氧化铈高温煤气脱硫剂的制备与活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是世界上最丰富的化石燃料资源,整体煤气化联合循环发电(IGCC)技术是二十一世纪最具有发展前景的一项高效洁净煤技术。高温煤气脱硫是IGCC的关键技术。而脱硫剂的再生是制约高温煤气脱硫技术工业化的主要问题之一。氧化铈脱硫剂是新型的第二代高温煤气脱硫剂。由于其在再生的过程中直接产生单质硫这一优势,近几年来受到人们广泛的关注。
     本论文采用硝酸铈、赤泥为主要原料,膨润土作为结构助剂,制备了氧化铈和铁铈复合高温煤气脱硫剂。考察了氧化铈脱硫剂制备条件对脱硫剂的机械强度、孔容和脱硫性能的影响;在固定床反应器中对制备出的氧化铈脱硫剂在模拟真实Texaco煤气气氛中进行了还原与硫化实验;并对铁铈复合脱硫剂进行了硫化、再生性能的研究;通过BET、XRD等测试手段,对有代表性的新鲜及硫化样品进行了物性表征。得出以下几个主要结论:
     实验证明:使用二氧化铈脱硫剂可以成功地进行高温煤气粗脱硫,尤其是在强还原性的煤气中。
     在500℃-800℃的范围内,随着焙烧温度的升高,氧化铈脱硫剂的比表面积迅速增大,孔容也大幅度上升,机械强度增加。
     适量造孔剂的加入,改善了氧化铈脱硫剂的脱硫活性,但过量的造孔剂则影响脱硫剂的强度。
     煤气含有的水分对氧化铈脱硫剂的还原与硫化有抑制作用。
    
     氧化饰高温煤气脱硫剂的粒度对CeO:脱硫剂的脱硫性
    能影响很大。小颗粒脱硫剂的脱硫性能明显高于大颗粒脱硫
    剂。
     赤泥的加入对二氧化饰的晶相结构基本没有影响,可明
    显改善脱硫剂的脱硫性能。
     铁饰复合脱硫剂在NZ、O:含量分别为95%、5%、再生
    温度为500℃再生条件下再生,再生完全,但单质硫回收率
    低。
     CeO:高温煤气脱硫剂的还原价态约为+3,与膨润土中的
    硅结合形成了Ce4.667(5104)O,与Ceon(1 .5(n<2)相比,
    Ce4667(5104)O脱除HZS的能力相对要低。
Coal is the most abundant fossil energy in the world. The Integrated Gasification Combined Cycle(IGCC) is considered to be one of the most promising way for high efficiency and clean utilization of coal in the 21th century. The high temperature coal gas desulfurization is regarded as a key technique in the whole IGCC process. Up to now, the one of main problem of high temperature gas desulfurization technology is the regeneration of desulfurization sorbents, which is considered to be a obstacle for industrial development. Cerium oxide sorbent has been studied as a candidate second-generation sorbent for high temperature gas desulfurization. It has been widely noticed in recent years due to the primary advantage of producing element sulfur during the regeneration phase of the process.
    In this paper, Cerium oxide and Cerium oxide added redmud sorbents were prepared from cereous nitrate and redmud, bentonite was chosen as the additive. An attempt was made to investigate the effects of preparing condition of Cerium oxide on pore volume, strength and desulfurization performance. The Cerium oxide sorbent was subjected reduction/sulffidation experiment in a fixed-bed, simulated Texaco coal-derived was utilized for the experiment; the cerium oxide adding redmud sorbents was subjected sulffidation and regeneration experiment; the fresh and sulfided sorbent having representation were characterized by means of several techniques, such as BET and
    
    
    XRD. It was found that:
    Cerium oxide sorbents is suitable to removal most of sulfur at high temperature, specially in a strong reducing gas.
    In the range of 500C to 800C, the BET was rapid enlarge, the pore volume was wide-range increment and the mechanical robustness was augmentation with the heighten of temperature.
    The activity of desulfurization exhibited pretty well by addition of pore-forming agent in proper quantities, but effects mechanical robustness due to excess.
    The desulfurization efficiency could be increased by curium oxide reduction, and the longer the time and the higher the temperature became, the higher the desulfurization efficiency reached.
    The presence of water vapor always inhibited reduction and sulfidation process.
    The grain size of cerium oxide sorbent had greatly effects on desulfurization performance. The performance of the smaller grain size sorbent was obviously better than the larger grain size ones.
    Cerium oxide sorbent added redmud improved sulfur capacity and had no primary effects on curium oxide sorbent structure.
    The regeneration of added redmud sorbent was complete in the temperature of 500C and in the gas having 95% N2 and 5% O2, but had low element sulfur recovery ratio.
    The reduced valence of cerium oxide sorbents is +3, which combine with Si contained in bentonite and form Ce4.667(SiO4)O. It has low removal H2S ability compared with CeOn(1.5
引文
[1] 梁美生,李春虎,谢克昌,高温煤气脱硫剂的研究进展,煤炭转化,2002,25(1):13-17;
    [2] 祝方,新材料开发在IGCC电厂高温煤气脱硫中的应用,山西能源与节能,2001(3):23-24;
    [3] 李彦旭,李春虎,郭汉贤。国内外高温煤气脱硫技术探讨。煤化工.1998(3):20-24;
    [4] 郝吉明,王书肖,陆永琪,燃煤二氧化硫污染控制技术手册.化学工业出版社,北京,2001.4;
    [5] Nobuhiro Yoshida, Takashi Lwahashi, Hitoshi Kosaka. High Temperature Desulfurization Using Molten Salt Carbonate FACT-Vol.22.1988 International Joint Power Generation Conference Volumel, ASME 1998;
    [6] Jack Winnick. High Temperature Electrochemical Separation of H_2S from Coal Gasification Process Streams. DE-PS22-91PC91-288, 1994;
    [7] Y.H.Ma, W.R.Moser. Development of Hollow Fiber Catalytic Membrane Reactors for High Temperature Gas Cleanup. DE-AC21-89MC26372, 1994;
    [8] 朴玲钰,太原理工大学硕士论文,1999;
    [9] 许鸿雁,太原理工大学硕士论文,2002;
    [10] Oldaker E.C., Poston A.M. and Farrior W.L. Removal. of
    
    Hydrogen Sulfide from Hot-low-Btu Gas with Iron Oxide-Fly Ash Sorbent. Report No. METC/TPR-75 vols Ⅰ and Ⅱ, Morgantown Energy Technology Center, 1975;
    [11] 李春虎,郭汉贤,煤炭转化,1995,18(4);
    [12] 李彦旭,李春虎,郭汉贤,钟炳,高温氧化铁脱硫剂还原硫化的热重热磁研究,燃料化学学报,1998,26(4):345-350
    [13] 樊惠玲,太原理工大学博士论文,2004;
    [14] 北京煤化所,高温煤气脱硫与净化技术研讨会,1996,2;
    [15] Tamhanker S. S., Bagajewicz M., Gavalas G. R., Sharma P. K. and Flytzani-Stephanopouls M.J. Mixed-Oxide Sorbent for High-Temperature of Hydrogen Sulfide. Ind. Eng. Chem. Process Des. 1986, 25(2):429-437;
    [16] Eiji Sasaoka. Stability of Zinc Oxide High Temperature Desulfurization Sorbent for Reduction. Energy & Fuel. 1994,8:763-769;
    [17] 张金昌,高温煤气脱硫剂研究进展,化工环保,1998,18(3)139-145;
    [18] Abbasian,Javad,Slimane,Rachid B.A.. Regenerable Copper based sorbent for H_2S Removal from Coal Gas. Ind.Eng.Chem.Res. 1998,37(7),2775-2782;
    [19] Wakker, W.J.W.;Van Rossen,J.C.P.;Jamssems. Hot Gas Cleaning Sulfiding Mechanism in Absorption of H_2S by Solid. NATO ASI
    
    Ser.,Ser.G, 1998,42,152-178;
    [20]Liang,B.;Korbee,R.; erritson,A.W..Effect of Manganese Content on the Properties of High Temperature Regenerative H_2S Acceptor. Fuel,78.1999,319-325;
    [21]M.E.Karpuk,R.J.Copeland,D.Feinberg. High Temperature Hydrogen Sulfide Removal with Stannic Oxide. 1994,DE-FG03-90 ER80998;
    [22]Y. Zeng, S. Zhang, F. R. Groves, D. P. Harrison. (1999). High Temperature Gas Desulfurization with Elemental Sulfur Production. Chemical. Engineering Science, 54, 3007-3017.;
    [23]Y. Zeng, S. Kaytakoglu, D. P. Harrison. (2000). Reduced cerium oxide as an efficient and durable high temperature desulfurization sorbent. Chemical. Engineering Science, 55, 4893-4900;
    [24]Lee,Tae Jin;Kwon,Won Tae; Chang,Won Chul; Kim,Jae Chang. A Study on Regeneration of Zinc Titanate Sorbents for H_2S Removal. Korean J.Chem.Eng. 1997,14(6),513-518;
    [25]Limh,Ki-Seok; Park,No-Kuk; Lee,Tae Jin. A Study on Preparation and Reactivity of Zinc Titanate Sorbents for H_2S Removal. Kongop Hwahak 1997,8(1),122-131;
    [26]Grindley, T.; Steinfeld,G. Zinc Ferrite as Hydrogen Sulfide Absorbent 3rd Annual Contractors Meeting on Contaminant Control in Hot Coal Derived Gas Streams, 1983;
    [27]万晨,沙兴中,滕苗,程文梅,程秀秀,铜锰高温脱硫剂的物性及脱硫性能(Ⅱ),煤气与热力,1998,18(5):3-5;
    
    
    [28]张金昌,王树东,吴迪镛,付桂芝,Mn-Fe/γ-Al_2O_3高温脱H_2S的研究(Ⅰ),燃料化学学报.1997,25(5):415-418;
    [29]张金昌,吴迪镛.Mn-Fe/γ-Al_2O_3高温脱H_2S的实验研究.燃料化学学报(Ⅱ),1999,27(6):505-510;
    [30]张世超,崔怡红,赵连权,二氧化铈硫化反应动力学,化工冶金,1997,18(2):123-128
    [31]朱洪法编,《催化剂成型》,中国石化出版社;
    [32]Makoto Kobayashi, Maria Flytzani-Stephanopoulos, Reduction and Sulfidation Kinetics of Cerium Oxide and Cu-Modified Cerium Oxide, Ind. Eng. Chem. Res., 2002.41.3115-3123
    [33]A Sliaban and D P Harrison, Chem Eng Comm 1991, Vol107:55-71
    [34]刘早春,热煤气脱硫—铁酸锌脱硫剂的优化,华东理工大学学报,1994,8(1)25-28
    [35]Flytzni S.M., Gavalas G.R., Tamhanker S.S., Sharma P.K. Novel Sorbent for High Temperature Rege Nerative H_2S Removel.1985,Final Report, DOE/MC/20417-1898;
    [36]Jale F. Akyurtlu, Ates Akyurtlu. (1999). Behavior of ceria-copper oxide sorbent under sulfation conditions. Chemical. Engineering Science, 54, 2991-2997;
    [37]Jale F. Akyurtlu and Ates Akyurtlu. (1995). Hot gas desulfurization with vanadium-promoted zinc ferrite sorbents. Gas separation & Purification, 9(1), 17-25;
    
    
    [38]R. Gupta and S. K. Gangwal, S. C. Jain. Development of Zinc Ferrites for Desulfurization of Hot Coal Gas in a Fluid-Bed Reactor. Energy & Fuels. 1992.6.21-27;
    [39]Mark C. Woods and Santosh K. Gangwal, Douglas P. Harrison and Kandaswamy Jothimurugesan. Kinetics of the Reactions of a Zinc Ferrite Sorbent in High-Temperature Coal Gas Desulfurization. Iud. Eng. Chem. Res. 1991,30,100-107
    [40 Fan Huling, Li Chunhu, Xie Kechang. Sorbent for High-Temperature Removal of Hydrogen Sulfide from Coal-Derived Fuel Gas. Journal of Natural Gas Chemistry, 2001, 10(3):256-270;
    [41]Makoto Kobayashi, Hiromi Shirai, and Makoto Nunokawa. High-Temperature Sulfidation of Reduced Zinc Ferrite in Simulated Coal Gas Revealed by in Situ X-ray Diffraction Analysis and Mossbauer Spectroscopy. Energy & Fuels. 2002.16.601-607;
    [42]Schrodt J. T. and John Yamanis, Reaction of Sulfides in Fuel Gases with the Iron Oxide in Coal Ash, Fix-bed experiments and simulation, ind. eng. chem., process des. dev.,1982(21):382-390;
    [43]Schrodt J.T., Hot Gas Desulfurization vol Ⅰ Use of Gasifier Ash in a Fixed Bed Process, U.S. DOE Report ET/10463-T2;
    [44]Schrodt J.W., Desigh and Cost Optimization of a Hot Fuel Gas Desulfurization Process, Fuel Processing Technology, 1982, 6:255-267
    
    
    [45]Evangelos A., Efthimiadis and Straits V. Sotirchos, Effects of Pore Structure on the Performance of Coal Gas Desulfurization Sorbents, Chem. Eng. Sci.,1993,48(11):1971-1984
    [46]Westmoreland and Harrison D.P., Evaluation of Candidate Solids for High Temperature Desulfurization of Low-Btu Gases, Environ. Sci. Techns., 1976,10(7):659
    [47]史建明,太原理工大学硕士论文,2000;
    [48]刘希尧,《工业催化剂分析测试与表征》,烃加工出版社;
    [49]林河成.氧化铈产品的生产、应用及市场.四川有色金属.2002,22-26;
    [50]王志慧.近年来我国氧化铈的生产及应用.内蒙古石油化工.21,40-43;
    [51]李燕红,张征,郭宪吉等,铈对氧化铁还原性能的影响,郑州大学学报,1998,30(2)76-78;
    [52]张世超,魏建森,潘敏子,谭杰,赵连权.单分子层二氧化铈硫化反应产物的研究,环境科学,30-31;
    [53]金恒芳,胡延平,李灿,辛勤,二氧化铈还原表面上水煤气变换反应机理。1996,17(2)123-127;
    [54]陈爱平,马建新,王幸宜,汪仁,稀土氧化物上COS还原SO_2脱硫反应及机理,燃料化学学报,1998,26(4)354-355;
    [55]苏锵。稀土化学,河南科学出版社;
    [56]中山大学金属系编,稀土物理化学常数,冶金工业出版社;
    
    
    [57]M.A.费良德,E.M.谢明诺娃,稀有元素特性手册,商务印书馆;
    [58]冶金工业部地质研究所编著,矿石中稀有和稀散元素的化学分析,冶金工业出版社;
    [59]李彦旭,田青平,郭汉贤,钟炳,燃料化学学报,1998,26(2):130-134;
    [60]卢朝阳,沙兴中,鲁军,吴幼青,彭智兴,高温煤气脱硫1;铁锌基脱硫剂脱硫工艺条件及硫化动力学,燃料化学学报,1996,24(6):492-497;
    [61]卢朝阳,沙兴中,李四生,田安意,王宇红,高温煤气脱硫1,铁锌基脱硫剂再生工艺条件的研究。燃料化学学报,1997,25(1):55-59;
    [62]34.卢朝阳,确定高温煤气脱硫剂再生反应终点的几种方法,陕西化工,1999,28(2):41-42;
    [63]汪德恩,赵璧英,谢有畅,H_2S、SO_2的吸附(干法)脱除研究进展,化学通报,2000(2):25-31;
    [64]徐振刚,国外煤气化联合循环发电项目概况,能源工程,1999(40):6-9;
    [65]吕梁。粉煤灰常用固化剂及应用,房材及应用,1997(2):4-10;
    [66]步学朋,谢可玉,彭万旺,逢进,王乃计,高温煤气脱硫剂及工艺的开发现状,煤炭学报,1997,22(1):71-75;
    [67]曹晏,张建民,王洋,张碧江,高温煤气脱硫技术研究进展,煤炭转化,1998,21(1):30-35;
    
    
    [68]焦树建,论IGCC的发展现状与趋势,煤气轮机技术,1995,8(1):1-8;
    [69]候相林,高萌本,陈诵英,各种金属氧化物高温脱硫性能比较,环境工程,1997,15(3):30-32;
    [70]张金昌,吴迪镛,高温脱除H_2S/COS热力学可行性分析,辽宁化工,1999,28(6):325-327;
    [71]万晨,沙兴中,申文琴,邢嵘,汤少智。铜锰高温煤气脱硫剂的研究Ⅰ,脱硫工艺条件对脱硫剂性能的影响。燃料化学学报,1998,26(5):400-405;
    [72]万晨,沙兴中,滕苗,程文梅,程秀秀,铜锰高温煤气脱硫剂的研究Ⅱ,脱硫剂的再生性能,燃料化学学报,1998,26(5):406-410

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700