水稻芳樟醇合成酶基因OsLIS及类受体蛋白激酶基因OsHI-LK1的抗虫功能解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物的诱导防御反应是一个从诱导信号识别到防御化合物合成、最终产生防御反应的复杂的生理生化与分子调控过程。在这一过程中,可能起到信号识别作用的植物类受体蛋白激酶(Receptor like kinase,RLK)以及作为防御化合物的萜类挥发物发挥着重要作用。然而,究竟植物类受体蛋白激酶中哪些家族成员参与了这一过程,以及各萜类挥发物起着什么防御作用,目前还了解得不多。为此,本文选择合成水稻萜类挥发物中最主要成分之一的芳樟醇的合成酶基因OsLIS和受二化螟取食诱导的水稻LRR-RLK(Leucine rich repeat receptor like kinase)基因OsHI-LRR-RLKl (OsHI-LKl)为研究对象,结合利用反向遗传学、化学分析、分子生物学以及生物测定等研究方法,剖析了OsLIS调控的芳樟醇和OsHI-LKl在水稻诱导防御反应中的作用。
     OsLIS是典型的单萜合成酶,定位在叶绿体。组织表达谱分析发现OsLIS在水稻茎和叶片中表达量较高,在根中表达较低。二化螟取食、机械损伤和茉莉酸(jasmonic acid,JA)处理可以显著诱导OsLIS的表达,褐飞虱危害也能诱导OsLIS表达,但与二化螟取食相比表达水平较低,水杨酸(salicylic acid,SA)对OsLIS表达无影响。利用RNAi方法结合遗传筛选,获到了沉默OsLIS的单拷贝插入的水稻突变体纯合子(ir-lis)。突变体表型分析结果表明,转基因品系中OsLIS的转录水平比野生型水稻中的下降90%以上,芳樟醇的释放量仅有野生型的约2-5%,而其他挥发物不受影响。生测结果表明,褐飞虱更喜欢在ir-lis品系上取食和产卵,而褐飞虱的天敌稻虱缨小蜂更多地选择能够合成释放芳樟醇的野生型水稻植株。田间实验表明,褐飞虱更多地分布在ir-lis品系上,而在野生型水稻上稻虱缨小蜂对褐飞虱卵的寄生率更高。另外天敌蜘蛛、稻纵卷叶螟、稻蚜等昆虫在突变体与野生型水稻上的分布也存在差异。
     表达谱分析表明OsHI-LKl在水稻叶和根中的表达水平高于在茎杆中的,机械损伤、JA处理、二化螟和褐飞虱为害后期(1天以后)显著诱导OsHI-LKl表达,而SA对其无显著影响。RNAi沉默OsHI-LKl的纯合品系ir-lk中,OsHI-LKl的表达水平仅为野生型水稻中的15~30%。与野生型水稻相比,ir-lk品系的虫害诱导JA、SA和绿叶性气味物质(green leaf volatiles, GLVs)含量有所下降,并且对二化螟和褐飞虱的抗性亦降低。
Herbivore induced plant defense response is regulated by complex physiological and biochemical processes, which starts from the recognition of signals from herbivores, followed by activation of signaling pathways, expression of defense-related genes and the production of defense chemicals. Receptor like kinases (RLKs) that may recognize elicitors from herbivore and plant terpenoids, one kind of plant defense chemicals, play important roles in this response. However, which members of RLK are involved in this process and what is the function of terpenoids are little known. Thus, we here cloned a rice gene OsLIS encoding linalool synthase, whose product linalool is one of the most important terpenoids in rice, and a LRR-RLK (Leucine rich repeat receptor like kinase) gene OsHI-LRR-RLK1 (OsHI-LK1), which is up-regulated by SSB (rice stem stripped borer, Chilo suppressalis Walker) infestation and characterized their roles in herbivore induced rice defense responses with combined research methods of reverse genetics, chemical analysis, molecular biology and bioassay.
     OsLIS is a monoterpene synthase, which is localized in chloroplasts. Tissue specific analysis showed that OsLIS expressed high in rice stems and leaves while low in roots. Expression levels of OsLIS could be significantly enhanced by mechanical wounding, SSB infestation and JA treatment, whereas weakly induced by BPH infestation and not by SA. RNA interference was elected to silence OsLIS to obtain OsLIS silencing (ir-lis) lines. qRT-PCR proved that OsLIS expression levels in ir-lis lines was only about 10% of those in WT (wild type) plants, and the emission of linalool in ir-lis was only 2~5% of that in WT plants. Moreover, silencing OsLIS had no effect on other herbivore-induced plant volatiles. When the various rice genotypes were exposed to the BPH colony, BPH female adults were more often found on ir-lis plants than on WT plants, and eggs were more on ir-lis lines. Compared with ir-lis plants, Anagrus nilaparvatae, which is an egg parasitoid of BPH, preferred the odors from WT plants. The abundance of BPH was found more on ir-lis lines in field experiments whereas parasitism of Anagrus nilaparvatae was higher in WT plants. ir-lis lines also had an influence on the population densities of other herbivores and natural enemies, such as spider, RLF(Cnaphalocrocis medinalis Guenee) and rice aphid.
     Tissue specific analysis showed that OsHI-LK1 expressed high in rice roots and leaves while low in stems. Transcript levels of OsHI-LK1 were up-regulated by mechanical wounding, JA treatment, and SSB and BPH infestation (1 day after infestation), but not by SA. RNA interference was elected to silence OsHI-LK1 and we finally got silencing OsHI-LK(ir-lk) lines. qRT-PCR analysis showed that OsHI-LK1 expression levels in ir-lk lines were only 15~30% of those in WT rice plants. JA, SA and GLVs levels were lower in ir-lk lines than in WT rice plants after herbivore infestation. Silencing OsHI-LK1 decreased plant resistance to SSB and BPH.
引文
AbuQamar, S., Chai, M.F., Luo, H.L., Song, F.M. and Mengiste, T. (2008) Tomato protein kinase lb mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell,20, 1964-1983.
    Agrawal, A.A. (1998) Induced responses to herbivory and increased plant performance. Science, 279,1201-1202.
    Aharoni, A., Giri, A.P., Deuerlein, S., Griepink, F., de Kogel, W.J., Verstappen, F.W., Verhoeven, H.A., Jongsma, M.A., Schwab, W. and Bouwmeester, H.J. (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell,15,2866-2884.
    Alborn, H.T., Turlings, T.C.J., Jones, T.H., Stenhagen, G., Loughrin, J.H. and Tumlinson, J.H. (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science,276,945-949.
    Alborn, H.T., Hansen, T.V., Jones, T.H., Bennett, D.C., Tumlinson, J.H., Schmelz, E.A. and Teal, P.E. (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proc Natl Acad Sci USA,104,12976-12981.
    Ament, K., Kant, M.R., Sabelis, M.W., Haring, M.A. and Schuurink, R.C. (2004) Jasmonic acid is a key regulator of spider mite-induced volatile terpenoid and methyl salicylate emission in tomato. Plant Physiology,135,2025-2037.
    Ament, K., Krasikov, V., Allmann, S., Rep, M., Takken, F.L. and Schuurink, R.C. (2010) Methyl salicylate production in tomato affects biotic interactions. Plant Journal,62,124-134.
    Arimura, G., Ozawa, R., Shimoda, T., Nishioka, T., Boland, W. and Takabayashi, J. (2000) Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature,406,512-515.
    Arimura, G., Ozawa, R., Nishioka, T., Boland, W., Koch, T., Kuhnemann, F. and Takabayashi, J. (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J,29,87-98.
    Arimura, G., Kost, C. and Boland, W. (2005) Herbivore-induced, indirect plant defences. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids,1734,91-111.
    Arimura, G., Kopke, S., Kunert, M., Volpe, V., David, A., Brand, P., Dabrowska, P., Maffei, M.E. and Boland, W. (2008) Effects of feeding Spodoptera littoralis on lima bean leaves:IV. Diurnal and nocturnal damage differentially initiate plant volatile emission. Plant Physiol,146,965-973.
    Arimura, G.I., Garms, S., Maffei, M., Bossi, S., Schulze, B., Leitner, M., Mithoefer, A. and Boland, W. (2008) Herbivore-induced terpenoid emission in Medicago truncatula:concerted action of jasmonate, ethylene and calcium signaling. Planta,227,453-464.
    Arimura, G., Matsui, K. and Takabayashi, J. (2009) Chemical and molecular ecology of herbivore-induced plant volatiles:proximate factors and their ultimate functions. Plant Cell Physiol,50,911-923.
    Aubourg, S., Lecharny, A. and Bohlmann, J. (2002) Genomic analysis of the terpenoid synthase (AtTPS) gene family of Arabidopsis thaliana. Molecular Genetics and Genomics,267.730-745.
    Baldwin, I.T., Halitschke, R., Paschold, A., von Dahl, C.C. and Preston, C.A. (2006) Volatile signaling in plant-plant interactions:"talking trees" in the genomics era. Science,311,812-815.
    Bartram, S., Jux, A., Gleixner, G. and Boland, W. (2006) Dynamic pathway allocation in early terpenoid biosynthesis of stress-induced lima bean leaves. Phytochemistry,67,1661-1672.
    Bate, N.J. and Rothstein, S.J. (1998) C-6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant Journal,16,561-569.
    Bella, J., Hindle, K.L., McEwan, P.A. and Lovell, S.C. (2008) The leucine-rich repeat structure. Cellular and Molecular Life Sciences,65,2307-2333.
    Bick, J.A. and Lange, B.M. (2003) Metabolic cross talk between cytosolic and plastidial pathways of isoprenoid biosynthesis:unidirectional transport of intermediates across the chloroplast envelope membrane. Archives of Biochemistry and Biophysics,415,146-154.
    Bohlmann, J., Crock, J., Jetter, R. and Croteau, R. (1998) Terpenoid-based defenses in conifers: cDNA cloning, characterization, and functional expression of wound-inducible (E)-alpha-bisabolene synthase from grand fir (Abies grandis). Proc Natl Acad Sci U S A,95, 6756-6761.
    Bohlmann, J., Phillips, M, Ramachandiran, V., Katoh, S. and Croteau, R. (1999) cDNA cloning, characterization, and functional expression of four new monoterpene synthase members of the Tpsd gene family from grand fir (Abies grandis). Arch Biochem Biophys,368,232-243.
    Bouvier, F., Suire, C, d'Harlingue, A., Backhaus, R.A. and Camara, B. (2000) Molecular cloning of geranyl diphosphate synthase and compartmentation of monoterpene synthesis in plant cells. Plant J,24,241-252.
    Canales, C., Bhatt, A.M., Scott, R. and Dickinson, H. (2002) EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Current Biology,12,1718-1727.
    Cano-Delgado, A., Yin, Y., Yu, C., Vafeados, D., Mora-Garcia, S., Cheng, J.C., Nam, K.H., Li, J. and Chory, J. (2004) BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development,131,5341-5351.
    Carroll, M.J., Schmelz, E.A., Meagher, R.L. and Teal, P.E.A. (2006) Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. Journal of Chemical Ecology,32,1911-1924.
    Carroll, M.J., Schmelz, E.A. and Teal, P.E.A. (2008) The attraction of Spodoptera frugiperda neonates to cowpea seedlings is mediated by volatiles induced by conspecific herbivory and the elicitor inceptin. Journal of Chemical Ecology,34,291-300.
    Cartwright, H.N., Humphries, J.A. and Smith, L.G. (2009) PAN1:A Receptor-Like Protein That Promotes Polarization of an Asymmetric Cell Division in Maize. Science,323,649-651.
    Chehab, E.W., Kaspi, R., Savchenko, T., Rowe, H., Negre-Zakharov, F., Kliebenstein, D. and Dehesh, K. (2008) Distinct Roles of Jasmonates and Aldehydes in Plant-Defense Responses. Plos One,3,-.
    Cheng, A.X., Xiang, C.Y., Li, J.X., Yang, C.Q., Hu, W.L., Wang, L.J., Lou, Y.G. and Chen, X.Y. (2007) The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry,68,1632-1641.
    Chevalier, D., Batoux, M., Fulton, L., Pfister, K., Yadav, R.K., Schellenberg, M. and Schneitz, K. (2005) STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America,102,9074-9079.
    Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D.G, Felix, G. and Boller, T. (2007) A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature,448,497-U412.
    Choh, Y. and Takabayashi, J. (2006) Herbivore-induced extrafloral nectar production in lima bean plants enhanced by previous exposure to volatiles from infested conspecifics. Journal of Chemical Ecology,32,2073-2077.
    D'Alessandro, M. and Turlings, T.C. (2005) In situ modification of herbivore-induced plant odors: a novel approach to study the attractiveness of volatile organic compounds to parasitic wasps. Chem Senses,30,739-753.
    D'Alessandro, M., Held, M., Triponez, Y. and Turlings, T.C. (2006) The role of indole and other shikimic acid derived maize volatiles in the attraction of two parasitic wasps. J Chem Ecol,32, 2733-2748.
    D'Auria, J.C., Pichersky, E., Schaub, A., Hansel, A. and Gershenzon, J. (2007) Characterization of a BAHD acyltransferase responsible for producing the green leaf volatile (Z)-3-hexen-l-yl acetate in Arabidopsis thaliana. Plant Journal,49,194-207.
    Davidovich-Rikanati, R., Lewinsohn, E., Bar, E., Iijima, Y., Pichersky, E. and Sitrit, Y. (2008) Overexpression of the lemon basil alpha-zingiberene synthase gene increases both mono-and sesquiterpene contents in tomato fruit. Plant Journal,56,228-238.
    De Moraes, C.M., Lewis, W.J., Pare, P.W., Alborn, H.T. and Tumlinson, J.H. (1998) Herbivore-infested plants selectively attract parasitoids. Nature,393,570-573.
    De Moraes, C.M., Mescher, M.C. and Tumlinson, J.H. (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature,410,577-580.
    de Vos, M., Kim, J.H. and Jander, G. (2007) Biochemistry and molecular biology of Arabidopsis-aphid interactions. Bioessays,29,871-883.
    Degenhardt, J., Gershenzon, J., Baldwin, I.T. and Kessler, A. (2003) Attracting friends to feast on foes:engineering terpene emission to make crop plants more attractive to herbivore enemies. Current Opinion in Biotechnology,14,169-176.
    Degenhardt, J., Hiltpold, I., Kollner, T.G., Frey, M., Gierl, A., Gershenzon, J., Hibbard, B.E., Ellersieck, M.R. and Turlings, T.C.J. (2009) Restoring a maize root signal that attracts insect-killing nematodes to control a major pest (vol 106, pg 13213,2009). Proceedings of the National Academy of Sciences of the United States of America,106,17606-17606.
    Dicke, M. and van Loon, J. J.A. (2000) Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis Et Applicata,97,237-249.
    Dievart, A. and Clark, S.E. (2004) LRR-containing receptors regulating plant development and defense. Development,131,251-261.
    Eisenreich, W., Rohdich, F. and Bacher, A. (2001) Deoxyxylulose phosphate pathway to terpenoids. Trends Plant Sci,6,78-84.
    Engelberth, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. (2001) Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiology,125,369-377.
    Engelberth, J., Alborn, H.T., Schmelz, E.A. and Tumlinson, J.H. (2004) Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America,101,1781-1785.
    Engprasert, S., Taura, F., Kawamukai, M. and Shoyama,.Y. (2004) Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq. BMC Plant Biol,4,18.
    Frost, C.J., Appel, M., Carlson, J.E., De Moraes, C.M., Mescher, M.C. and Schultz, J.C. (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters,10,490-498.
    Frost, C.J., Mescher, M.C., Dervinis, C., Davis, J.M., Carlson, J.E. and De Moraes, C.M. (2008) Priming defense genes and metabolites in hybrid poplar by the green leaf volatile cis-3-hexenyl acetate. New Phytol,180,722-734.
    Fujii, T., Hori, M. and Matsuda, K. Attractants for rice leaf bug, Trigonotylus caelestialium (Kirkaldy), are emitted from flowering rice panicles. J Chem Ecol,36,999-1005.
    Fujita, M. and Hossain, M.Z. (2003) Modulation of pumpkin glutathione S-transferases by aldehydes and related compounds. Plant and Cell Physiology,44,481-490.
    Gaquerel, E., Weinhold, A. and Baldwin, I.T. (2009) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the plant's elicited volatile emissions. Plant Physiol,149, 1408-1423.
    Gatehouse, J.A. (2002) Plant resistance towards insect herbivores:a dynamic interaction. New Phytologist,156,145-169.
    Girling, R.D., Madison, R., Hassall, M., Poppy, G.M. and Turner, J.G. (2008) Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. J Exp Bot,59,3077-3085.
    Godiard, L., Sauviac, L., Torii, K.U., Grenon, O., Mangin, B., Grimsley, N.H. and Marco, Y. (2003) ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant Journal,36,353-365.
    Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., Hadley, D., Hutchison, D., Martin, C., Katagiri, F., Lange, B.M., Moughamer, T., Xia, Y., Budworth, P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun, W.L., Chen, L., Cooper, B., Park, S., Wood, T.C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R.M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science,296,92-100.
    Goff, K.E. and Ramonell, K.M. (2007) The role and regulation of receptor-like kinases in plant defense. Gene Regul Syst Bio,1,167-175.
    Gomez-Gomez, L., Bauer, Z. and Boiler, T. (2001) Both the extracellular leucine-rich repeat domain and the kinase activity of FLS2 are required for flagellin binding and signaling in arabidopsis. Plant Cell,13,1155-1163.
    Gosset, V., Harmel, N., Gobel, C., Francis, F., Haubruge, E., Wathelet, J.P., du Jardin, P., Feussner, I. and Fauconnier, M.L. (2009) Attacks by a piercing-sucking insect (Myzus persicae Sultzer) or a chewing insect (Leptinotarsa decemlineata Say) on potato plants (Solanum tuberosum L.) induce differential changes in volatile compound release and oxylipin synthesis. Journal of Experimental Botany,60,1231-1240.
    Halitschke, R., Schittko, U., Pohnert, G., Boland, W. and Baldwin, I.T. (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅲ. Fatty acid-am ino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiology,125, 711-717.
    Halitschke, R., Stenberg, J.A., Kessler, D., Kessler, A. and Baldwin, I.T. (2008) Shared signals-'alarm calls'from plants increase apparency to herbivores and their enemies in nature. Ecol Lett, 11,24-34.
    Hammack, L. (2001) Single and blended maize volatiles as attractants for diabroticite corn rootworm beetles. Journal of Chemical Ecology,27,1373-1390.
    Harmon, A.C., Gribskov, M. and Harper, J.F. (2000) CDPKs-a kinase for every Ca2+ signal? Trends Plant Sci,5,154-159.
    Heil, M. and Silva Bueno, J.C. (2007) Within-plant signaling by volatiles leads to induction and priming of an indirect plant defense in nature. Proceedings of the National Academy of Sciences of the United States of America,104,5467-5472.
    Herde, M., Gartner, K., Kollner, T.G., Fode, B., Boland, W., Gershenzon, J., Gatz, C. and Tholl, D. (2008) Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzing the first step in the formation of the insect-induced volatile C-16-homoterpene TMTT. Plant Cell,20,1152-1168.
    Hezari, M., Lewis, N.G. and Croteau, R. (1995) Purification and characterization of taxa-4(5),11(12)-diene synthase from Pacific yew (Taxus brevifolia) that catalyzes the first committed step of taxol biosynthesis. Arch Biochem Biophys,322,437-444.
    Hoballah, M.E. and Turlings, T.C.J. (2005) The role of fresh versus old leaf damage in the attraction of parasitic wasps to herbivore-induced maize volatiles. Journal of Chemical Ecology, 31,2003-2018.
    Hopke, J., Donath, J., Blechert, S. and Boland, W. (1994) Herbivore-induced volatiles:the emission of acyclic homoterpenes from leaves of Phaseolus lunatus and Zea mays can be triggered by a beta-glucosidase and jasmonic acid. FEBS Lett,352,146-150.
    Horiuchi, J., Arimura, G., Ozawa, R., Shimoda, T., Takabayashi, J. and Nishioka, T. (2003) A comparison of the responses of Tetranychus urticae (Acari:Tetranychidae) and Phytoseiulus persimilis (Acari:Phytoseiidae) to volatiles emitted from lima bean leaves with different levels of damage made by T-urticae or Spodoptera exigua (Lepidoptera:Noctuidae). Applied Entomology and Zoology,38,109-116.
    Howe, G.A. and Ryan, C.A. (1999) Suppressors of systemin signaling identify genes in the tomato wound response pathway. Genetics,153,1411-1421.
    Howe, G.A. and Jander, G. (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol,59, 41-66.
    Huang, M.S., Abel, C., Sohrabi, R., Petri, J., Haupt, I., Cosimano, J., Gershenzon, J. and Tholl, D. (2010) Variation of Herbivore-Induced Volatile Terpenes among Arabidopsis Ecotypes Depends on Allelic Differences and Subcellular Targeting of Two Terpene Synthases, TPS02 and TPSO3. Plant Physiology,153,1293-1310.
    Hunter, T. (1995) Protein-Kinases and Phosphatases - the Yin and Yang of Protein-Phosphorylation and Signaling. Cell,80,225-236.
    Hyatt, D.C. and Croteau, R. (2005) Mutational analysis of a monoterpene synthase reaction: altered catalysis through directed mutagenesis of (-)-pinene synthase from Abies grandis. Arch Biochem Biophys,439,222-233.
    Jeong, S., Trotochaud, A.E. and Clark, S.E. (1999) The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell, 11,1925-1933.
    Jinn, T.L., Stone, J.M. and Walker, J.C. (2000) HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes & Development,14,108-117.
    Kannaste, A., Nordenhem, H., Nordlander, G. and Borg-Karlson, A.K. (2009) Volatiles from a Mite-Infested Spruce Clone and Their Effects on Pine Weevil Behavior. Journal of Chemical Ecology,35,1262-1271.
    Kappers, I.F., Aharoni, A., van Herpen, T.W., Luckerhoff, L.L., Dicke, M. and Bouwmeester, H.J. (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science, 309,2070-2072.
    Karban, R., Baldwin, I.T., Baxter, K.J., Laue, G. and Felton, G.W. (2000) Communication between plants:induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia,125,66-71.
    Karban, R., Shiojiri, K., Huntzinger, M. and McCall, A.C. (2006) Damage-induced resistance in sagebrush:volatiles are key to intra-and interplant communication. Ecology,87,922-930.
    Keeling, C.I. and Bohlmann, J. (2006) Genes, enzymes and chemicals of terpenoid diversity in the constitutive and induced defence of conifers against insects and pathogens. New Phytol,170, 657-675.
    Kessler, A. and Baldwin, I.T. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science,291,2141-2144.
    Kessler, A. (2004) Silencing the jasmonate cascade:Induced plant defenses and insect populations (vol 305, pg 665,2004). Science,306,2042-2042.
    Kim, C.H., Jeong, D.H. and An, G.H. (2000) Molecular cloning and characterization of OsLRK1 encoding a putative receptor-like protein kinase from Oryza sativa. Plant Science,152,17-26.
    Kobe, B. and Deisenhofer, J. (1995) A Structural Basis of the Interactions between Leucine-Rich Repeats and Protein Ligands. Nature,374,183-186.
    Kollner, T.G., Schnee, C., Gershenzon, J. and Degenhardt, J. (2004) The variability of sesquiterpenes cultivars is controlled by allelic emitted from two Zea mays variation of two terpene synthase genes encoding stereoselective multiple product enzymes. Plant Cell,16, 1115-1131.
    Krusell, L., Madsen, L.H., Sato, S., Aubert, G., Genua, A., Szczyglowski, K., Duc, G., Kaneko, T., Tabata, S., de Bruijn, F., Pajuelo, E., Sandal, N. and Stougaard, J. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature,420,422-426.
    Kwak, S.H., Shen, R. and Schiefelbein, J. (2005) Positional signaling mediated by a receptor-like kinase in Arabidopsis. Science,307,1111-1113.
    Lee, S. and Chappell, J. (2008) Biochemical and genomic characterization of terpene synthases in Magnolia grandiflora. Plant Physiology,147,1017-1033.
    Leitner, M., Boland, W. and Mithofer, A. (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytologist,167,597-606.
    Lenhard, M. and Laux, T. (2003) Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development,130,3163-3173.
    Li, J.M., Nam, K.H., Vafeados, D. and Chory, J. (2001) BIN2, a new brassinosteroid-insensitive locus in Arabidopsis. Plant Physiology,127,14-22.
    Li, L., Zhao, Y.F., McCaig, B.C., Wingerd, B.A., Wang, J.H., Whalon, M.E., Pichersky, E. and
    Howe, G.A. (2004) The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development (vol 16, pg 126,2004). Plant Cell,16,783-783.
    Lin, C, Shen, B., Xu, Z., Kollner, T.G., Degenhardt, J. and Dooner, H.K. (2008) Characterization of the monoterpene synthase gene tps26, the ortholog of a gene induced by insect herbivory in maize. Plant Physiol,146,940-951.
    Lou, Y.G., Du, M.H., Turlings, T.C., Cheng, J.A. and Shan, W.F. (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata Iugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol,31,1985-2002.
    Lou, Y.G., Ma, B. and Cheng, J.A. (2005) Attraction of the parasitoid Anagrus nilaparvatae to rice volatiles induced by the rice brown planthopper Nilaparvata Iugens. Journal of Chemical Ecology, 31,2357-2372.
    Lou, Y.G., Hua, X.Y., Turlings, T.C.J., Cheng, J.A., Chen, X.X. and Ye, G.Y. (2006) Differences in induced volatile emissions among rice varieties result in differential attraction-and parasitism of Nilaparvata Iugens eggs by the parasitoid Anagrus nilaparvatae in the field. Journal of Chemical Ecology,32,2375-2387.
    Maffei, M.E., Mithofer, A. and Boland, W. (2007) Before gene expression:early events in plant-insect interaction. Trends in Plant Science,12,310-316.
    Maffei, M.E., Mithofer, A. and Boland, W. (2007) Insects feeding on plants:Rapid signals and responses preceding the induction of phytochemical release. Phytochemistry,68,2946-2959.
    Mahmoud, S.S. and Croteau, R.B. (2001) Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Proc Natl Acad Sci USA,98,8915-8920.
    Major, I.T. and Constabel, C.P. (2006) Molecular analysis of poplar defense against herbivory: comparison of wound-and insect elicitor-induced gene expression. New Phytol,172,617-635.
    Mantyla, E., Alessio, G.A., Blande, J.D., Heijari, J., Holopainen, J.K., Laaksonen, T., Piirtola, P. and Klemola, T. (2008) From Plants to Birds:Higher Avian Predation Rates in Trees Responding to Insect Herbivory. Plos One,3,-
    Matsui, K. (2006) Green leaf volatiles:hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology,9,274-280.
    Mattiacci, L., Dicke, M. and Posthumus, M.A. (1995) Beta-Glucosidase - an Elicitor of Herbivore-Induced Plant Odor That Attracts Host-Searching Parasitic Wasps. Proceedings of the National Academy of Sciences of the United States of America,92,2036-2040.
    Meiners, T. and Hilker, M. (1997) Host location in Oomyzus gallerucae (Hymenoptera: Eulophidae), an egg parasitoid of the elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Oecologia,112,87-93.
    Meiners, T. and Hilker, M. (2000) Induction of plant synomones by oviposition of a phytophagous insect. Journal of Chemical Ecology,26,221-232.
    Mithofer, A., Wanner, G. and Boland, W. (2005) Effects of feeding Spodoptera littoralis on lima bean leaves. Ⅱ. Continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission. Plant Physiology,137,1160-1168.
    Miyazaki, S., Sumikawa, N., Mishima, M., Kitani, M., Kubo, M., Demura, T., Fukuda, H. and Hasebe, M. (2004) Differential gene expression profiles of receptor-like kinases in pollen tube of Arabidopsis thaliana. Plant and Cell Physiology,45, S73-S73.
    Mur, L.A.J., Kenton, P., Atzorn, R., Miersch, O. and Wasternack, C. (2006) The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiology,140,249-262.
    Muschietti,J., Eyal, Y. and McCormick, S. (1998) Pollen tube localization implies a role in pollen-pistil interactions for the tomato receptor-like protein kinases LePRK1 and LePRK2. Plant Cell,10,319-330.
    Nakagawa, T., Kaku, H., Shimoda, Y., Sugiyama, A., Shimamura, M., Takanashi, K., Yazaki, K., Aoki, T., Shibuya, N. and Kouchi, H. (2011) From defense to symbiosis:limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. Plant Journal,65,169-180.
    Nam, K.H. and Li, J.M. (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell,110,203-212.
    Navia-Gine, W.G., Yuan, J.S., Mauromoustakos, A., Murphy, J.B., Chen, F. and Korth, K.L. (2009) Medicago truncatula (E)-beta-ocimene synthase is induced by insect herbivory with corresponding increases in emission of volatile ocimene. Plant Physiol Biochem,47,416-425.
    Nishimura, R., Hayashi, M., Wu, G.J., Kouchi, H., Imaizumi-Anraku, H., Murakami, Y., Kawasaki, S., Akao, S., Ohmori, M., Nagasawa, M., Harada, K. and Kawaguchi, M. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature,420,426-429.
    Ohara, K., Ujihara, T., Endo, T., Sato, F. and Yazaki, K. (2003) Limonene production in tobacco with Perilla limonene synthase cDNA. Journal of Experimental Botany,54,2635-2642.
    Okada, K., Saito, T., Nakagawa, T., Kawamukai, M. and Kamiya, Y. (2000) Five geranylgeranyl diphosphate synthases expressed in different organs are localized into three subcellular compartments in Arabidopsis. Plant Physiology,122,1045-1056.
    Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2005) Leucine-rich repeat receptor-like kinasel is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell,17,1105-1119.
    Ozawa, R., Arimura, G., Takabayashi, J., Shimoda, T. and Nishioka, T. (2000) Involvement of jasmonate-and salicylate-related signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant Cell Physiol,41,391-398.
    Park, S.W. (2008) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance (5 October, pg 113,2007). Science,321,342-342.
    Piel, J., Donath, J., Bandemer, K. and Boland, W. (1998) Mevalonate-independent biosynthesis of terpenoid volatiles in plants:Induced and constitutive emission of volatiles. Angewandte Chemie-International Edition,37,2478-2481.
    Ralph, S.G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J.A., Nelson, C.C., Butterfield, Y.S.N., Kirkpatrick, R., Liu, J., Jones, S.J.M., Marra, M.A., Douglas, C.J., Ritland, K. and Bohlmann, J. (2006) Conifer defence against insects: microarray gene expression profiling of Sitka spruce (Picea sitchensis) induced by mechanical wounding or feeding by spruce budworms (Choristoneura occidentalis) or white pine weevils (Pissodes strobi) reveals large-scale changes of the host transcriptome. Plant Cell and Environment,29,1545-1570.
    Rasmann, S., Kollner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. and Turlings, T.C.J. (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature,434,732-737.
    Rasmann, S. and Turlings, T.C.J. (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecology Letters,10,926-936.
    Reymond, P., Bodenhausen, N., Van Poecke, R.M.P., Krishnamurthy, V., Dicke, M. and Farmer, E.E. (2004) A conserved transcript pattern in response to a specialist and a generalist herbivore. Plant Cell,16,3132-3147.
    Rienties, I.M., Vink, J., Borst, J.W., Russinova, E. and de Vries, S.C. (2005) The Arabidopsis SERK1 protein interacts with the AAA-ATPase AtCDC48, the 14-3-3 protein GF14 lambda and the PP2C phosphatase KAPP. Planta,221,394-405.
    Sakamoto, T., Miura, K., Itoh, H., Tatsumi, T., Ueguchi-Tanaka, M., Ishiyama, K., Kobayashi, M., Agrawal, G.K., Takeda, S., Abe, K., Miyao, A., Hirochika, H., Kitano, H., Ashikari, M. and Matsuoka, M. (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol,134,1642-1653.
    Schnee, C., Kollner, T.G., Held, M., Turlings, T.C.J., Gershenzon, J. and Degenhardt, J. (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that auracts natural enemies of maize herbivores. Proceedings of the National Academy of Sciences of the United States of America,103,1129-1134.
    Schwender J., Gemunden C, Lichtenthaler H.K. (2001) Chlorophyta exclusively use the 1-deoxyxylulose 5-phosphate/2-C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids. Planta,212,416-423.
    Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J. and Gresshoff, P.M. (2003) Long-distance signaling in nodulation directed by a CLAVATAl-like receptor kinase. Science,299,109-112.
    Shah, K., Russinova, E., Gadella, T.W.J., Willemse, J. and de Vries, S.C. (2002) The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes & Development,16,1707-1720.
    Shiojiri, K., Ozawa, R. and Takabayashi, J. (2006) Plant volatiles, rather than light, determine the nocturnal behavior of a caterpillar. Plos Biology,4,1044-1047.
    Shiu, S.H. and Bleecker, A.B. (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A,98, 10763-10768.
    Shiu, S.H. and Bleecker, A.B. (2003) Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiology,132,530-543.
    Shiu, S.H., Karlowski, W.M., Pan, R., Tzeng, Y.H., Mayer, K.F. and Li, W.H. (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell,16, 1220-1234.
    Shpak, E.D., McAbee, J.M., Pillitteri, L.J. and Torii, K.U. (2005) Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science,309,290-293.
    Song, W.Y, Wang, G.L., Chen, L.L., Kim, H.S., Pi, L.Y., Holsten, T., Gardner, J., Wang, B., Zhai, W.X., Zhu, L.H., Fauquet, C. and Ronald, P. (1995) A Receptor Kinase-Like Protein Encoded by the Rice Disease Resistance Gene, Xa21. Science,270,1804-1806.
    Spiteller, D., Pohnert, G. and Boland, W. (2001) Absolute configuration of volicitin, an elicitor of plant volatile biosynthesis from lepidopteran larvae. Tetrahedron Letters,42,1483-1485.
    Spoel, S.H., Koornneef, A., Claessens, S.M.C., Korzelius, J.P., Van Pelt, J.A., Mueller, M.J.,
    Buchala, A.J., Metraux, J.P., Brown, R., Kazan, K., Van Loon, L.C., Dong, X.N. and Pieterse, C.M.J. (2003) NPR1 modulates cross-talk between salicylate-and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell,15,760-770.
    Suzaki, T., Sato, M., Ashikari, M., Miyoshi, M., Nagato, Y. and Hirano, H.Y. (2004) The gene FLORAL ORGAN NUMBER 1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development,131,5649-5657.
    Taki, N., Sasaki-Sekimoto, Y., Obayashi, T., Kikuta, A., Kobayashi, K., Ainai, T., Yagi, K., Sakurai, N., Suzuki, H., Masuda, T., Takamiya, K., Shibata, D., Kobayashi, Y. and Ohta, H. (2005) 12-oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. Plant Physiology,139,1268-1283.
    Thaler, J.S. (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature,399,686-688.
    Thines, B., Katsir, L., Melotto, M., Niu, Y., Mandaokar, A., Liu, G.H., Nomura, K., He, S.Y., Howe, G.A. and Browse, J. (2007) JAZ repressor proteins are targets of the SCFCO11 complex during jasmonate signalling. Nature,448,661-U662.
    Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F. and Komeda, Y. (1996) The arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell,8,735-746.
    Trotochaud, A.E., Hao, T., Wu, G., Yang, Z.B. and Clark, S.E. (1999) The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell,11,393-405.
    Tsuwamoto, R., Fukuoka, H. and Takahata, Y. (2008) GASSHO1 and GASSHO2 encoding a putative leucine-rich repeat transmembrane-type receptor kinase are essential for the normal development of the epidermal surface in Arabidopsis embryos. Plant Journal,54,30-42.
    Turner, J.G., Ellis, C. and Devoto, A. (2002) The jasmonate signal pathway. Plant Cell,14 Suppl, S153-164.
    van Schie, C.C.N., Haring, M.A. and Schuurink, R.C. (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Molecular Biology,64,251-263.
    van Tol, R.W.H.M., van der Sommen, A.T.C., Boff, M.I.C., van Bezooijen, J., Sabelis, M.W. and Smits, P.H. (2001) Plants protect their roots by alerting the enemies of grubs. Ecology Letters,4, 292-294.
    van Zanten, M., Snoek, L.B., Proveniers, M.C.G. and Peeters, A.J.M. (2009) The many functions of ERECTA. Trends in Plant Science,14,214-218.
    Wang, X.F., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C. and Clouse, S.D. (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell,17,1685-1703.
    Wei, J.N., Wang, L.Z., Zhu, J. W., Zhang, S.F., Nandi, O.I. and Kang, L. (2007) Plants Attract Parasitic Wasps to Defend Themselves against Insect Pests by Releasing Hexenol. Plos One,2,
    Wengier, D., Valsecchi, I., Cabanas, M.L., Tang, W.H., McCormick, S. and Muschietti, J. (2003) The receptor kinases LePRK1 and LePRK2 associate in pollen and when expressed in yeast, but dissociate in the presence of style extract. Proceedings of the National Academy of Sciences of the United States of America,100,6860-6865.
    Wu, J. and Baldwin, I.T. New insights into plant responses to the attack from insect herbivores. Annu Rev Genet,44,1-24.
    Wu, J.Q. and Baldwin,I.T. (2010) New Insights into Plant Responses to the Attack from Insect Herbivores. Annual Review of Genetics, Vol 44,44,1-24.
    Yoshinaga, N., Aboshi, T., Ishikawa, C., Fukui, M., Shimoda, M., Nishida, R., Lait, C.G., Tumlinson, J.H. and Mori, N. (2007) Fatty acid amides, previously identified in caterpillars, found in the cricket Teleogryllus taiwanemma and fruit fly Drosophila melanogaster larvae. Journal of Chemical Ecology,33,1376-1381.
    Yuan, J.S., Kollner, T.G., Wiggins, G., Grant, J., Degenhardt, J. and Chen, F. (2008) Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J,55, 491-503.
    Yuan, J.S., Kollner, T.G., Wiggins, G., Grant, J., Zhao, N., Zhuang, X., Degenhardt, J. and Chen, F. (2008) Elucidation of the genomic basis of indirect plant defense against insects. Plant Signal Behav,3,720-721.
    Zha, X., Luo, X., Qian, X., He, G., Yang, M., Li, Y. and Yang, J. (2009) Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J,7,611-620.
    Zhou, G., Qi, J., Ren, N., Cheng, J., Erb, M., Mao, B. and Lou, Y. (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J,60,638-648.
    Zhu, J.W. and Park, K.C. (2005) Methyl salicylate, a soybean aphid-induced plant volatile attractive to the predator Coccinella septempunctata. Journal of Chemical Ecology,31, 1733-1746.
    Zulak, K.G. and Bohlmann, J. (2010) Terpenoid Biosynthesis and Specialized Vascular Cells of Conifer Defense. Journal of Integrative Plant Biology,52,86-97.
    娄永根(1999)信息化合物在稻虱缨小蜂寄主选择行为中的作用.浙江大学博士论文
    卢海燕 (2010)稻田常用农药对水稻挥发物释放的影响及其生态效应.扬州大学博士论文
    鲁玉杰,王霞,娄永根等(2006)乙烯信号传导途径在褐飞虱诱导的水稻挥发物释放中的作用.科学通报,51(18):2146-2153
    王霞(2006)不同取食习性害虫和beta-葡萄糖苷酶对水稻体内重要防御相关信号分子含量的影响.浙江大学硕士论文
    周强,徐涛,张古忍等(2004)虫害诱导的水稻挥发物对褐飞虱的驱避作用.昆虫学报,46(6):739-744

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700