辐照下铁酸锌高温煤气脱硫剂的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温煤气脱硫剂的研制与开发已从单金属氧化物逐渐转移到复合金属氧化物上,其中铁酸锌脱硫剂由于它具有高脱硫精度、高硫容和高反应活性,成为最具代表性的复合金属氧化物脱硫剂。
     本论文采用在超声波作用下共沉淀得到铁酸锌前驱体,然后在微波辐照下焙烧,制备得到脱硫剂的活性组分铁酸锌,进而以铁酸锌为脱硫剂的活性组分,用高岭土作为结构助剂制备了高温煤气铁酸锌脱硫剂。使用BET、孔容和孔径分布、XRD、SEM等手段对脱硫剂表征。在固定床反应器中模拟煤气气氛下进行了脱硫剂的脱硫过程研究,得到如下结论:
     1.用超声波辅助共沉淀及微波焙烧法制备铁酸锌是可行的,所制备得到的铁酸锌脱硫剂是一种性能优良的高温煤气脱硫剂。
     2.在超声波共沉淀过程中得到组分均匀,颗粒细小的铁酸锌前驱体,在微波焙烧下形成了晶形完整的尖晶石结构。得到的铁酸锌晶粒大小均匀,粒径范围在40—60nm,晶粒呈球形。
     3.用微波辐照制备的铁酸锌与常规方法所制备得到的铁酸锌相比,前者的晶相更完整,晶体粒子更为均匀。表明微波辐照对铁酸锌晶体的结构生成有明显的促进作用。常规方法制备烧结过程需要4小时,而微波辐照焙烧仅为1小时就达到了比较好的效果,大大缩短了烧结时间。
     4.采用微波辐照制备得到的铁酸锌脱硫剂,与常规方法所得到铁酸锌脱硫剂相比较,两者的比表面积大小基本没有差别,但前者的孔容却提高很多,可达到0.146cm~3/g以上,对提升脱硫效果有很大的帮助。
     5.采用辐照法得到的铁酸锌高温煤气脱硫剂在固定床脱硫反应中表现出良好的稳定脱硫性能,当进口浓度为3700ppm时,出口浓度保持在14个ppm左右,在25小时脱硫过程中几乎没有波动。
     6.在固定床硫化实验中表明,较优的脱硫剂的脱硫效率为99.6%以上,具有较高的脱硫效率。
The research and development of high temperature coal gas desulfurizer have changed gradually from mono-metal oxide into mixed-metal oxide, in which zinc ferrite sorbents have become the typical mixed-oxide desulfurizer, because of its high desulfurization precisior, high sulfur capacity and high reactivity.
     This thesis adopted coprecipitation under the ultrasonic radiation to get zinc ferrite precursors, then adopted calcinations under microwave irradiation to gain zinc ferrite of active components, and then treated zinc ferrite as active components, and used kaolin as structural additive to get hot gas desulfurizer. The thesis also characterized zinc ferrite desulfurizer by means of pore size distribution, pore volume, BET, XRD, SEM. And the thesis explored desulrization under the fixed bed reactor and simulated coal gas atmosphere. The conclusions are as follows:
     1. It is feasible to adopt corecipitation under the ultrasonic radiation and calcination under microwave irradiation to get zinc ferrite, and the ZnFe_2O_4 hot coal gas desulfurizer was prepared, which is excellent high temperature desulfurizer.
     2. In the process of coprecipitation under the ultrasonic radiation, components uniformity was gained, small particled zinc ferrite precursors formed spinel structrure under microwave irradiation. The zinc ferrite crystal grain gained was well distributed, whose range was from 40-60nm, and the crystal grain appeared global.
     3. To compare the zinc ferrite gained by microwave irradiation with the zinc ferrite gained by normal methods, the crystal phase of the former is more complete, and the crystal grain is well distributed. The result showed that the microwave irradiation promoted the formation of its configuration. It took 4 hour to gain the zinc ferrite by the normal methods. While it just took only an hour to gain it by microwave irradiation, which greatly shorted the sintering time.
     4. To compare the zinc ferrite gained by microwave irradiation with the zinc ferrite gained by normal methods, both of the specific surface area are to some extent identical, but the pore volume of the former was improved a lot ,up to 0.146cm~3/g, which gave great help to improving desulfurization effect.
     5. The zinc ferrite gained by irradiation showed good and stable property in the process of desulfurization experiment. When the concentration of inlet is 3700ppm, that of outlet keeps about 14ppm, there is almost no fluctuation in 25 hours.
     6. The result showed the desulfurization efficiency of the excellent desulfurizer is 99.6% in the fixed reactor experiment, which is very high.
引文
[1] Westmoreland P R, Harrison D P. Evaluation of Candidate Solids for High Temperature Desulfurization of Low-Btu gases[J]. Environ. Sci. Technol. 1976, 10(7): 659-661.
    [2] Oldaker E C, Poston A M and Farrior W L. Removal of Hydrogen Sulfide from Hot-low-btu Gas with Iron-fly Ash Sorbents[C] Report No. METC/TPR-75 1975, Vols. Ⅰ and Ⅱ. Morgantown Energy Technology Center
    [3] Joshi D K, Olsen J H, Hayes M L, Shah V. Hot Low-Btu Producer Gas Desulfurization in Fixed Bed of Iron-Fly Ash[C]. Air Products and Chemicals Inc. for Department of Energy, Report No. DOE/FE-2757-3, 1979, Vols. Ⅰ and Ⅱ.
    [4] Wakker J PGerriydm A W, etal, High temperature H_2S and COS removal with MnO and FeO γ-Al_2O_3 acceptor[J] Ind EngchemRes, 1993. 32: 139
    [5] 李彦旭,田青平,郭汉贤,等.氧化铁脱硫剂高温煤气脱硫行为的研究-还原和硫化动力学[J].燃料化学学报,1998,26(2):130-134
    [6] 郭汉贤,刘明清.干法氧化铁脱硫的动力学特征[J].太原工学院学报,1983,3:113-128
    [7] AbbasianJ, SimaneRBA regenerable copper based for H_2S removal from coal gases[J] Ind Eng ChemRes 1998, 1998, 37(7): 2775-2782
    [8] James B. Glbson Ⅲ, and Harrison D P[J]. Ind. Eng. Chem. Process Des. Dev. 1980, 19: 231-237
    [9] 樊惠玲,郭红生,郭汉贤等 氧化锌脱硫中氢的气氛效应及动力学表征[J].燃料化学学报,1998,26(5):440-445
    [10] 李彦旭,郭红生,樊惠玲等.氧化锌脱硫中氧的气氛效应及动力学表征[J]..燃料化学学报,1996,24(1),17-24.
    [11] Kamath V S, Petrie T W. Rate of Reaction of Hydrogen Sulfide-Carbonyl Sulfide Mixture with Fully Calcined Dolomite[J]. Environ. Sci. Techn, 1981, 15(8): 966-968
    [12] Yrjas P, Lisa K, Hupa M. Limestone and Dolomite as Sulfur Absorbents under Pressurized Gasification Conditions[J]. Fuel, 1996, 75(1): 89-95.
    [13] 李彦旭,宋靖,李春虎等.铁钙混合氧化物脱硫剂的硫化与再生过程研究[J].高校化学工程学报,2001,15(2):133-137
    [14] Takashi K, Kawasshima H, Akira T et al. Removal of H_2S from Hot Gas in The Presence of Cu-Containing Sorbents[J]. Fuel, 1989, 68: 74-79
    [15] AbbasianJ, SimaneRBA regenerable copper based for H_2S removal from coal gases[J] Ind Eng ChemRes 1998, 1998, 37(7): 2775-2782
    [16] AtakulH, WakketJP, etal Removal of H_2S from fuel gases at high temperature using MnO/γ-Al2O3[J] Fuel, 1995, 74(2): 187-191
    [17] Karpuk M E, Copeland R J, Feinberg D. et al. High Temperature Hydrogen Sulfide Removal with Stannic Oxide[C]. DOE Report, DOE/ER/80998-94/C0388, 1994.
    [18] Zeng Y, Zhang S, Groves F R, Harrison D P. High Temperature Gas Desulfurization with Elemental Sulfur Production[J]. Chem Eng. Sci, 1999, 54: 3007-3017.
    [19] Sa L A, Focht G D, Ranade P V And Harrison D P. High-Temperature Desulfurization Using Zinc Ferrite: Solid Structural Property Changes[J]. Chemical Engineering Science, 1989, 44(2): 215-224.
    [20] Gupta R, Gangwal S K and Jain S C. Development of Zinc Ferrite Sorbents for Desulfurization of Hot Gas in a Fluid-Bed Reactor[J]. Energy & Fuels, 1992, 6: 21-27
    [21] Akyurtlu J F and Akyurtlu A. Hot Gas Desulfurization with Vanadium-Promoted Zinc Ferrite Sorbents[J]. Gas Sep. Purif, 1995, 9(1): 17-25
    [22] M.A.Ahmed,E..Garcia,L.Alonso, A MS SEM-EDX and XRD study of Ti or Cudoped zinc ferrites as regenerable sorbents for hot coal gas desulfurization Applied surface Science
    [23] Ahmed M AAlonsoL,et al Strucral changes in zinc ferrites regenerable sorbents for hot coal gas desulfurizaton [J] Solid State Ionics.2000.138:51-62
    [24] PinedaM,PalaciosJM,etal.Performance of zinc oxide based sorbents for hot coal gas desufurizaton in multicycle test in a fixed bed resctor [J] Fuel 2000,79:8885-895
    [25] Grindley T. Zinc Ferrite Hydrogen Sulfide Absorbent. In Third annual Contaminant Control in Hot Coal-derived Gas Streams Contractors' Meeting Proceedings[C]. Science Applications, Inc. DOE/METC/184-6. NTIS/DE84000216. December, 1983:145-172.
    [26] Jha M C, kepworth M T, Baltich L K. Enhanced Sorbent Durability for Hot Coal Gas Desulfurization[C]. Final Report, DOE/MC/21168-2023(DE86006625), 1986.
    [27] Takashi Kyotani, Hiroyuki Kawashima, Arira Tomita, Allan Palmer and Edward Furimsky 1989 Removal of H_2S from Hot Gas in the Presence of Cu-containing Sorbents Fuel 68: 74-79
    [28] Ayala R E and Marsh D W. Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes[J]. Ind.Eng.Chem. Res,1991,30: 55-60.
    [29] Lew S, Sarofim A F and Flytzani-Stephanopoulos M. Modeling of the Sulfidation of Zinc-Titanium Oxide Sorbents with Hydrogen Sulfide[J]. Dept. of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139AIChE.Journal August 1992, 38(8 ): 1161-1169
    [30] JunHK,KooJH,etal.A Study of Zn Ti based H_2S removal sorbents promoted with cobalt and nickel oxides [J]EnergyFuels,2004,18:41-48
    [31] JunHK,LeeTJ,etal.A Study of Zn-Ti-based H_2S removal sorbents promoted with cobaltoxides [J] .Ind Eng ChemRes, 2001, 40: 3547-3556.
    [32] Nobuhiro Y, TakashiI W, Hitoshi K. High Temperature Desulfurization Using Molten Salt Carbonate[C].FACT-Vol.22,1998 International Joint Power Generation Conference 1998,1:749-755.
    [33] 许世森,危师让.分析评价大型IGCC电站中煤气净化工艺的设备和技术特点[J].洁净煤技术,1999,5(1:47-51.
    [34] 李春虎,郭汉贤,李彦旭等.煤气化-蒸汽联合循环发电(IGCC)技术中的高温煤气热脱硫[J].煤炭转化,1995,18(4):26-30.
    [35] 祝芳.助剂对高温煤气粗脱硫剂的影响[学位论文].太原理工大学,2001.
    [36] 李彦旭,李春虎,郭汉贤,钟炳1998高温氧化铁脱硫剂还原硫化的热重热磁研究[J].燃料化学学报26(4):345-350
    [37] 李彦旭,宋靖,李春虎,郭汉贤,谢克昌2001铁钙混合氧化物脱硫剂的硫化与再生过程研究[J].高校化学工程学报15(2):133-137
    [38] 史建明.铁钙氧化物高温煤气脱硫剂的脱硫行为和气氛效应[学位论文]太原理工大学,1999:30-31
    [39] 樊惠玲,郭红生,郭汉贤,张俐霞.氧化锌脱硫中氢的气氛效应及动力学表征[J].燃料化学学报,1998,26(5):440-445.
    [40] 应幼菊,宋文立,余洁等高温煤气脱硫吸附剂的研制[J]..洁净煤技术,1997,3(3):38-43
    [41].侯相林.金属氧化物高温脱硫性能的研究[学位论文].中国科学院山西煤炭化学研究所博士学位论文,1997.
    [42] 万晨,沙兴中,滕苗等.铜锰高温煤气脱硫剂的研究Ⅱ脱硫剂的再生性能[J]..燃料化学学报,1998,26(5):406-410
    [43] 张金昌,王树东,吴迪镛等.Mn-Fe/γ-Al203高温脱H_2S的实验研究[J].煤气与热力,1997,17(5):3-5.
    [44] Woods M C, Gangwal S C, Harrison D P et al. Kinetics of the Reaction of Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfurization[J]. Ind. Eng. Chem. Res, 1991, 30: 100-107
    [45] Marsh D. W. and Ayala R E. Characterization and Long-Range Reactivity of Zinc Ferrite in High-Temperature Desulfurization Processes[J]. Ind. Eng. Chem. Res. 1991, 30: 55-60.
    [46] Woosds M C, Leese K E, Gangwan S K. et al. Reaction Kinetics and Simulation Models for Novel High-Temperature Desulfurization Sorbents[C]. DOE/MC/24160-2671, DE89000950, 1989.
    [47] Schrodt J T. Hot-Gas Desulfurization-Ⅱ Use of Gasifier Ash in a Fluidized-Bed Process[C]. Final Report. Department of Chemical Engineering, University of Kentucky, 1981, February.
    [48] Schrodt J T. Hot-Gas Desulfurization-Ⅱ Use of Gasifier Ash in a Fluidized-Bed Process[C]. Final Report. Department of Chemical Engineering, University of Kentucky, 1981, February.
    [49] 李延盛,尹其光.超声化学.科学出版社,1995年.
    [50] 金钦汉 微波化学 北京科学出版社,1999年282
    [1] Jeyadevan B, Tohji K. Irregular Distribution of Metal Ions in Ferrites Prepared by Co-Precipitation Technique Structure Analysis of Mn-Zn Ferrite Using Extended X-ray Absorption Fine Structure[J]. Journal of Magnetism and Magnetic Materials, 2000, 217: 99-105.
    [2] 朴玲钰.铁酸锌高温煤气脱硫剂脱硫剂的制备和表征.[学位论文]太原理工大学,1999,57-60.
    [3] El-Shobaky G A, Fagal, G A, Abdal A, El-Ala A. M. Ghozza[J]. Thermochim Acta, 1995, 256-429.
    [4] Ahmed M A, Alonso L. Structural Changes in Zinc Ferrites as Regenerable Sorbents for Hot Coal Gas Desulfurization[J]. Solid State Ionics. 2000, 138: 51-62.
    [5] Silaban A and Harrison D P.[J]. Chem. Eng. Comm, 1991, 107: 55-71
    [6] 卢朝阳,沙兴中,李四生等.高温煤气脱硫Ⅱ铁锌基脱硫剂再生工艺条件的研究[J].燃料化学学报,1997,25(1):55-59.
    [7] 侯相林,金属氧化物高温脱硫性能的研究[学位论文].中国科学院山西煤炭化学研究所,1997年
    [8] Suslick K S The Chemical Effects of Ultrasound. Scientific American, 1989. 62
    [9] 李延盛,尹其光,超声化学,科学出版社1995年
    [10] 魏强,杨小平,陈国强等超声辅助湿法合成纳米HA及MWNT/HA复合材料新型炭材料Jun 2005年Vol.20 No.2 164-170
    [11] 吕维忠,刘波,游新奎等,超声波化学合成纳米铁酸镁粉末[J]电子元件与材料.Feb.2005 vol.24 No.2.1-2
    [12] 张小顺,邱竹贤,翟秀静等超声波化学沉淀法制备纳米二氧化锡[J],东北大学学报(自然科学版)Apr 2005 vol.26 No.4.367-369
    [13] 金钦汉 微波化学 北京科学出版社1999年Page100~100
    [14] 梁美生 铁酸锌高温煤气脱硫行为及气氛效应研究[学位论文]太原理工大学2005年
    [15] Anthony R.west Solid state chemistry and its Applications JoHN WIlEY &SONS LTD,1984Page4
    [1] 赵九生,时其昌编 催化剂生产原理.科学出版社,1991年Page189.
    [2] 步学朋,谢可玉,彭万旺等 高温煤气脱硫剂及工艺的开发现状[J] 煤炭学报, 1997,22(1):71-75.
    [3] 许鸿雁 中低温下(350-450℃)铁酸锌脱硫剂的制备、表征与活性评价[学位论文]太原理工大学2002年
    [4] 梁美生 铁酸锌高温煤气脱硫行为及气氛效应研究[学位论文]太原理工大学2005年
    [1] Gupta R., Gangwal S. K., Jain S. C. 1992 Development of Zinc Ferrite for Desulfurization of Hot Coal Gas in a Fluid-Bed Reactor Energy & Fuels 6: 21-27
    [2] Grindley T. Zinc Ferrite Hydrogen Sulfide Absorbent. In Third Annual Contaminant Control in Hot Coal-derived Gas Streams Contractors' Meeting Proceedings. Science Applications, Inc. DOE/METC/184-6. NTIS/DE84000216. December, 1983: 145-172.
    [3] 朴玲钰 铁酸锌高温煤气脱硫剂脱硫剂的制备和表征.[学位论文]太原理工大学,1999年
    [4] 祝芳 助剂对高温煤气粗脱硫剂的影响.[学位论文]太原理工大学,2001年
    [5] 许鸿雁 中低温下350~450℃铁酸锌脱硫剂的制备表征与活性评价[学位论文]太原理工大学,2002年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700