Mg-5Li-3Al-2Zn-X(RE,Cu,Sn)镁合金显微组织及力学性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金是最轻的金属结构材料,它具有密度小、比强度和比刚度高、减震性好、易切削加工等优点,被认为是航天器和汽车轻量化的最佳材料。当镁合金使用温度超过120℃时,由于合金中相的软化导致高温力学性能大幅度下降,这极大地阻碍了镁锂合金大规模地应用。最近几年,国内外对于耐热镁合金的开发给予了高度重视。目前,主要通过降低合金中A1元素的含量,引入高熔点的第二相,减少或抑制低熔点相的形成。已研究和开发的合金体系主要包括:Mg-Al-Sr、Mg-Al-RE和Mg-Al-Ca-Sr系等。因此稀土、铜和锡元素同样可以应用在镁锂合金中,提高合金的耐高温性能。此外,Mg-Zn-Al系合金由于成本相对较低,是一种有发展前途的高温抗蠕变镁合金。该体系合金的力学性能和热裂倾向对成分非常敏感,而且组织中通常存在大量网状的共晶相,导致合金的塑性较差。除少数合金可用于装饰外,关于该体系商业化应用的报道非常少。
     本论文把RE、Cu和Sn作为合金强化元素添加到Mg-Li-Al-Zn体系合金中,对于已设计优化出的LAZ532-2RE、LAZ532-2Cu和LAZ532-1Sn合金分别进行了热挤压变形加工,研究了合金热挤压变形后的组织和力学性能。
     挤压态LAZ532-2RE合金在150℃以下,高温拉伸变形机制是孪晶和位错协调的变形机制,当温度升高到200℃左右时,晶粒发生软化,发生的是位错和晶界滑移协调的变形机制,但温度继续升高时,固溶在a-Mg中的Li脱溶析出形成p相,在高温条件下软化的β相变形能力强,它与α相协调发生较大的变形,此时的高温拉伸变形机制是以晶界滑移机制为主要机制,并伴随着脱溶析出的第二相协调变形机制。挤压态LAZ532-2RE合金,在398K、423K和448K温度蠕变测试时,应力指数n值分别为4.25、4.98和6.23,蠕变激活能Qc值在60MPa、80MPa和100MPa的应力条件时分别为104kJ/mol、118kJ/mol和134kJ/mol,其对应的蠕变机制,应力指数在4.25~4.98之间时,蠕变机制是位错攀移型蠕变。当n大于6时,属于受非基面位错运动控制的蠕变,稀土相在高温蠕变过程中阻碍了位错运动,提高了该合金的高温蠕变性能。
     挤压态LAZ532-2Cu合金在150℃以下时仍然具有较高的强度,当温度达到200℃时强度下降很多,但是在应变速率1×10-2时延伸率高达44%。挤压态LAZ532-2Cu合金,在125℃~175℃温度范围,应力在60MPa-100MPa范围蠕变测试时,应力指数n值分别为3.72、4.8和6.1,蠕变激活能Qc值在60MPa、80MPa和100MPa的应力条件时分别为94.8kJ/mol、123.9kJ/mol和128kJ/mol,其对应的蠕变机制,在125℃~150℃之间时,蠕变机制是位错攀移型蠕变。当温度达到175℃时,属于受非基面位错运动控制的蠕变,铜化合物相在高温蠕变过程中阻碍了位错运动,该合金在蠕变过程中发生了时效强化作用,使得挤压态LAZ532-2Cu合金的蠕变性能与挤压态LAZ532-2RE合金非常接近。
     挤压态LAZ532-1Sn合金在150℃以下时仍然具有较高的强度,当温度达到200℃时强度下降很多,应变速率1×10-2时延伸率达到75%。挤压态LAZ532-1Sn合金,在125℃~175℃温度范围,应力在60MPa~100MPa范围蠕变测试时,应力指数n值分别为2.5、3.7和5.8,蠕变激活能Qc值在60MPa、80MPa和100MPa的应力条件时分别为104kJ/mol、118kJ/mol和135kJ/mol,其对应的蠕变机制,在应力指数n≈2,蠕变激活能在100kJ/mol左右,为晶界滑移型蠕变。当温度达到150℃时,当应力指数n≈3~4时,为位错滑移型蠕变,当温度继续升高,应力指数n≈6时,此时蠕变激活能Qc=135kJ/mol,为受非基面位错运动控制的蠕变。
     挤压态LAZ532-2RE合金拉伸曲线中出现了两种塑性失稳现象:第一种小锯齿形波动的失稳现象是由固溶原子与位错相助作用引起的,即是“动态应变时效”机制;第二种大锯齿形波动的失稳现象是由切变变形孪晶诱发的,这种稳态塑性失稳现象的机制是由变形孪晶所造成的“孪晶稳态塑性失稳”机制。挤压态LAZ532-2RE合金常温拉伸出现的异常应变速率敏感现象可以解释为,正应变速率敏感是应变硬化作用引起,负的应变速率敏感是稳态塑性失稳导致的。
     锂元素的加入降低了镁合金中镁的晶格常数c值,根据X射线步进式扫描计算结果得出LAZ532-2RE合金中a-Mg的晶轴比c/a值从1.624降低到了1.6074,这会导致该合金在常温拉伸时产生较多的变形孪晶,从而大幅度的提高了该合金的延伸率。挤压态LAZ532-2RE合金拉伸变形时产生的切变变形孪晶主要是{1012}和{1011}孪晶。
Mg-Li alloys, as the lightest metallic structural materials, have great potential application in spacecraft and automotive industries due to their low density, high specific strength and specific stiffness, good damping characteristics and excellent machinability etc. However, because of the rapid decrease of strength and poor creep resistance, the application of these alloys is restricted at the temperature higher than 120℃. The deterioration of high temperature mechanical properties in the Mg-Li alloys is attributed to the softening of discontinuous phase. So far, many efforts have been dedicated to improve the high temperature mechanical properties of Mg-Al based alloy, accordingly a series of commercial alloys have been explored, such as Mg-Al-Sn, Mg-Al-RE and Mg-Al-Ca-Sr systems. The aims of these efforts are decrease of Al content and produce the high melting point intermetallics. So rare earth, copper and tin can also be used in Mg-Li alloys, improve alloy high temperature resistant performance. Due to the disadvantage of Mg-Al alloy, the Mg-Zn-Al (ZA) systems alloy with Zn content is proposed as a low-cost, which were considered a promising high temperature creep resistant magnesium alloys. The ZA systems alloy exhibits low ductility due to the formation of a large amount of network phase at the grain boundaries, moreover the alloy is prone to hot tearing, and the die castability is sensitive to the alloy composition. Until now, except for using as decorative material, there is still limited commercial application of this alloy system.
     The optimized LAZ532-2RE、LAZ532-2Cu and LAZ532-1Sn alloys were extruded at 553K. The diameter of specimens after extrusion was changed from 55mm to 13mm. The microstructure and mechanical properties of the alloys were investigated.
     The extruded LAZ532-2RE alloy at 150℃, high temperature tensile deformation mechanism is the coordination of twins and dislocation deformation mechanism. When the temperature rises to about 200℃, the grain softening, and the deformation mechanism is dislocations and grain boundary sliding. With temperature increasing, the softening (3 phase precipitates from the a-Mg solid solution, which occurred more in harmony with a large deformation. The high temperature tensile deformation mechanism at this time is the grain boundary sliding mechanism, and accompanied by the precipitation of second phase precipitation. The extruded LAZ532-2RE alloy was performed on creep tests at 398K,423K and 448K, The stress exponent of n varies from 4.25 to 6.23, and the activation energy varies from 104 to 134kJ/mol. There is a transition between dislocations climb dominated creep mechanism and dislocation creep controlled by non-basal planes slip. The stress exponent is between 4.25-4.98, the creep mechanism is dislocation climb creep. When n is greater than 6, are subject to non-basal dislocation motion-controlled creep. At high temperature creep test, the rare earth phase hindered the dislocation movement, improved high temperature creep properties of the alloy.
     At the temperature 150℃, the extruded LAZ532-2Cu alloy still has higher strength, when the temperature reaches 200℃, the strength decreased a lot, but the elongation up to 44% at the strain rate 1×10-2. Under the temperature of 125℃,150℃and 175℃, the stress of 60Mpa,80Mpa and 100Mpa, the creep test of extruded LAZ532-2Cu alloy was carried out. The stress exponent n values are 3.72,4.8 and 6.1, the creep activation energy Qc values are 94.8kJ/mol,123.9kJ/mol and 128kJ/mol respectively. At the temperature range of 125℃~150℃, the creep mechanism is dislocation climb creep mechanism. When the temperature reaches 175℃, the non-basal plane dislocation motion is dominated creep mechanism. During the creep test, the copper compounds hindered dislocation movement, the alloy occurred strengthening effect of aging. The extruded LAZ532-2Cu alloy creep properties are very close to the extruded LAZ532-2RE alloy.
     At temperature 150℃, the extruded LAZ532-1Sn alloy has higher strength. When the temperature reaches 200℃, the strength decreased markly, the elongation up to 75% at the strain rate 1×10-2. At temperature range of 125℃~175℃, stress range of 60MPa~100Mpa, the stress exponent n values are 2.5,3.7 and 5.8, the creep activation energy Qc value are 104kJ/mol,118kJ/mol and 135kJ/mol respectively. At the stress exponent n≈2, the creep activation energy around 100kJ/mol, the corresponding creep mechanism is the grain boundary sliding creep. When the temperature reaches 150℃, the stress exponent n≈3~4, the creep mechanism is dislocation climb creep. When the temperature continues to rise, the stress exponent n≈6, the creep activation energy Qc=135kJ/mol, the creep mechanism is the non-basal plane dislocation creep motion control.
     The extruded LAZ532-2RE alloy, there were two plastic instability phenomena in the tensile curve. The first instability of small fluctuations is the effect of atoms on dislocation, which is "dynamic strain aging" mechanism. The second largest zigzag instability phenomenon is caused by fluctuations in the shear-induced deformation twins. This phenomenon of plastic instability is caused by the deformation twins of the "steady-state twin plastic instability" mechanism. The extruded LAZ532-2RE alloy at room temperature tensile appears abnormal phenomenon can be interpreted as positive strain rate sensitivity is caused by strain hardening, the negative strain rate sensitivity is due to the twin plastic instability.
     Li elements decrease the lattice constant c value of magnesium. According to X-ray step scanning results, the LAZ532-2RE alloy of a-Mg grain axial ratio c/a values decreased from 1.624 to 1.6074. Therefore, the alloy has a better plastic at room temperature, produce more deformation twins, which greatly enhanced the elongation of the alloy. The{1012} and {1011} deformation twins were observed from the extruded LAZ532-2RE alloy.
引文
[1]P.D. Frost. Technical and economic status of magnesium-lithium alloys. Technology Utilization Report NASA SP-5028, August,1965.
    [2]T.G. Byrer, E.L Wbite, P.D Frost. The development of magnesium-lithium alloys for structural application. NASA CR-79, June,1964.
    [3]H. Haferkamp, M. Niemeryer, R. Boehem, et al. Development processing and applications range of magnesium-lithium alloys[J]. Materials Science Forum,2000, 31:350-351.
    [4]E. Aghion, B. Bronfin. Magnesium alloys development towards the 21st century [J]. Materials Science Forum,2000,350:19-28.
    [5]余琨,黎文献,王日初,马正青.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003,13(2):277-288.
    [6]张佩武,夏伟,刘英,张卫文,陈维平.变形镁合金成形工艺研究及其应用[J].材料导报,2005,19(7):82-85.
    [7]周海涛,马春江,曾小勤,丁文江.变形镁合金材料的研究进展[J].材料导报,2003,17(11):16-18/55.
    [8]潘复生,韩恩厚等著.高性能变形镁合金及加工技术[M].北京:科学出版社,2007.
    [9]陈振华,主编.变形镁合金[M].北京:化学工业出版社,2005.
    [10]M.E. Siederschen, G. Talor. Slip systems in bcc Li-Mg alloys [J]. Philosophical Magazine A,1989,60(6):631.
    [11]W.E. Freeth, G.V. Talynor. The systems magnesium-lithium and magnesium-lithium-silver [J]. Journal Institute of Metals,1953-1954,82:575-580.
    [12]J.H. Jackson, P.D. Frost, A.C. Loonam, et al. Magnesium-lithium base alloys preparation, fabrication, and general characteristics. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers (AIME),1949,185:149-168.
    [13]AG Mathewson, H.P. Myers. The optical properties of lithium-manganese alloys [J]. Journal of Physics F:Metal Physics,1973,3:623-639.
    [14]H. Saka, G. Taylor. Thermal-activation parameters for asymmetric{211} slip in Li-Mg alloy crystals [J]. Philosophical Magazine A,1982,45(6):937-982.
    [15]M. Saboo, J.T.N. Atkinson. Magnesium-lithium-alloys-constitution and fabrication for use in batteries [J]. Journal of Materials Science,1982,17:3564-3574.
    [16]R.S. Crisp. On the evaluation of absorption data from soft X-ray self-absorption measurements [J]. Journal of Physics F:Metal Physics,1983,13:1317-1324.
    [17]R.G. Sambasiva, Y.V.R.K. Prasad. Effect of texture and grain size on the fracture behaviour of hot rolled Mg, Mgl2.5%Li and Mg5%Ti alloy [J]. Research Mechanica, 1983,9:41-61.
    [18]张密林,F.M.Elkin.超轻镁锂合金[M].科学出版社,2010.
    [19]王辅忠,李荣华Mg-Li基复合材料研究[J].稀有金属,2003,27(2):273-276.
    [20]王辅忠,李荣华,费英Mg-Li基复合材料研究进展[J].材料科学与工程学报,2003,21(1):134-137.
    [21]于化顺,闵光辉,李秀真等Mg-Li基合金及其复合材料的研究现状[J].兵器材料科学与工程,1996,19(5):54-58.
    [22]于化顺,闵光辉,陈熙深Mg-Li基复合材料研究现状[J].稀有金属,1996,20(5):365-368.
    [23]曹富荣,崔建忠,雷方等.超轻镁锂合金的研究历史与发展现状[J].材料工程,1996,(9):3-5.
    [24]马春江,张荻,张国定Mg-Li基复合材料[J].稀有金属材料与工程,1998,27(3):125-129.
    [25]黄清民,魏晓伟.超轻质Mg-Li合金的研究现状[C].2005年中国压铸、挤压铸造、半固态加工学术年会会刊,2005:56-59.
    [26]蒋斌,张鼎沸,彭建等.Mg-Li超轻合金的研究与应用[J].材料导报,2005,19(5):38-41.
    [27]乐启炽,崔建忠,李红斌等Mg-Li合金研究最新进展及其应用[J].材料导报,2003,17(12):1-4.
    [28]栗丽,李焕喜,周铁涛等.镁锂系合金的研究进展[J].金属材料研究,2005,31(4):30-34.
    [29]马春江,张荻,张国定.超轻型Mg-Li合金[J].宇航材料工艺,1998,(2):27-32.
    [30]乐启炽,崔建忠Mg-Li合金的过去现在与将来[J].宇航材料工艺,1998,(2):1-6.
    [31]李劲风,郑子樵,陶光勇.超轻Mg-Li合金[J].轻合金加工技术,2004,32(10):35-38.
    [32]刘海燕,李俊青,刘冰等Mg-Li基复合材料的研究近况[J].材料导报,2006,11(20):401-403.
    [33]于化顺,闵光辉,田学雷Mg-Li基合金及复合材料的制备工艺[J].特种铸造和有色合金,1977,(4):29-31.
    [34]杨光昱,郝启堂,介万奇.镁锂系合金的研究现状[J].铸造技术,2004,25(1):19-21.
    [35]于化顺,闵光辉,陈熙深.合金元素在Mg-Li基合金中的作用[J].稀有金属材料与工程,1996,25(2):1-5.
    [36]彭德林,安阁英,邢大伟.二元Mg-Li合金凝固组织和性能研究[J].铸造,1995,(5):1-3.
    [37]彭志辉.超轻高比强度Mg-Li系合金[J].稀有金属与硬质合金,1995,12(123):53-57.
    [38]李红斌,姚广春,刘宜汉等.超轻Mg-Li-Al系变形镁合金冷轧机热处理后的组织和性能[J].功能材料,2005,36(4):525-528.
    [39]冯林平,陈斌,钟皓等.p基Mg-12Li-3Al-5Zn合金的塑性变形行为[J].金属热处理,2005,30(3):36-39.
    [40][40]陈斌,冯林平,钟皓等.变形Mg-Li-Al-Zn合金的组织与性能[J].北京航空航天大学学报,2004,30(10):976-979.
    [41]乐启炽,李洪晓,崔建忠.稀土和银对Mg-Li合金显微组织及力学性能的影响[J].兵器材料科学与工程,1997,20(4):9-13.
    [42][42]曹富荣,崔建忠,温景林.超轻Mg-Li合金熔铸工艺与轧制温度研究[J].轻合金加工技术,1999,27(9):35-37.
    [43]李劲风,郑子樵,李世晨.热处理对Mg-10.02Li-3.86Zn-2.54Al-1.76Cu合金力学性能的影响[J].稀有金属材料与工程,2005,34(11):1170-1173.
    [44]刘腾,张伟,吴世丁等.双相合金Mg-8Li-1Al的等通道转角挤压[J].金属学报,2003,39(8):790-794.
    [45]栗丽,周铁涛,李焕喜等.Mg-13Li-X薄板的拉伸性能与残余应力[J].稀有金属材料与工程,2006,35(12):2014-2016.
    [46]黄清民,魏晓伟,周宇辉.LA141镁锂合金压蠕变行为的研究[J].铸造,2005,54(11):1079-1081.
    [47]易庆喜,黄长清,陈振华等.型温和最火对铸造Mg-121i-Al合金组织和性能的影响[J].铸造,2007,56(1):62-64.
    [48]周萍,刘志坚,阎立奇等.Mg-Li基复合材料铸锭中的空隙控制工艺[J].粉末冶金材料科学与工程,2007,12(1):44-48.
    [49]M.L. Zhang, Y.D. Yan, Z.Y. Hou, et al. An electrochemical method for the preparation of Mg-Li alloys at low temperature molten salt system [J]. Journal of Alloys and Compounds,2007,40:362-366.
    [50]M.L. Zhang, Y.D. Yan, Z.Y. Hou, et al. Preparation of Mg-Li alloys by electrolysis in molten salt at low temperature [J]. Chinese Chemical Letters,2007,18:329-332.
    [51]M.L. Zhang, Z. Chen, W. Han, et al. Electrochemical formation and phase control Mg-Li alloys [J]. Chinese Chemical Letters,2007,18:1124-1128.
    [52]M.L. Zhang, R.Z. Wu, T. Wang, et al. Microstructure and mechanical properties of Mg-xLi-3Al-1Ce alloys [J]. Transactions of Nonferrous Metals Society of China,2007, 17:381-384.
    [53]Y.D. Yan, M.L. Zhang, W. Han, et al. Electrochemical formation of Mg-Li alloys at solid magnesium electrode from LiCl-KCl Melts[J]. Electrochimica Acta,2008,53: 3323-3328.
    [54]Y.D. Yan, M.L. Zhang, W. Han, et al. Electrochemical codeposition of Mg-Li alloys from a molten KCl-LiCl-MgC12 system[J]. Chemistry Letters,2008,37(2):212-213.
    [55]Z. Chen, M.L. Zhang, W. Han, et al. Electrodeposition of Li and electrochemical formation of Mg-Li alloys from the eutectic LiCl-KCl[J]. Journal of Alloys and Compounds,2008,464(1,2):174-178.
    [56]C.H. Zhang, X.M. Huang, M.L. Zhang, et al. Electrochemical characterization of the corrosion of Mg-Li Alloy [J]. Materials Letters,2008,62(14,15):2177-2180.
    [57]B. Liu, M.L. Zhang, R.Z. Wu. Influence of Ce on microstructure and mechanical properties of LAl41 alloys [J]. Transactions of Nonferrous Metals Society of China, 2007,17:1-5.
    [58]B. Liu, M.L. Zhang, R.Z. Wu. Effect of Nd on microstructure and mechanical properties of as-cast LA141 alloys [J]. Material Science and Engineering A,2008,487:347-351.
    [59]T. Wang, M.L. Zhang, R.Z. Wu. Microstructure and properties of Mg-8Li-lAl-1Ce alloy[J]. Materials Letters,2008,62:2846-2848.
    [60]X. Yu, J. Wang, L.H. Yang, et al. Synthesis characterization and anticorrosion performance of molybdate pillared hydrotalcite/in situ created ZnO composite as pigment for Mg-Li alloy protection [J]. Surface and Coatings Technology,2008,203(3): 250-255.
    [61]X. Yu, J. Wang, M.L. Zhang, et al. One-step synthesis of lamellar molybdate pillared hydrotalcite and its application for AZ31 Mg alloy protection [J]. Solid State Sciences, 2009,11(2):376-381.
    [62]L.H. Yang, J.Q. Li, X. Yu, et al. Lanthanum-based conversion coating on Mg-8Li alloy [J]. Appled Surface Science,2008,255(5):2338-2341.
    [63]L.H. Yang, M.L. Zhang, J.Q. Li, et al. Stannate conversion coatings on Mg-8Li alloy [J]. Journal of Alloys and Compounds,2009,47(1):197-200.
    [64]L.H. Yang, J.Q. Li, Y.Z. Zhang, et al. Electroless Ni-P plating with molybdate pretreatment on Mg-8Li alloy[J]. Journal of Alloys and Compounds,2009,467(1): 562-566.
    [65]张密林,韩伟,颜永得.一种熔盐电解共沉积Mg-Li合金的工艺方法:中国,CN101148772[P].2008-3-26.
    [66]张密林,韩伟,侯智尧.熔盐电解离子共析法生产镁铝钙合金的方法:中国,CN101148773[P].2008-3-26.
    [67]景晓燕,宋大雷,张密林.在镁锂合金表面组装纳米氧化锌的方法:中国,CN101158036[P].2008-4-9.
    [68]景晓燕,卢一,张密林.Mg-Li合金表面有机物还原方法:中国,CN101245455[P].2008-08-20.
    [69]张密林,巫瑞智.用于薄膜冶金技术制备复合材料及金属间化合物的装置:中国,CN1944695[P].2007-04-11.
    [70]张密林,陈增,韩伟.低温电解制备不同相组成的镁锂合金的方法:中国,CN101109090[P].2008-01-23.
    [71]张密林,巫瑞智,王涛等.一种高强度的镁锂合金:中国,CN101121981[P].2008-02-13.
    [72]吴林,吕艳卓,曹雪等.Mg-Li电极在NaCl溶液中的电化学行为[J].电化学,2009,15:1-4.
    [73]G. Masing, G. Tamman. Behavior of lithium, toward sodium, potassium, yin, cadmium and magnesium[J]. Zeitschrift fur Anorganische and allgemeine chemie,1960, 67:197-198.
    [74]G Grdbe, H. Zepoelin, H. Bumm. Z Elektrochem,1934,40:160-164.
    [75]O. H. Henry, H.H. Cordiano. Transaction of AIME,1934,111:319-322.
    [76]W. Gasior, Z. Moser, W. Zakulski, G. Schwitzgebel. Thermodynamic studies and the phase diagram of the Li-Mg system [J]. Metallurgical and Materials Transactions A, 1996,27(9):2419-2428.
    [77]F.E. Hauser, P.R. Landon, J.E. Dorn. Deformation and fracture of alpha solid solutions of lithium in magnesium [J]. Transactions of the ASM,1958,50:856-881.
    [78]J.H. Jackson, P.D. Frost, A.C. Loonam, L.W. Eastwood, C.H. Lorig. Magnesium-lithium base alloys Preparation, fabrication, and general characteristics [J]. Journal of Metals, 1949(2):149-168.
    [79]R.S. Busk, D.L. Leman, J.J. Casey. The properties of some magnesium-lithium alloys containing aluminum and zinc [J]. Journal of Metals,1950(7):945-951.
    [80]陈振华等,编著.镁合金[M].北京:化学工业出版社,2004.
    [81]张津,章宗和等,编著.镁合金及应用[M].北京:化学工业出版社,2004.
    [82]赵亮,赵平.热处理对Mg-7.28Li-8.02Y合金显微组织和力学性能的影响[J].铸造,2008,33(8):37-40.
    [83]R.Z. Wu, Z.K. Qu, M.L. Zhang. Effects of the addition of Y in Mg-8Li-(1,3) Al alloy [J]. Materials Science and Engineering A 516 (2009) 96-99.
    [84]T. Wang, M.L. Zhang, R.Z. Wu. Microstructure and properties of Mg-8Li-lAl-1Ce alloy [J]. Materials Letters 62 (2008) 1846-1848.
    [86]二宫隆二,三宅行一.超軽量·超塑性Mg-Li合金の研究[J].軽金属,2001,51(10):509-513.
    [87]A. Jonesm, L.Lennon, R. Nash. Magnesium alloy research studies [J]. WADCTR,1952, (9):50-169.
    [88]A.F. Weinberg, D.W. Levinson, W. Rostoke, Transaction of ASM,1952,48:855.
    [89]曹富荣,崔建忠.超轻Mg-8Li合金超塑性力学性能的研究[J].稀有金属材料与工程,1997,26(2):27-30.
    [90]张英,任智森,杨国英.镁锂合金的组织结构及熔炼加工[J].有色金属加工,2007,16(4):14-16.
    [91]颜永得,张密林,韩伟等KCl-LiCl-MgCl2熔盐体系中共电沉积制备Mg-Li合金及理论分析[J].无机化学学报,2008,24(6):902-906.
    [92]张密林,韩伟,颜永得.一种熔盐电解共沉积Mg-Li合金的工艺方法:中国,CN101148772[P].2008-3-26.
    [93]YD. Yan, M.L. Zhang, W. Han, et al. Electrochemical codeposition of Mg-Li alloys from a molten KCl-LiCl-MgC12 system. Chemistry Letters,2008,37 (2):212-213.
    [94]张密林,颜永得,韩伟等.熔盐电解共沉积制备应用镁锂合金的方法:中国, CN101307472[P].2008-11-19.
    [95]张密林,韩伟,侯智尧.熔盐电解离子共析法生产镁锂钙合金的方法:中国,CN101148773[P].2008-3-26.
    [96]Y.D. Yan, M.L. Zhang, Y. Xue, et al. Electrochemical formation of Mg-Li-Ca alloys by codeposition of Mg, Li and Ca from LiCl-KCl-MgCl2-CaCl2 melts [J]. Physical Chemistry Chemical Physis,2009,11 (29):6148-6155.
    [97]YD. Yan, M.L. Zhang, Y. Xue, et al. Electrochemical study of Mg-Li-Al alloys by codeposition from LiCl-KCl-MgCl2-AlCl3 melts [J]. Journal of Applied Electrochemistry,200939 (3):455-461.
    [98]YD. Yan, M.L. Zhang, Y. Xue, et al. Study on the preparetion of by Mg-Li-Zn alloys electrochemical codepositon from LiCl-KCl-MgCl2-ZnCl2 melts [J]. Electrochimica Acta,2009,54 (11):3387-3393.
    [99]张密林,韩伟,杨玉圣等.一种熔盐电解制备镁锂镝合金的方法:中国,CN10128514[P].2008-10-15.
    [100]张密林,韩伟,田阳等.一种镁锂铈钄合金及其熔盐电解法制备的方法:中国,CN101302594[P].2008-11-12.
    [101]张密林,李梅,赵全友等.镁锂钬合金的熔盐电解制备方法及装置:中国,CN101302593[P].2008-11-12.
    [102]姚泽坤.锻造工艺学与模具设计[M].西安:西北工业大学出版社,1988.
    [103]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [104]Y.J. Chen, Q.D. Wang, J.G. Peng, et al. Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy [J]. Journal of Materials Processing Technology,2007,382:281-285.
    [105]D.B. Spencer, R. Mehrablan, M.C. Flemings. Rheological behavior of Sn-15 pct Pb in the crystallization range [J]. Metallurgical Transaction,1972,3(7):1925-1932.
    [106]M.C. Flemings. Behavior of metal alloys in the semi-solid state [J]. Metallurgical Transactions,1991,2B (6):269-293.
    [107]孙国强.半固态加工技术及其应用[J].稀有金属,2003,5:382-384.
    [108]R. Moschini. Manufacture of Automotive Components by Semiliquid Forming Process, Processing of Semisold Alloys and Composites,2nd International Conference on the Semi-Solid Processing of Alloys and Composites, M.I.T., Cambridge, Massachusetts, U.S.A. June,10-12,1992, Wa rrendales, Pennsylvanis, U.S.A.:The Minerals, Metals and Materials Society (TMS),1993,149-158.
    [109]A.L. Nussbaum. Semi-solid forming of aluminium and magnesium [J]. Light Metal Age,1996,19(6):6-22.
    [110]吴炳尧.半固态金属铸造工艺的研究现状及发展前景[J].铸造,1999,(3):45-52.
    [111]朱鸣芳,苏华钦.半固态金属成形技术工业应用现状与展望[J].中国机械工程,1995,6:24-26.
    [112]蒋益民,蒋宗宇,陈刚.半固态金属成形技术现状与展望[J].铸造设备研究,2001,1:5-8.
    [113]唐靖林,曾大本.非枝晶半固态金属浆料制备技术的现状[J].轻合金加工技术,1997,1:19-22.
    [114]倪红军,王渠东,丁文江.镁合金半固态铸造成形技术(SSP)的研究与应用[J].铸造技术,2000,5:36-39.
    [115]罗守靖,田文彤,谢水生.半固态加工技术及应用[J].中国有色金属学报,2002,10(6):765-773.
    [116]S. Ji, G. Fan. Twin-screw rheomoulding of AZ91D magnesium alloy. Proc 7th Inter Conf on Semi-solid Processing of alloys and Composites. Tsukuba, Japan:Research Committee on Mushy/Semisolid metal Forming Japan Society for Technology of plasticity,2002,683-688.
    [117]王武孝,袁森,熊爱华等.镁合金半固态成形技术的研究现状及发展[J].铸造技术,2004,(25):469-470.
    [118]乐启炽,张新建,崔建忠.镁合金及其成形工艺及应用现状[J].材料导报,2002,12:12-15.
    [119]谢水生,黄声宏.半固态金属加工技术及应用[M].北京:冶金工业出版社,1999.
    [120]A. Galiyev, R. Kaibyshev, G. Gottstein. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Materialia,2001,49: 1199-1207.
    [121]R.Z. Valiev, T.G. Langdon. Principles of equal-channel angular pressing as a processing tool for grain refinement [J]. Progress in Materials Science,2006,51: 881-891.
    [122]H. Watanabe, H. Somekawa, K. Higashi. Fine-grain processing by equal channel angular extrusion of rapidly quenched bulk Mg-Y-Zn alloy [J]. Journal of Materials Research,2005,20:93-101.
    [123]H. Yoshinaga, R. Horiuchi. Deformation mechanisms in magnesium single crystals compressed in the direction parallel to hexagonal axis [J]. Materials Transactions,1963, 12:41-48.
    [124]A. Coiret, D. Caillard, Puschlw, et al. Prismatic glide in divalent hcp metals [J]. Philosophical Magazine A,1991,63(5):1045-1057.
    [125]M.H. Yoo, J.K. Lee. Deformation twinning in hcp metals and alloys [J]. Philosophical Magazine A,1991,63:987-1000.
    [126]A. Serra, D.J. Bacon. On the generation of twinning dislocations in hcp twin boundaries [J]. Materials Science Forum,1996,207-209:553-556.
    [127]S.A. Serra, D.J. Bacon, R.C. Pond. Dislocations in interfaces in the hep metals-I. defects forOmed by absorption of crystal dislocations [J]. Acta Materialia,1999,47(5): 1425-1439.
    [128]A. Coiret, D. Caillard. Prismatic slip in beryllium in the controlling mechanism at the peak temperature [J]. Philosophical Magazine A,1989,59:783-800.
    [129]M.M. Myshlyaev, H. J. Mcqueen, A. Mwembela, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy [J]. Materials Science and Engineering A,2002, A337:121-133.
    [130]邓增杰,周敬恩.工程材料的断裂与疲劳[M].北京:机械工业出版社,1995.
    [131]R.Z. Wu. Y.S. Deng. M.L. Zhang. Microstructure and mechanical properties of Mg-5Li-3Al-2Zn-xRE alloys, Journal of Materials Science (2009) 44:4132-4139.
    [132]M. Matsuzuki, S. Horibe, Analysis of fatigue damage process in magnesium alloy AZ31 [J]. Materials Science and Engineering A,2009,504:169-174.
    [133]Y. Yang, Y.B. Liu, S.Y. Qin, Y. Fang. High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium [J]. Journal of Rare Earths,2006,24:591-595.
    [134]Y. Lu, F. Taherib, M. Gharghouric. Study of Fatigue Crack Incubation and Propagation Mechanisms in a HPDC AM60B Magnesium Alloy [J]. Journal of Alloys and Compounds,2008,466:214-227.
    [135]Y. Yoshida, L. Cisar, S. Kamado, Y. Kojima. Low Temperature Superplasticity of ECAE Processed Mg-10%Li-1%Zn Alloy [J]. Materials Transactions,2002,43 (10): 2419-2423.
    [136]S. Spigarelli. Constitutive equations in creep of the AE44 magnesium alloy [J]. Materials Science Forum,2009,604-605:357-365.
    [137]张俊善.材料强度学[M].哈尔滨:哈尔滨工业大学出版社,2004.
    [138]何上明Mg-Gd-Y-Zr(-Ca)合金的微观组织演变,性能和断裂行为研究[D].上海交通大学博士论文,2007
    [139]余琨,黎文献,张世军.Ce对镁及镁合金中晶粒的细化机理[J].稀有金属材料与工程,2005,34(7):1013-1016.
    [140]刘生发,黄尚宇,徐萍.Ce对AZ91镁合金铸态组织细化的影响[J].金属学报,2006,42(4):443-448.
    [141]W.L. Xiao, Y.S. Shen, L.D. Wang, Y.M. Wu, Z.Y. Cao, S.S. Jia, L.M. Wang. The influences of rare earth content on the microstructure and mechanical properties of Mg-7Zn-5Al alloy [J]. Materials and Design,2010,31:3542-3549.
    [142]H.H. Zou, X.Q. Zeng, C.Q. Zhuai, W. J. Ding. Effects of Nd on the microstructure of ZA52 alloy [J]. Materials Science and Engineering A,2005,392:229-234.
    [143]H.H. Zou, X.Q. Zeng, C.Q. Zhuai, W.J. Ding. The effects of yttrium element on microstructure and mechanical properties of Mg-5 wt.% Zn-2 wt.% Al alloy [J]. Materials Science and Engineering A,2005,402:142-148.
    [144]M. Johnsson. Z. Metallkd. Influence of Si and Fe on the grain-refinement of aluminum [J]. Zeitschrift Fur Metallkunde 1994,85:781-785.
    [145]Y.C. Lee, A.K. Dahle, D.H. StJohn. The role of solute in grain refinement of magnesium [J]. Metallurgical and Materials Transactions A,2000,31:2895-2906.
    [146]H. David, M.Q. StJohn, M.A. Easton. Grain refinement of magnesium alloys [J], Metallurgical and Materials Transactions A,2005,36(7):1669-1679.
    [147]S.S. Li, W.C. Zheng, et al. Grain coarsening behavior of Mg-Al alloys with mischmetal addition [J]. Journal of Rare Earths,2007,25:227-232.
    [148]张世军,黎文献,余琨.铈对镁合金AZ31晶粒大小及铸态力学性能的影响[J].铸造,2002,51:767-771.
    [149]王迎新.Mg-8Zn-4AI-0.3Mn-x(y)合金显微组织及力学性能研究[D].郑州:郑州大学硕士学位论文,2005.
    [150]肖文龙Mg-Zn-Al-RE系镁合金显微组织及强韧化机理研究[D].长春:吉林大学博士学位论文.2010.
    [151]D.M. Yao, W.G. Zhao, H.L. Zhao, F. Qiu, Q.C. Jiang. High creep resistance behavior of the casting Al-Cu alloy modified by La [J]. Scripta Materialia,2009,61:1153-1155.
    [152]H.G. Jian, F. Jiang, K. Wen, L. Jiang, H.F. Huang, L.L. Wei. Fatigue fracture of high strength Al-Zn-Mg-Cu alloy[J]. Tran.Nonferrous Met. Soc. China,2009,19:1031-1036.
    [153]J.B. Liu, L.M.Wang, J.S. Jiang, A12Cu/a-Al composite coating prepared by plasma surface metallurgy [J]. Materials Letter,2008,62:1569-1571.
    [154]M. Liu, P. Uggowitzer, A.V. Nagasekhar, et al. Calculated phase diagrams and the corrosion of die-cast Mg-Al alloys [J]. Corrosion Science,2009,51:602-619.
    [155]J.Q. Li, Z.K. Qu, R.Z. Wu, M.L. Zhang. Effects of Cu addition on the microstructure and hardness of Mg-5Li-3Al-2Zn alloy. Materials Science and Engineering A, 527(2010)2780-2783.
    [156]刘红梅.合金固溶时效机理和电子结构的研究[D].成都:四川大学博士毕业论文,2007.
    [157]Q. Xiang, R.Z.Wu, M.L. Zhang. Influence of Sn on microstructure and mechanical properties of Mg-5Li-3Al-2Zn alloys, Journal of Alloys and Compounds 477 (2009) 832-835.
    [158]H. Zhong, P.Y. Liu, T.T. Zhou, et al. Materials,2005,12:182-186.
    [159]H.J. Frost, M. F. Ashby. Oxford:Pergamon Press,1982:44.
    [160]C. Wang, Y.B. Xu, E.H. Han. Serrated flow and abnormal strain rate sensitivity of a magnesium-litihium alloy [J], Materials Letter,2006,60:2941-2944.
    [161]C. Corby, C.H. Caceres, P. Lukae. Serrated flow in magnesium alloy AZ91[J], Materials Science and Engineering A,2004,387-389:22-24.
    [162]S.M. Zhu, J.F. Nie. Serrated flow and tensile properties of a Mg-Y-Nd alloy [J], Scripta Materialia,2004,50:51-55.
    [163]A.H. Cottrell. Oxford University Press,1953.
    [164]S. H. Brink, A. Beukel, P. G. McCormick, Phys. Status Solidi, A 1975,30:469.
    [165]D. Ando, J. Koike, Y. Sutou. Relation ship between deformation twinning and surface step formation in AZ31 magnesium alloys [J]. Acta Metallurgica,2010,58:4316-4324.
    [166]S. Ando, M. Tanaka, H. Tonda. Pyramidal slip in magnesium alloy single crystals [J], Materials Science Forum,2006,87:419-422.
    [167]B. Li, E. Ma. Zonal dislocations mediating{10-11} twinning in magnesium [J], Acta Materialia,2009,57:1734-1743.
    [168]M.R. Barnett. Twinning and the ductility of magnesium alloys:Part I:"Tension" twins [J], Materials Science and Engineering A,2007,464.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700