北京麦豆轮作生态系统N_2O排放、CH_4吸收观测与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解北京地区麦豆轮作农田生态系统N_2O排放、CH_4吸收规律,并进一步验证DNDC模型在北京地区旱地农田的适用程度,在2002年,本研究在北京昌平实验站建立了自动观测系统,针对麦豆轮作生态系统N_2O排放、CH_4吸收进行了连续观测,通过田间观测与模型研究,对其生长季节排放变化规律和区域模拟进行了初步的研究,在此期间还进行了一系列模拟实验和不同施肥处理,定量地研究影响因子对N_2O排放、CH_4吸收的影响。得出主要结论如下:
     1.按照生长季节平均通量值,可以得出麦豆轮作生态系统N_2O排放、CH_4吸收的排列次序为:冬小麦生长后期最高,大豆生长前期次之,大豆生长后期最低。就整个麦豆轮作生态系统而言,旱地土壤分别是大气N_2O、CH_4的源汇。
     2.在没有其它因子扰动的情况下,在10-30℃的温度范围内,随着土壤温度的升高,麦豆轮作生态系统的N_2O排放通量有一定的增加,但是不具备明显的线性相关;在10~20℃的温度范围内,麦豆轮作生态系统的土壤CH_4吸收与土壤温度成正相关关系,若超过此温度范围,随着土壤温度的升高,麦豆轮作生态系统的土壤CH_4吸收有越来越少的趋势,并出现土壤CH_4排放的现象。
     3.土壤水分主要通过调控微生物活性和O_2含量影响着N_2O的排放与产生,在较低的土壤湿度范围内(低于田间持水量),随着土壤湿度的增加,N_2O气体产生与土壤湿度呈正线性相关;CH_4气体氧化速率不具备明显的变化。
     4.在施肥处理中,添加DCD的尿素和碳铵处理能减少N_2O排放通量,同属于铵态氮肥的碳铵和尿素对旱地农田CH_4吸收的抑制作用没有显著差异。
     5.DNDC模型能很好的模拟田间实测到的大豆生长期内N_2O排放通量、气温和土壤地表温度的变化,虽然模型还存在一些问题,但在将来北京地区旱地农田生态系统N_2O排放量估算上有较高的应用价值。但该模型目前还难以应用于北京地区旱地农田生态系统CH_4吸收模拟。
In order to understand the N_2O emission, CH_4 absorption , driving forces which control the N_2O emission or CH_4 uptake rates, and further validate DNDC model in dryland, an automatic sampling system was established to a continous monitoring N_2O and CH4. and region simulation and growth seasonal variations research of N_2O and CH4 emission or uptake were obtained. The impact of soil temperature, moisture and fertilization on N_2O emission and CH4 uptake were analyzed. The main results are as follows:
    1. The rank of average emission rate of N_2O and average uptake rate of CH4 in different growth seasons is flux in winter wheat about late growing stage > flux in soybean about earlier growing stage > flux in soybean about late growing stage. Dryland soil is atmospheric N_2O source and is sink of atmospheric CH_4.
    2. N_2O emission was relatively increased with the temperature increase when the soil temperature ranges from 10-30 C. But there is no obvious linear relationship between the surface layer soil temperature and N_2O emission. There is a lieanr relationship between CH4 uptake rate and soil temperature in the range of 10-20 C. The CH4 uptake rate was decreased when the soil temperature was higher than 20 C.
    3. N_2O emission rate increased linearly with the increase of soil water content when soil water content is lower than field capacity. CH4 uptake rate was no obvious change with the increase of soil water content when soil water content is lower than field capacity.
    4. Nitrogen fertilization with DCD could mitigate N_2O emission, and have no significant effect on CH4 uptake rate.
    5. DNDC model can well simulate the N_2O emission, air temperature and soil surface temperature from soybean growth period although the model has some problems. It can be
    
    
    
    applied to simulate N_2O emission flux from dryland agroecosystem in Beijing in future. The model can not be applied to simulate CH4 absorption from dryland agroecosystem in Beijing.
引文
蔡祖聪,Arivn R.Mosier。1999。土壤水分状况对CH_4氧化,N_2O和CO_2排放的影响。土壤。6:289~298。
    丁洪,蔡贵信,王跃思等。2001。华北平原不同作物—潮土系统中N_2O排放量的测定。农业环境保护,20(1):7~9。
    勾继,郑循华,王明星等。2000。华东地区稻麦轮作农田生态系统N_2O排放的模拟研究。大气科学,24(6):835~842。
    侯爱新,陈冠雄。1998。不同种类氮肥对突然排放N_2O的影响。应用生态学报,9(2):176~180。
    黄斌,陈冠雄。2000。长效碳酸氢氨对土壤硝化—反硝化过程和NO与N_2O排放的影响。应用生态学报。11(1):73~77。
    黄国宏,陈冠雄,徐惠等。1992。无菌大豆植株释放N_2O研究。植物学报,34(11):835~840。
    黄国宏,陈冠雄,张志明等。1998。玉米田N_2O排放及减排措施研究。环境科学学报,18(4):343~349。
    蒋静艳,黄耀。2001。农业土壤N_2O排放的研究进展。农业环境保护,20(1):51~54。
    李楠、陈冠雄。1990。植物排放N_2O速率及施肥的影响。应用生态学报,4(3):295~298。
    梁东丽,同延安,OVE Emterdy。2001。土壤反硝化田间原位测定方法的研究进展。土壤与环境。10(2):149~153。
    倪吾钟,沈仁芳,朱兆良。2000。不同氧化还原电位条件下稻田土壤中~(15)N标记硝态氮的反硝化作用。中国环境科学,20(6):519~523。
    孙向阳。2000。北京低山区森林土壤中排放通量的研究。土壤与环境,9(3):173~176。
    王少彬,宋文质,苏维瀚等。1996。温室气体浓度和排放监测及相关过程:冬小麦田氧化亚氮的排放。中国环境科学出版社。
    王效科,李长生。2000。中国农业土壤N_2O排放量估算。环境科学学报,20(4):483~487。
    王效科,欧阳志云,苗鸿。2001。DNDC模型在长江三角洲农田生态系统的CH_4和N_2O排放量估算中的应用。环境科学,22(3):15~19。
    谢建治,尹君,王殿武等。1999。田间土壤反硝化作用动态初探。农业环境保护。18(6):272~274。
    徐华,刑光熹,蔡祖聪等。2000。土壤水分状况和质地对稻田N_2O排放的影响。土壤学报,37(4):499~505。
    徐文彬。1999a。概论N_2O大气浓度演变及其大气化学。地质地球化学,27(3):74~80。
    徐文彬。1999b。箱技术测量土壤痕量气体排放通量中的误差因素—以N_2O为例。地质地球化学,27(3):111~117。
    徐星剀,周礼恺。1999。土壤源CH_4氧化的主要影响因子与减排措施。生态农业研究。7(2):18~22。
    衣纯真,梁洪波,张建华等。1993。温度、湿度及通气状况对土壤中N_2O释放量影响的研究。北京农业大学学报。19(3):85~90。
    
    
    衣纯真,李亚星,张建华等。1994。麦田土壤反硝化速率变化规律的研究。北京农业大学学报。20(1):68~73。
    于克伟,陈冠雄,杨思河等。1995。几种旱地农作物在农田N_2O排放中的作用及环境因素的影响。应用生态学报,6(4):387~391。
    张志明,李继云,冯元琦等。1996。长效碳酸氢铵理化特性及增产机理的研究。中国科学(B),26(5):452~459。
    郑循华,王明星,王跃思等。1996。华东稻麦轮作生态系统中土壤湿度对N_2O产生与排放的影响。应用生态学报,7(3):273~279。
    郑循华,王明星,王跃思等。1997。温度对农田N_2O产生与排放的影响。环境科学,18(5):1~5。
    周文能、林而达。1994。小麦地氧化亚氮排放特征研究。中国农业气象。15(1):6~8。
    Adamsen A P S, King G M., 1993. Methane consumption in temperate and subarctic forest soils: Rates, vertical zonation, and responses to water and nitrogen. Appl Environ Microbiol, 59:485~490.
    Anthony C., 1982. The biochemistry of Methylotrops. Academic Press. London.
    Baggs E. M., 2000. Nitrous oxide emission from soils after incorporating crop residues, soil use and management. 16:82~87.
    Bedard C., and Knowles., 1989. Physio logy, biochemistry, and specific inhibitors of CH_4, NH_4~+ and CO Oxidation by methanotrophs and nitrifiers. Microbiol. Rev. 53: 68~84.
    Bender M, Conrad R. 1994. Microbial oxidation of methane, ammonium and carbon monoxide, and tumover of nitrous oxide and nitric oxide in soils. Biogeochemistry, 27(2): 97~112.
    Boeckx P, Cleemput O van, Van Cleemput O, et al., 1992. Flux estimates from soil methanogenesis and methanotrophy: landfills, rice paddies, natural wetlands and aerobic soils. Environmental Monitoring and Assessment, 42(1-2):189~207.
    Boeckx P, Cleemput-O-van., 1996. Methane oxidation in a neutral landfill cover soil: influence of moisture content, temperature, and nitrogen-turnover. Journal of Environmental Quality, 25(1):178~183.
    Bolin B. and J. Jager and B. R. Doos., 1986. The greenhouse effect, climatic change and ecosystem. A Synthesis of present knowledge. P. 1-32. In:(ed. B. Bolin et al.) The greenhouse effect,climatic change and ecosystems. SCOPE 29.
    Bouwman A F., 1990a. Soils and and Greenhouse Effect. John Wiley & Sons. Chichester.60~127.
    Bouwman A. F., 1990b. Exchange of greenhouse gases between terrestrial ecosystems and the atmosphere. P.61~127. In:(ed. A.F.Bouwman) soils and the greenhouse effect. John Wiley & Sons, Chichester.
    Bowden R D, Astro M C S, Melillo J M, et al., 1993. Fluxes of greenhouse gases between soils and the atmosphere in a temperate forest following a simulated hurricane blowdown.Biogeochemistry, 21(2): 61~71.
    Castro M S, Peterjohn W T, Melillo J M, et al., 1994. Effects of nitrogen fertilization on the fluxes of N_2O, CH_4, and CO_2 from soils in a Florida slash pine plantation. Canadian Journal of Forest Research, 24(1): 9~13.
    Chan A.S.K. and T.B.Parkin. 2001. Effect of land use on methane flux from soil. J. Environment Quality. 30: 786~797.
    Chapman S J, Kanda K I, Tsuruta H., 1996. Minami Influence of temperature and oxygen availability on the flux of methane and carbon dioxide from wetlands: a comparison of peat and paddy soils. Soil Science and Plant Nutrition, 42(2): 269~277.
    
    
    Conrad R., 1984. Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases(H_2/CO/CH_4). P. 461~467. Current perspectives in microbial.
    Dorr H, Katruff L, Levin I., 1993. Soil texture parameterization of the methane uptake in aerated soils. Chemosphere, 26(1~4): 697~713.
    Duenas C, Fernandez M C, Carretero J, et al., 1996. Methane uptake in soils of southern Spain estimated by two different techniques: static chamber and 222 radon flux and soil air concentration profiles. Atmospheric Environment, 30(4): 545~552.
    Duxbury J M, Mosier A R., 1993. Status and issues concerning agricultural emissions of greenhouse gases [A]. In: Kaiser H M, Drennen T E, eds. Agricultural Dimensions of Global Climate Change[C]. Delray Beach, Florida: St Lucie Press. 229~258.
    Eaton L. J. and Patriquim D.G., 1989. Denitrification in lowland blueberry soils. Can J. Soil Sci. 69:302~312.
    Flessa H, Pfau W, Dorsch P, et al., 1996. The influence of nitrate and ammonium fertilization on N_2O release and CH_4 uptake ora well~drained topsoil demonstrated by a soil microcosm experiment. Zeitschrifi fur Pflanzenemahrung und Bodenkunde, 159(5): 499~503.
    Goulding K W T, Willison T W, Webster C P, et al., 1996. Methane fluxes in aerobic soils.Environmental Monitoring and Assessment, 42(1~2): 175~187.
    Hansen S, Maehlum J E, Bakken L R., 1993. N_2O and CH_4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biology and Biochemistry, 25(5): 621~630.
    H(?)nault C. X., 1998. Influence of different agricultural practices (type of crop, form of N-fertilizer)on soil nitrous oxide emissions. Biol Fertil Soils. 27: 299~306.
    Hutsch B W, Russell P, Mengel K., 1996. CH_4 oxidation in two temperature arable soils as affected by nitrate and ammonium application. Biology and Fertility of Soils, 23(1): 86~92.
    Hutsch B W, Webster C P, Powlson D S., 1993. Long~term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment. Soil Biology and Biochemistry,25(10):1307~1315.
    Hutsch B W, Webster C P, Powlson D S., 1994. Methane oxidation in soil as affected by land use,soil pH and N fertilization. Soil Biology and Biochemistry, 26(12): 1613~1622.
    Hutsch B W., 1996. Methane oxidation in soils of two long~term fertilization experiments in Germany. Soil Biology and Biochemistry, 28(6): 773~782.
    IPCC, 1995. Climate Change 1995, the Science of Climate Change, Contribution of Work Group Ⅰ to the Second Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press.
    IPCC, 2001a. Climate Change 2001: The Scientific Basis. Contribution of Work Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. p.: 530.Cambridge University Press
    IPCC, 2001b. Climate Change 2001: The Scientific Basis. Contribution of Work Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. p.: 40~45.Cambridge University Press.
    IPCC, 2001c. Climate Change 2001: The Scientific Basis. Contribution of Work Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. p.: 388.Cambridge University Press.
    IPCC, 2001d. Climate Change 2001: The Scientific Basis. Contribution of Work Group Ⅰ to the Third Assessment Report of the Intergovernmental Panel on Climate Change. p.: 248~255.Cambridge University Press.
    Kamp T. H., 1998. Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures. Biol Fertil Soils.27:307~314.
    
    
    Keller M, Mitre M E, Stallard R F., 1990. Consumption of atmospheric methane in soils of central panama: Effect of agricultural development. Global Biogeochem Cycles, 4:21~27.
    Khalil M. A. K and Rasmussen, R. A., 1992. The global sources of nitrous oxide. J. Geophys. Res., 97:14651~14660.
    Knowles R., 1982. Denitrification. Microbiological Reviews, 46:43~70.
    Li C S, Frolking S, Frolking T A., 1992b. A model of nitrous oxide evolution from soil driven by rainfall event: Ⅱ. Model application. Journal of Geophysical Research. 97(D9), 9777~9783.
    Li C S, Narayanan V, Harris R C., 1996. Model estimates of nitrous oxide emissions from agricultural lands in the United States. Global Biogeochemical Cycles, 10, 297~306.
    Li C S, Frolking S, Frolking T A., 1992a. A model of nitrous oxide evolution from soil driven by rainfall event: Ⅰ.Model structure and sensitivity. Journal of Geophysical Research, 97(D9),9759~9776.
    Li C.S., 2000b. Modeling trace gas emission from agricultural ecosystems. Nutrient Cycling in Agroecosystems 58, 259~276.
    Li C.S., Aber J., Stange F., et al., 2000a. A process-oriented model of N_2O and NO emission from forest soils. J. Geophys. Res. 105, 4369~4384.
    Luo J, Tillman R W, White R E and Ball P R., 1998. Variation in denitrification activity with soil depth under pasture. Soil Biology & Biochemistry, 30, 897~903.
    Mosier A.R, Delgado J A, Cochran V L, et al., 1997. Impact of agriculture on soil consumption of atmospheric CH_4 and a comparison of CH4 and N_2O flux in subarctic, temperate and tropical grasslands. Nutrient Cycling in Agroecosystems, 49:71~83.
    Mosier A.R., Parton W.J. and Hutchinson G. K., 1983. Modeling nitrous oxide evolution from cropped and native soils. In: Environmental Biogeochemistry. 35, 2129~2141.
    Mosier, A.R. and Schimel, D.S., 1991. Influence of agriculture nitrogen on atmospheric methane and nitrous oxide.
    Neff J C, Bowman W D, Holland E A, et al., 1994. Fluxes of nitrous oxide and methane from nitrogen~amended soils in a Colorado alpine ecosystem. Biogeochemistry, 27(1): 23~33.
    Nesbit S. P, Breitenbeck G.A., 1992. A laboratory study of factors influencing methane uptake by soils. Agric Ecosyst Environ, 41: 39~54.
    Ojima D S, Valentine D W, Mosier A R, et al., 1993. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 26(1~4): 675~685.
    Papen H. and H. Rennenberg, 1990. Microbial processes involved in emissions of radiatively important trace gases. P. 232~273. In: Transactions 14th International Congress of Soil Science,Kyoto. Vol.Ⅱ.
    Peterjohn W.T, Melillo J.M, Steudler P A, et al., 1994. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4(3):617~625.
    Poth M. and D.D Focht., 1985.15N kinetic analysis of N_2O production by Nitrosomonas Europea:An examination of nitrifier denitrification. Appl. Env. Microbial. 49:1134~1141.
    Potter C S, Davidson E A, Verchot L V. 1996. Estimation of global biogeochemical controls and seasonality in soil methane consumption. Chemosphere, 32(11): 2219~2246.
    Segers R. and S.W.M.Kengen., 1998. Methane production as a function of anaerobic carbon mineralization: a process model, soil boil biochem. 30:1107~1117.
    Singh J S, Smita~Singh, Raghubanshi A S, et al., 1996. Methane flux from rice/wheat agroecosystem as affected by crop phenology, fertilization and water level. Plant and Soil,183(2):323~327.
    
    
    Steudler P. A, Bowden R D, Melillo J.M, et al., 1989. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 34:314~316.
    Striegl R G., 1993. Diffusional limits to the consumption of atmospheric methane by soils [J].Chemosphere, 26: 1~4.
    Torn M. S., Harte J., 1996. Methane consumption by montane soils: implications for positive and negative feedback with climatic change. Biogeochemistry, 32(1): 53~67.
    Umarov M. M., 1990. Biotic sources of nitrous oxide in the context of the global budget of nitrous oxide. P. 263~268.In:(ed. A.F. Bouwman) soils and the greenhouse effect. John Wiley & Sons,Chichester.
    Wantanabe T., Osada T., M. Yoh & H. Tsuruta., 1997. N_2O and NO emission from grassland soils after the application of cattle and swine excreta. Nutrient Cycling in Agroecosystems. 49: 35~39.
    Ward B. B., 1987. Kinetic studies on ammonia and methane oxidation by Nitrosococcus oceanus.Arch. Microbiol. 147, 126~133.
    Whalen S C, Reeburgh W S, Kizer K S., 1991. Methane consumption by emission by taiga. Global Biogeochem Cycles, 5: 261~273.
    Whalen S. C., Reeburgh W.S. and Sandbeck A., 1990. Rapid methane oxidation cover soil. Applied and Environmental Microbiology, 56:3405~3411.
    Wigley T.M.L. and S. C. B.Raper., 2001. Interpretation of high projections for global~mean warming. Science, 293: 451~454.
    Williams E.j., Hutchinson G. L. and Fehsenfeld F. C., 1992. NO_x and N_2O emissions from soil.Global Biogeo~chem. Cycles, 6(4): 351~388.
    Willison T W, Webster C P, Goulding K W T, et al., 1995. Methane oxidation in temperate soils:effects of land use and the chemical form of nitrogen fertilizer. Chemosphere, 30: 3,539~546.
    You S J, Yin Y and Allen H.E., 1999. Partitioning of organic matter in soils: effects of pH and water/soil ratio. The Science of the Total Environment, 227, 155~160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700