasang G. Bombykol reception and metabolism on the antennae of the silkmoth Bombyx mori. in Gustation and Olfaction, NY:Academic Press,1971,245-250.
    93. Kasang G, Kaissling K. Specificity of primary and secondary olfactory processes in Bombyx antennae, in Int. symp. Olfaction and Taste IV, Verlagsgesellschaft, Stuttgart:1972,200-206.
    94. Kasang G, Kaissling K, Vostrowsky O, et al. Bombykal, a second pheromone component of the silkworm moth Bombyx mori. Angew. Chem. Int. Ed. Engl.1978(17):60.
    95. Kasang G, Nicholls M, Keil T, et al. Enzymatic conversion of sex pheromones in olfactory hairs of the male silkworm moth Antheraea polyphemus. Z Naturforsch.1989(44c):920-926.
    96. Kasang G, Nicholls M, von Proff L. Sex-pheromone conversion and degradation in antennae of the silkworm moth Bombyx mori (L.). Experientia.1989(45):81-87.
    97. Kasang G, Weiss N. Thin layer chromatographic analysis of radioactively labelled insect pheromones. Metabolites of [3H]bombykol. J. Chromatog.1974(92):401-417.
    98. Khan Z R, Saxena R C. Effect of stream distillate extracts of resistant and susceptible rice cultivars on behaviour of Sogatella furcifera (Homoptera:Delphacidae). J of Econ Entomol 1986,79: 928-935.
    99. Klusak V, Havlas Z, Rulisek L, et al. Sexual attraction in the silkworm moth. Nature of binding of bombykol in pheromone binding protein--an ab initio study. Chem Biol.2003,10(4):331-340.
    100. Korochkin L I, Ludwig M Z, Poliakova E V, et al. Some molecular-genetic aspects of cellular differentition in Drosophila. Soviet. Sc. Rev. F. Physiol. Gen. Biol.1987,1:411-466.
    101. Krieger J, von Nickisch-Rosenegk E, Mameli M, et al. Binding proteins from the antennae of Bombyx mori. Insect Biochem Mol Biol.1996,26(3):297-307.
    102. Kruse S W, Zhao R, Smith D P, et al. Structure of a specific alcohol-binding site defined by the odorant binding protein LUSH from Drosophila melanogaster. Nat Struct Biol.2003,10(9): 694-700.
    103. Kumar S, Nei M, Dudley J, et al. MEGA:a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in Bioinformatics.2008,9(4):299-306.
    104. Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature.1970,227(5259):680-685.
    105. Lagarde A, Spinelli S, Qiao H, et al. Crystal structure of a novel type of odorant-binding protein from Anopheles gambiae, belonging to the C-plus class. Biochem J.2011,437(3):423-430.
    106. Lagarde A, Spinelli S, Tegoni M, et al. The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site. J Mol Biol.2011, 414(3):401-412.
    107. Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007,23(21):2947-2948.
    108. Lartigue A, Gruez A, Briand L, et al. Sulfur single-wavelength anomalous diffraction crystal structure of a pheromone-binding protein from the honeybee Apis mellifera L. J Biol Chem.2004, 279(6):4459-4464.
    109. Lartigue A, Gruez A, Spinelli S, et al. The crystal structure of a cockroach pheromone-binding protein suggests a new ligand binding and release mechanism. J Biol Chem.2003,278(32): 30213-30218.
    110. Lartigue A, Riviere S, Brossut R, et al. Crystallization and preliminary crystallographic study of a pheromone-binding protein from the cockroach Leucophaea maderae. Acta Crystallogr D Biol Crystallogr.2003,59(Pt 5):916-918.
    111. Laue M. Immunolocalization of general odorant-binding protein in antennal sensilla of moth caterpillars. Arthropod Struct Dev 2000,29(1):57-73.
    112. Laughlin J D, Ha T S, Jones D N, et al. Activation of pheromone-sensitive neurons is mediated by conformational activation of pheromone-binding protein. Cell.2008,133(7):1255-1265.
    113. Leal W S, Chen A M, Erickson M L. Selective and pH-dependent binding of a moth pheromone to a pheromone-binding protein. J Chem Ecol.2005,31(10):2493-2499.
    114. Leal W S, Chen A M, Ishida Y, et al. Kinetics and molecular properties of pheromone binding and release. Proc Natl Acad Sci U S A.2005,102(15):5386-5391.
    115. Leal W S. Nikonova L, Peng G. Disulfide structure of the pheromone binding protein from the silkworm moth, Bombyx mori. FEBS Lett.1999,464(1-2):85-90.
    116. Lee D, Damberger F F, Peng G, et al. NMR structure of the unliganded Bombyx mori pheromone-binding protein at physiological pH. FEBS Lett.2002,531(2):314-318.
    117. Leite N R, Krogh R, Xu W, et al. Structure of an odorant-binding protein from the mosquito Aedes aegypti suggests a binding pocket covered by a pH-sensitive "Lid". PLoS One.2009,4(11): e8006.
    118. Light D M, Flath R A, Buttery R G, et al. Host-plant green-leaf volatiles synergize the synthetic sex pheromones of the corn earworm and codling moth (Lepidoptera). Chemoecology.1993,4(3): 145-152.
    119. Liu J M, David W C, Ip D T, et al. High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Mol Biol Rep.2009,36(2):329-335.
    120. Liu N-Y, He P, Dong S-L. Binding properties of pheromone-binding protein 1 from the common cutworm Spodoptera litura. J Comp Biochem Physiol B.2012,161(4):295-302.
    121. Liu S, Yang B, Gu J, et al. Molecular cloning and characterization of a juvenile hormone esterase gene from brown planthopper, Nilaparvata lugens. J Insect Physiol.2008,54(12):1495-1502.
    122. Liu Z, Vidal D M, Syed Z, et al. Pheromone binding to general odorant-binding proteins from the navel orangeworm. J Chem Ecol.2010,36(7):787-794.
    123. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods.2001,25(4):402-408.
    124. Lou Y-G. Cheng J-A. Role of rice volatiles in the foraging behaviour of the predator Cyrtorhinus lividipennis for the rice brown planthopper Nilaparvata lugens. BioControl.2003,48(1):73-86.
    125. Loughrin J H, Manukian A, Heath R R, et al. Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant. Proc Natl Acad Sci U S A.1994,91(25): 11836-11840.
    126. Luckow V A, Lee S C, Barry G F, et al. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol.1993,67(8):4566-4579.
    127. Lumjuan N, Rajatileka S, Changsom D, et al. The role of the Aedes aegypti Epsilon glutathione transferases in conferring resistance to DDT and pyrethroid insecticides. Insect Biochem Mol Biol. 2011,41(3):203-209.
    128. Maeda S, Kawai T, Obinata M, et al. Production of human alpha-interferon in silkworm using a baculovirus vector. Nature.1985,315(6020):592-594.
    129. Maibeche-Coisne M, Jacquin-Joly E, Francois M C, et al. cDNA cloning of biotransformation enzymes belonging to the cytochrome P450 family in the antennae of the noctuid moth Mamestra brassicae. Insect Mol Biol.2002,11(3):273-281.
    130. Maibeche-Coisne M, Longhi S, Jacquin-Joly E, et al. Molecular cloning and bacterial expression of a general odorant-binding protein from the cabbage armyworm Mamestra brassicae. Eur J Biochem.1998,258(2):768-774.
    131. Maibeche-Coisne M, Merlin C, Francois M C, et al. Putative odorant-degrading esterase cDNA from the moth Mamestra brassicae:cloning and expression patterns in male and female antennae. Chem Senses.2004,29(5):381-390.
    132. Maibeche-Coisne M, Nikonov A A, Ishida Y, et al. Pheromone anosmia in a scarab beetle induced by in vivo inhibition of a pheromone-degrading enzyme. Proc Natl Acad Sci U S A.2004,101(31): 11459-11464.
    133. Maida R, Ziegelberger G, Kaissling K E. Ligand binding to six recombinant pheromone-binding proteins of Antheraea polyphemus and Antheraea pernyi. J Comp Physiol B.2003,173(7): 565-573.
    134. Mannervik B, Danielson U H. Glutathione transferases-structure and catalytic activity. CRC Crit Rev Biochem.1988,23(3):283-337.
    135. Mao Y, Xu X, Xu W, et al. Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc Natl Acad Sci U S A. 2010,107(44):19102-19107.
    136. Mayer M S. Hydrolysis of sex pheromone by the antennae of Trichoplusia ni. Cell Mol Life Sci. 1975,31(4):452-454.
    137. Mayer M S, Ferkovich S M, Rutter R R. Localization and Reactions of a Pheromone Degradative Enzyme Isolated from an Insect Antenna. Chem Senses.1976,2(1):51-61.
    138. Merlin C, Rosell G, Carot-Sans G, et al. Antennal esterase cDNAs from two pest moths, Spodoptera littoralis and Sesamia nonagrioides, potentially involved in odourant degradation. Insect Mol Biol.2007,16(1):73-81.
    139. Miao Y, Zhang Y, Nakagaki K, et al. Expression of spider flagelliform silk protein in Bombyx mori cell line by a novel Bac-to-Bac/BmNPV baculovirus expression system. Appl Microbiol Biotechnol.2006,71(2):192-199.
    140. Mohanty S, Zubkov S, Gronenborn A M. The solution NMR structure of Antheraea polyphemus PBP provides new insight into pheromone recognition by pheromone-binding proteins. J Mol Biol.2004,337(2):443-451.
    141. Munoz L, Bosch M P, Batllori L, et al. Synthesis of allylic trifluoromethyl ketones and their activity as inhibitors of the sex pheromone of the leopard moth, Zeuzera pyrina L. (Lepidoptera: Cossidae). Pest Manag Sci.2011:67(8):956-964
    142. Niu G, Rupasinghe S G, Zangerl A R, et al. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitelld). Insect Biochem Mol Biol.2011,41(4):244-253.
    143. Oakeshott J G, Claudianos C, Campbell P M, et al. Biochemical Genetics and Genomics of Insect Esterases. Insect pharmacology:Channels, receptors, toxins and enzymes, London, U.K.:Elsevier, 2005,309-381.
    144. Obata T, Koh H S, Kim M, et al. Constituents of planthopper atractant in rice plant. Appl Entomol Zool.1983,18(2):161-169.
    145. Obata T, Koh H S, Kim M, et al. Planthopper atractants in rice plant. Appl Entomol Zool.1981,25: 47-51.
    146. Pellegrino M, Steinbach N, Stensmyr M C, et al. A natural polymorphism alters odour and DEET sensitivity in an insect odorant receptor. Nature.2011,478(7370):1-6.
    147. Pelletier J, Guidolin A, Syed Z, et al. Knockdown of a mosquito odorant-binding protein involved in the sensitive detection of oviposition attractants. J Chem Ecol.2010,36(3):245-248.
    148. Pelletier J, Leal W S. Genome analysis and expression patterns of odorant-binding proteins from the Southern House mosquito Culex pipiens quinquefasciatus. PLoS One.2009,4(7):e6237.
    149. Pelosi P. Perireceptor events in olfaction. J Neurobiol.1996,30(1):3-19.
    150. Pelosi P, Maida R. Odorant-binding proteins in insects. Comp Biochem Phys B.1995,111(3): 503-514.
    151. Pelosi P, Maida R. Odorant binding proteins in vertebrates and insects. Chem. Senses.1990(15):, 205-215.
    152. Pelosi P, Zhou J-J, Ban L P, et al. Soluble proteins in insect chemical communication.2006, Cell Mol Life Sci.63(14):1658-1676.
    153. Pesenti M E, Spinelli S, Bezirard V, et al. Queen bee pheromone binding protein pH-induced domain swapping favors pheromone release. J Mol Biol.2009,390(5):981-990.
    154. Pesenti M E, Spinelli S, Bezirard V, et al. Structural basis of the honey bee PBP pheromone and pH-induced conformational change. J Mol Biol.2008,380(1):158-169.
    155. Petersen T N, Brunak S, Heijne G V, et al. SignalP 4.0:discriminating signal peptides from transmembrane regions. Nature Methods.2011,8:785-786.
    156. Pfaffl M W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.2001,29(9):e45.
    157. Polayes D, Ciccarone V, Anderson D, et al. Rapid generation of recombinant baculoviruses, expression of foreign genes,and protein purification using the bac-to-bac expression systems. The FASEB J.1996,10:1124-1134.
    158. Prestwich G D. Chemistry of pheromone and hormone metabolism in insects. Science.1987, 237(4818):999-1006.
    159. Qiao H-L, He X-L, Schymura D, et al. Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell Mol Life Sci.2011,68(10):1799-1813.
    160. Qiao H-L, Tuccori E, He X-L, et al. Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem Mol Biol.2009,39(5-6):414-419.
    161. Raming K, Krieger J, Breer H. Molecular cloning of an insect pheromone-binding protein. FEBS Lett.1989,256(1-2):215-218.
    162. Renou M, Berthier A, Desbarats L, et al. Actographic analysis of the effects of an esterase inhibitor on male moth responses to sex pheromone. Chem Senses.1999,24(4):423-428.
    163. Renou M, Lucas P, Malo E, et al. Effects of trifluoromethyl ketones and related compounds on the EAG and behavioural responses to pheromones in male moths. Chemi Senses.1997,22(4): 407-416.
    164. Richards S, Gibbs R A, Weinstock G M, et al. The genome of the model beetle and pest Tribolium castaneum. Nature.2008,452(7190):949-955.
    165. Riviere S, Lartigue A, Quennedey B, et al. A pheromone-binding protein from the cockroach Leucophaea maderae:cloning, expression and pheromone binding. Biochem J.2003,371(Pt 2): 573-579.
    166. Rogers M E, Jani M K, Vogt R G. An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta. J of Exp Biol.1999,202(Pt 12):1625-1637.
    167. Rose U, Manukian A, Heath R R, et al. Volatile Semiochemicals Released from Undamaged Cotton Leaves (A Systemic Response of Living Plants to Caterpillar Damage). Plant Physiol.1996,111(2): 487-495.
    168. Rybczynski R, Reagan J, Lerner M R. A pheromone-degrading aldehyde oxidase in the antennae of the moth Manduca sexta. J Neurosci.1989,9(4):1341-1353.
    169. Sakurai T, Mitsuno H, Haupt S S, et al. A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori. PLoS Genetics.2011,7(6): e1002115.
    170. Sanchez-Gracia A, Rozas J. Molecular population genetics of the OBP83 genomic region in Drosophila subobscura and D. guanche:contrasting the effects of natural selection and gene arrangement expansion in the patterns of nucleotide variation. Heredity.2010,106(1):191-201.
    171. Sandler B H, Nikonova L, Leal W S, et al. Sexual attraction in the silkworm moth:structure of the pheromone-binding-protein-bombykol complex. Chem Biol.2000,7(2):143-151.
    172. Sato K, Pellegrino M, Nakagawa T, et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature.2008,452(7190):1002-1006.
    173. Scaloni A, Monti M, Angeli S, et al. Structural analysis and disulfide-bridge pairing of two odorant-binding proteins from Bombyx mori. Biochem Biophys Res Commun.1999,266(2): 386-391.
    174. Scott J G, Liu N, Wen Z, et al. House-fly cytochrome P450 CYP6D1:5'flanking sequences and comparison of alleles. Gene.1999,226(2):347-353.
    175. Simon P. Q-Gene:processing quantitative real-time RT-PCR data. Bioinformatics.2003,19(11): 1439-1440.
    176. Smith G E, Summers M D, Fraser M J. Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol.1983,3(12):2156-2165.
    177. Sogawa K. The Rice Brown Planthopper:Feeding Physiology and Host Plant Interactions. Annu Rev Entomol.1982,27(1):49-73.
    178. Spinelli S, Lagarde A, Iovinella I, et al. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem Mol Biol. 2012,42(1):41-50.
    179. Spletter M L, Luo L. A new family of odorant receptors in Drosophila. Cell.2009,136(1):23-25.
    180. Steinbrecht R A. Pore structures in insect olfactory sensilla:A review of data and concepts. International J of Insect Morphol Embryol.1997,26(3-4):229-245.
    181. Steinbrecht R A, Laue M, Ziegelberger G. Immunolocalization of pheromone-binding protein and general odorant-binding protein in olfactory sensilla of the silk moths Antheraea and Bombyx. Cell and Tissue Rese Biochem.1995,2(282):203-217.
    182. Steinbrecht R A, M O, G Z. Immunocytochemical localization of pheromone-binding protein in moth antennae. Cell & Tissue Res.1992.
    183. Su C-Y, Martelli C, Emonet T, et al. Temporal coding of odor mixtures in an olfactory receptor neuron. Proc Natl Acad Sci U S A.2011,108(12):5075-5080.
    184. Sun Y, Qiao H-L, Ling Y, et al. New analogues of (E)-beta-farnesene with insecticidal activity and binding affinity to aphid odorant-binding proteins. J Agric Food Chem.2011,59(6):2456-2461.
    185. Swarup S, Williams T I, Anholt R R. Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain and Behav.2011,10(6):648-657.
    186. Syed Z, Kopp A, Kimbrell D A, et al. Bombykol receptors in the silkworm moth and the fruit fly. Proc Natl Acad Sci U S A.2010.
    187. Tao T, Su S K, Miao Y G, et al. Expression of apalbuminl of Apis cerana cerana in the larvae of silkworm, Bombyx mori. J Agric Food Chem.2008,56(20):9464-9468.
    188. Tasayco M L, Prestwich G D. Aldehyde-oxidizing enzymes in an adult moth:in vitro study of aldehyde metabolism in Heliothis virescens. Arch Biochem Biophys.1990a,278(2):444-451.
    189. Tasayco M L, Prestwich G D. A specific affinity reagent to distinguish aldehyde dehydrogenases and oxidases. Enzymes catalyzing aldehyde oxidation in an adult moth. J Biol Chem.1990b, 265(6):3094-3101.
    190. Tasayco M L, Prestwich G D. Aldehyde oxidases and dehydrogenases in antennae of 5 moth species. Insect Biochem.1990c(20):691-700.
    191. Taticek R A, Mckenna K. A, Granados R R, et al. Rapid initiation of suspension cultures of Trichoplusia ni insect cells (TN 5B-1-4) using heparin. Biotechnology Techniques.1997,11(4): 237-240.
    192. Taylor T R, Ferkovich S M, Van Essen F. Increased pheromone catabolism by antennal esterases after adult eclosion of the cabbage looper moth. Cell Mol Life Sci.1981,37(7):729-731.
    193. Tolbert L P, Hildebrand J G. Organization and Synaptic Ultrastructure of Glomeruli in the Antennal Lobes of the Moth Manduca sexta:A Study Using Thin Sections and Freeze-Fracture. Proceedings of the Royal Society of London. Series B. Biological Sciences.1981,213(1192):279-301.
    194. Tsubota T, Nakakura T, Shinoda T, et al. Characterization and analysis of novel carboxyl/cholinesterase genes possessing the Thr-316 motif in the silkworm, Bombyx mori. Biosci Biotech Biochem.2010,74(11):2259-2266.
    195. Tsubota T, Shiotsuki T. Genomic analysis of carboxyl/cholinesterase genes in the silkworm Bombyx mori. BMC Genomics.2010,11:377.
    196. Turner C T, Davy M W, Macdiarmid R M, et al. RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol.2006, 15(3):383-391.
    197. Van den Berg M J, Ziegelberger G. On the function of the pheromone binding protein in the olfactory hairs of Antheraea polyphemus. J Insect Physiol.1991,37(1):79-85.
    198. Van der Goes Van Naters W, Carlson J. Receptors and Neurons for Fly Odors in Drosophila. Curr Biol.2007,17(7):606-612.
    199. Van der Goot F G, Gonzalez-Manas J M, Lakey J H, et al. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A. Nature.1991,354(6352):408-410.
    200. Van Sambeek J W, Bridges J R. Influence of the juvenile hormone analogue, methoprene, on development of the southern pine beetle, Dendroctonus frontalis Zimm. (Col. Scolytidae). Sonderdruck.1980,89:479-488.
    201. Vandermoten S, Francis F, Haubruge E, et al. Conserved odorant-binding proteins from aphids and eavesdropping predators. PLoS One.2011,6(8):e23608.
    202. Vieira F G, Sanchez-Gracia A, Rozas J. Comparative genomic analysis of the odorant-binding protein family in 12 Drosophila genomes:purifying selection and birth-and-death evolution. Genome Biol.2007,8(11):R235.
    203. Visser J H. Host Odor Perception in Phytophagous Insects. Ann Rev Entomol.1986,31(1): 121-144.
    204. Visser J H, Fu-Shun Y. Electroantennogram responses of the grain aphids Sitobion avenae (F.) and Metopolophium dirhodum (Walk.) (Hom., Aphididae) to plant odour components. J Appl Entomol. 1995,119(1-5):539-542.
    205. Visser J H, Piron P G M, Hardie J. The aphids' peripheral perception of plant volatiles. Entomol Exp Appl.1996,80(1):35-38.
    206. Voet, D, Voet, J G. Biochemistry. New York:Wiley,1990:373-382.
    207. Vogt R G. Biochemical diversity of odor detection:OBPs, ODEs and SNMPs. Insect Phero Biochem Mol Biol,2003,391-445.
    208. Vogt R G. Molecular Basis of Pheromone Detection in Insects.In Comprehensive Insect Physiology, Biochemistry, Pharmacology and Molecular Biology.Volume 3. Endocrinology. (LI Gilbert, K Iatro, S Gill eds).pp.753-804. Elsevier, London. ISBN:044451516X.2005.
    209. Vogt R G, Callahan F E, Rogers M E, et al. Odorant binding protein diversity and distribution among the insect orders, as indicated by LAP, an OBP-related protein of the true bug Lygus lineolaris (Hemiptera, Heteroptera). Chem Sense.1999,24(5):481.
    210. Vogt R G, Kohne A C, Dubnau J T, et al. Expression of pheromone binding proteins during antennal development in the gypsy moth Lymantria dispar. J Neurosci.1989,9(9):3332-3346.
    211. Vogt R G, Riddiford L M. Pheromone binding and inactivation by moth antennae. Nature.1981, 293(5828):161-163.
    212. Vogt R G, Riddiford L M. Pheromone reception:a kinetic equilibirum. In Mechanisms in Insect Olfaction (eds. TL Payne, MC Birch, CEJ Kennedy). Clarnedon Press, Oxford.,1986a,201-208.
    213. Vogt R G, Riddiford L M. Scale esterase A pheromone-degrading enzyme from scales of silk moth Antheraea polyphemus. J Chem Ecol.1986b,12(2):469-482.
    214. Vogt R G, Riddiford L M, Prestwich G D. Kinetic properties of a sex pheromone-degrading enzyme:the sensillar esterase ofAntheraea polyphemus. Proc Natl Acad Sci U S A.1985,82(24): 8827-8831.
    215. Vogt R G, Rybczynski R, Lerner M R. Molecular cloning and sequencing of general odorant-binding proteins GOBP1 and GOBP2 from the tobacco hawk moth Manduca sexta: comparisons with other insect OBPs and their signal peptides. J Neurosci.1991,11(10): 2972-2984.
    216. Vogt R G. The molecular basis of pheromone reception:its influence on behavior. In Pheromone Biochemistry, Eds. Gd Prestwich G B, New York:Academic Press,1987,385-431.
    217. Vosshall L B. Olfaction in Drosophila. Curr Opin Neurobiol.2000,10(4):498-503.
    218. Vosshall L B, Wong A M, Axel R. An olfactory sensory map in the fly brain. Cell.2000,102(2): 147-159.
    219. Wang G-R, Carey A F, Carlson J R, et al. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proc Natl Acad Sci U S A.2010,107(9):4418-4423.
    220. Werren J H, Richards S, Desjardins C A, et al. Functional and evolutionary insights from the genomes of three parasitoid Nasonia species. Science.2010,327(5963):343-348.
    221. Wicher D, Schafer R, Bauernfeind R, et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature.2008,452(7190):1007-1011.
    222. Wogulis M, Morgan T, Ishida Y, et al. The crystal structure of an odorant binding protein from Anopheles gambiae:evidence for a common ligand release mechanism. Biochem Biophys Res Commun.2006,339(1):157-164.
    223. Wojtasek H, Leal W S. Degradation of an alkaloid pheromone from the pale-brawn chafer, Phyllopertha diversa (Coleoptera:Scarabaeidae), by an insect olfactory cytochrome P450. FEBS Lett.1999,458(3):333-336.
    224. Wurm Y, Wang J, Riba-Grognuz O, et al. The genome of the fire ant Solenopsis invicta. Proc Natl Acad Sci U S A.2011,108(14):5679-5684.
    225. Xiu W-M, Dong S-L. Molecular characterization of two pheromone binding proteins and quantitative analysis of their expression in the beet armyworm, Spodoptera exigua Hubner. J Chem Ecol.2007,33(5):947-961.
    226. Xiu W-M, Zhou Y-Z, Dong S-L. Molecular characterization and expression pattern of two pheromone-binding proteins from Spodoptera litura (Fabricius). J Chem Ecol.2008,34(4): 487-498.
    227. Xu P-X, Zwiebel L J, Smith D P. Identification of a distinct family of genes encoding atypical odorant-binding proteins in the malaria vector mosquito, Anopheles gambiae. Insect Mol Biol. 2003,12(6):549-560.
    228. Xu P, Atkinson R, Jones D N, et al. Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron.2005,45(2):193-200.
    229. Xu W, Cornel A J, Leal W S. Odorant-binding proteins of the malaria mosquito Anopheles funestus sensu stricto. PLoS One.2010,5(10):e15403.
    230. Xu W, Leal W S. Molecular switches for pheromone release from a moth pheromone-binding protein. Biochem Biophys Res Commun.2008,372(4):559-564.
    231. Xu W, Xu X, Leal W S, et al. Extrusion of the C-terminal helix in navel orangeworm moth pheromone-binding protein (AtraPBP1) controls pheromone binding. Biochem Biophys Res Commun.2011,404(1):335-338.
    232. Xu Y-L, He P, Zhang L, et al. Large-scale identification of odorant-binding proteins and chemosensory proteins from expressed sequence tags in insects. BMC Genomics.2009,10(1): 632.
    233. Yamamoto R T, Jacobson M. Juvenile hormone activity of isomers of farnesol. Nature.1962,196: 908-909.
    234. Yan F, Wang X, Lv J, et al. Comparison of the volatiles from rice plants infested by rice striped stem borer, Chilo suppressalis and rice leaf folder, Cnapholocrocis medinalis. Chinese Bull Entomol.2010,47(1):96-101.
    235. Yang G, Winberg G, Ren H, et al. Expression, purification and functional analysis of an odorant binding protein AaegOBP22 from Aedes aegypti. Protein Expr Purif.2011,75(2):165-171.
    236. Yasukawa J, Tomioka S, Aigaki T, et al. Evolution of expression patterns of two odorant-binding protein genes, Obp57d and Obp57e, in Drosophila. Gene.2010,467(1-2):25-34.
    237. Yasukochi Y, Miura N, Nakano R, et al. Sex-Linked Pheromone Receptor Genes of the European Corn Borer, Ostrinia nubilalis, Are in Tandem Arrays. PLoS One.2011,6(4):e18843.
    238. Youn Y N. Electroantennogram responses of Nilaparvata lugens (Homoptera:Delphacidae) to plant volatile compounds. J Econ Entomol.2002,95(2):269-277.
    239. Yu F, Zhang S, Zhang L, et al. Intriguing similarities between two novel odorant-binding proteins of locusts. Biochem Biophys Res Commun.2009,385(3):369-374.
    240. Yu Q-Y, Lu C, Li W-L, et al. Annotation and expression of carboxylesterases in the silkworm, Bombyx mori. BMC Genomics.2009,10:553.
    241. Yue W-F, Li X-H, Wu W-C, et al. Improvement of recombinant baculovirus infection efficiency to express manganese superoxide dismutase in silkworm larvae through dual promoters of Pph and Pp10. Appl Microbiol Biotechnol.2008,78(4):651-657.
    242. Zacharuk R Y. Ultrastructure and Function of Insect Chemosensilla. Ann Rev Entomol.1980,25(1): 27-47.
    243. Zhai B-P. What have we seen by entomological radar? Entomol Knowledge.2005,42(2):217-226.
    244. Zhan S, Merlin C, Boore J L, et al. The monarch butterfly genome yields insights into long-distance migration. Cell.2011,147(5):1171-1185.
    245. Zhang S, Chen L-Z, Gu S-H, et al. Binding characterization of recombinant odorant-binding proteins from the parasitic wasp, Microplitis mediator (Hymenoptera:Braconidae). J Chem Ecol. 2011,37(2):189-194.
    246. Zhang S, Maida R, Steinbrecht R A. Immunolocalization of odorant-binding proteins in noctuid moths (Insecta, Lepidoptera). Chem Senses.2001,26(7):885-896.
    247. Zhang S, Zhang Y J, Su H H, et al. Identification and expression pattern of putative odorant-binding proteins and chemosensory proteins in antennae of the Microplitis mediator (Hymenoptera:Braconidae). Chem Senses.2009,34(6):503-512.
    248. Zhang Z. A study on the development of wing dimorphism in the rice brown planthopper,Nilaparvata lugens Stal. Acta Entomol Sin.1983,26(3):260-267.
    249. Zhou J J. Odorant-binding proteins in insects. Vitamins and Hormones,2010/09/14. ed; 2010:83, 241-272.
    250. Zhou J-J, He X-L, Pickett J A, et al. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti:genome annotation and comparative analyses. Insect Mol Biol.2008, 17(2):147-163.
    251. Zhou J-J, Huang W, Zhang G-A, et al. "Plus-C" odorant-binding protein genes in two Drosophila species and the malaria mosquito Anopheles gambiae. Gene.2004,327(1):117-129.
    252. Zhou J-J, Robertson G, He X-L, et al. Characterisation of Bombyx mori Odorant-binding proteins reveals that a general odorant-binding protein discriminates between sex pheromone components. J Mol Biol.2009,389(3):529-545.
    253. Zhou J-J, Vieira F G, He X-L, et al. Genome annotation and comparative analyses of the odorant-binding proteins and chemosensory proteins in the pea aphid Acyrthosiphon pisum. Insect Mol Biol.2010,19 Suppl 2(s2):113-122.
    254. Zubkov S, Gronenborn A M, Byeon I J, et al. Structural consequences of the pH-induced conformational switch in A.polyphemus pheromone-binding protein:mechanisms of ligand release. J Mol Biol.2005,354(5):1081-1090.
    255.陈华才,刘军,张晓燕,等.茶尺蠖普通气味结合蛋白(GOBP)的基因克隆与序列分析.茶叶科学.2010(1):37-44.
    256.崔巍,郑永利,姚士桐,等.斜纹夜蛾性信息素诱捕器田间应用技术.昆虫知识.2009(1):97-101.
    257.董改娟,王浩杰,董双林,等.夜蛾科昆虫性信息素组分的结构及分布特点.林业科学研究.2008(3):424-428.
    258.董双林,杜家纬.甜菜夜蛾性信息素组分的鉴定及其田间试验.植物保护学报.2002a(1):19-24.
    259.董双林,杜家纬.甜菜夜蛾性信息素鉴定及应用研究进展.昆虫知识.2002b(6):412-416.
    260.谷少华,孙洋,任丽燕,等.苜蓿盲蝽气味结合蛋白AlinOBP3的克隆、表达及结合特性分析.科学通报.2010:2590-2601.
    261.谷少华,张雪莹,张永军,等.苜蓿盲蝽气味结合蛋白基因Alin-OBP1的克隆及表达谱分析.昆虫学报.2010(5):487-496.
    262.黄春霞,朱丽梅,倪珏萍,等.甜菜夜蛾的饲养方法介绍.昆虫知识.2002(3):229-231.
    263.黄庆文,陈斌艳,覃保荣,等.性信息素对甜菜夜蛾诱捕效果研究初报.广西植保.2009(2):21-23.
    264.吉训聪,岳建军,陈海燕,等.4种甜菜夜蛾性诱剂大田诱捕效果比较.长江蔬菜.2010(18):22-24.
    265.金丰良,董小林,许小霞,等.斜纹夜蛾普通气味结合蛋白ⅡcDNA的克隆及在原核细胞中的表达.中国科学(C辑:生命科学).2008(11):1076-1083.
    266.金丰良,董小林,许小霞,等.斜纹夜蛾普通气味结合蛋白ⅠcDNA的克隆及在原核细胞中的表达.中国农业科学.2009(3):891-899.
    267.李惠明,朱佩瑾,杨银娟,等.甜菜夜蛾性诱剂组分添加对诱蛾量的影响.长江蔬菜.2010(18):19-21.
    268.李颖,浦冠勤.甜菜夜蛾性信息素研究及应用进展.北方园艺.2010(9):215-218.
    269.刘长兵.新疆甜菜害虫的防治.植物医生.2009(5):28-29.
    270.刘长兵.我国甜菜害虫防治研究进展及前景.中国糖料.2010(2):71-74.
    271.刘永杰,沈晋良,杨田堂,等.氯氟氰菊酯对斜纹夜蛾抗性和敏感种群表皮穿透比较.中国农业科学.2009(7):2386-2391.
    272.刘悦秋,江幸福.甜菜夜蛾的生物防治.植物保护.2002(1):54-56.
    273.娄永根,程家安.昆虫的化学感觉机理.生态学杂志.2001(2):66-69.
    274.卢胜进,赵双育,黄峻,等.江永香芋斜纹夜蛾发生规律及无害化防治技术研究.作物研究.2006(1):71-74.
    275.牛小慧.甜菜夜蛾信息素结合蛋白的表达动态及其受交配和钟基因沉默的影响.南京农业大学,2011.
    276.牛小慧,贺鹏,张婷,等.甜菜夜蛾生物钟基因Per和Tim的分子克隆及昼夜表达动态.南京农业大学学报.2012(1):51-56.
    277.孙凡,胡隐月,杜家纬.斜纹夜蛾性信息素通讯系统.昆虫学报.2002(3):404-407.
    278.吴仲南,杜永均,诸葛启钏.斜纹夜蛾普通气味结合蛋白GOBP1基因的表达定位分析.昆虫学报.2009(6):610-616.
    279.伍国旗,刘汇英,李惠英,等.昆虫信息素诱杀白莲斜纹夜蛾应用效果示范总结.吉林农业.2011(4):112-121.
    280.谢建军,胡美英.斜纹夜蛾的天敌及其生物防治.昆虫天敌.1999,21(2):82-92.
    281.修伟明,董双林.斜纹夜蛾信息素结合蛋白cDNA片段的克隆及序列分析.南京农业大学学报.2007(3):53-57.
    282.修伟明,董双林,苗慧,等.2个甜菜夜蛾信息素结合蛋白cDNA片段的克隆和序列分析.中国农业科学.2005a(7):1501-1504.
    283.修伟明,董双林,苗慧,等.2个甜菜夜蛾信息素结合蛋白cDNA片段的克隆和序列分析.中国农业科学.2005b,38(7):1501-1504.
    284.修伟明,张逸凡,杨殿林,等.2个新的鳞翅目OR83b类化感蛋白基因的克隆和序列分析.中国农业科学.2010(3):618-625.
    285.徐红星,陈东旭,张雅林,等.小菜蛾普通气味结合蛋白2基因的原核表达与多克隆抗体制备.环境昆虫学报.2010(2):194-198.
    286.徐岭,吴时英,李文辉,等.上海浦东环城绿带斜纹夜蛾的发生和信息素测报技术应用初探.上海农业学报.2006(2):121-124.
    287.许国庆,蔡忠杰,刘培斌.甜菜夜蛾性信息素的研究与应用.昆虫知识.2008(3):357-361.
    288.许国庆,罗礼智,江幸福.甜菜夜蛾对性信息素的行为反应及其田间诱捕效果.生态学报.2006(9).
    289.杨芳,贺鹏,董双林.斜纹夜蛾信息素结合蛋白3基因的分子鉴定及进化分析.南京农业大学学报.2010(5):65-70.
    290.于艳雪,金鑫,张龙.昆虫周缘神经系统感受化学信息的分子机制研究进展.自然科学进展.2008(10):1081-1092.
    291.张逸凡,修伟明,杨殿林,等.甜菜夜蛾非典型嗅觉受体基因OR2的组织特异性和时空表达.中国农学通报.2011(7):231-235.
    292.赵赣,钱芳,等.酯酶同工酶的一种新染色法的初步研究.江西农业大学学报.2002,24(3).
    293.钟国华,李苗孟,胡美英,等.斜纹夜蛾普通气味结合蛋白基因SlitGOBP1的克隆及序列分析.华南农业大学学报.2008(2):38-43.
    294.周利琳,司升云,司越.甜菜夜蛾性引诱剂田间应用技术研究.长江蔬菜.2010(18):29-31.
    295.周晓梅,黄炳球.斜纹夜蛾抗药性及其防治对策的研究进展.昆虫知识.2002,39(2):98-102.
    296.周耀振,修伟明,董双林.应用RNA干扰技术对甜菜夜蛾信息素结合蛋白功能的研究.南京农业大学学报.2009(3):58-62.
    297.朱国仁,王少丽,张友军.不同性信息素产品诱捕甜菜夜蛾的综合评价.中国生物防治.2010(4):404-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700