炎症因子Daintain/AIF-1在动脉粥样硬化中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪90年代以前,认为血浆中胆固醇和低密度脂蛋白浓度过高,是动脉粥样硬化的主要危险因素;认为动脉粥样硬化是一种非炎性病变。近20年来的研究发现,尽管生活方式改变和新药物的采用,可降低血浆胆固醇和低密度脂蛋白浓度,但心脑血管疾病仍然是美国、欧洲和亚洲部分地区造成死亡的主要疾病。近10年分子免疫学研究表明,动脉粥样硬化斑块处集中反映了一系列在细胞和分子水平上的炎症应答,动脉粥样硬化被鉴定为是一种炎症性疾病。
     1994年,陈正望等人以猪小肠为原料,从中纯化并鉴定出一个多肽,命名为daintain。1996年,Utans等从大鼠心脏移植排斥反应所形成的动脉粥样硬化斑块组织中克隆出一个巨噬细胞因子allograft inflammatory factor-1 (AIF-1),由于二者的一级结构高度同源,故并称Daintain/AIF-1。作为一个由巨噬细胞分泌,与炎症、免疫相关的炎症因子,对Daintain/AIF-1在炎症、血管病变、肿瘤以及自身免疫性疾病等方面的影响有着越来越多的研究。本实验室前期研究表明,Daintain/AIF-1能够促进肿瘤增生、改变细胞周期、促进细胞增殖以及加剧1型糖尿病,由于这些都与炎症和免疫方面密切相关。此外,我们还发现Daintain/AIF-1在动脉粥样硬化组织中表达阳性,而在周围正常组织和正常人动脉血管组织中为弱阳性或阴性。这提示Daintain/AIF-1与动脉粥样硬化的发生、发展过程密切相关。然而,目前Daintain/AIF-1影响动脉粥样硬化进程的机理并不清楚。研究发现Daintain/AIF-1可以促进巨噬细胞、血管平滑肌细胞和动脉内皮细胞的增殖、迁移以及增强T淋巴细胞的分泌活动,表明它在巨噬细胞、血管平滑肌细胞和动脉内皮细胞等动脉粥样硬化组织中存在的细胞激活过程中发挥重要的作用。现在已经清楚,巨噬细胞向泡沫细胞的转化、动脉内皮损伤以及血管平滑肌增生在动脉粥样硬化的起始、发展直到斑块破裂过程中扮演重要角色。由此可预见,Daintain/AIF-1可能通过激活巨噬细胞、血管平滑肌细胞和动脉内皮细胞来作用于动脉粥样硬化的进程。因此为了进一步探讨Daintain/AIF-1在动脉粥样硬化发生中的作用及机理,本论文主要开展了以下工作:
     1.通过免疫组织化学染色的方法,检测发现在动脉粥样硬化斑块处有大量的Daintain/AIF-1阳性区,而其周围的非病变区域中几乎不能检测到Daintain/AIF-1。
     2.为进一步研究Daintain/AIF-1和动脉粥样硬化之间的关系,我们检测了病人血清中Daintain/AIF-1的含量。我们采用具有潜在动脉粥样硬化倾向的高血压病人血清来检测Daintain/AIF-1的含量,并发现与正常人相比,该类病人血清中其Daintain/AIF-1的含量较高,且与LDL-C的含量成正比关系,为Daintain/AIF-1研发成为一种新的动脉粥样硬化检测指标奠定了一定的基础。
     3.为了更经济、方便地获得Daintain/AIF-1蛋白,我们采用基因工程方式,表达出了高纯度的Daintain/AIF-1。并基于其已经报道的部分活性做了检测,证明重组蛋白具有生物学功能活性;
     4.寻找Daintain/AIF-1在小鼠胰腺和血管组织中的相互作用蛋白。此前,本实验室发现在体外Daintain/AIF-1能够与胱硫醚β合成酶相结合,通过原核表达的方法来获得胱硫醚β合成酶,用以研究Daintain/AIF-1对其酶活的影响;通过将重组的Daintain/AIF-1偶联在NTA-Ni介质上,与动脉血管组织裂解液结合洗脱后,发现一个新的结合蛋白——血红蛋白β1亚基,后续研究发现Daintain/AIF-1能够促使红细胞溶解和血红素的释放。
     5.在体内,我们通过给小鼠尾静脉注射Daintain/AIF-1,研究其对小鼠体内与动脉粥样硬化相关的多项生化指标的影响。结果发现Daintain/AIF-1能使小鼠血清中的C反应蛋白、同型半胱氨酸、血糖浓度上升,降低超氧化物歧化酶的活性。
     6.在体外,我们通过在培养基中添加Daintain/AIF-1的方式,探究Daintain/AIF-1对U937和HUVEC的功能特征的影响。结果显示,添加Daintain/AIF-1的实验组的增殖速率明显快于对照组。此外,我们还发现Daintain/AIF-1能够促进内皮细胞中的C-反应蛋白和一氧化氮合酶的基因表达。佛波醇-12-肉豆蔻酯-13-乙酯(PMA)趋化的U937巨噬细胞与ox-LDL共培养实验中发现,Daintain/AIF-1能够通过提高巨噬细胞表面的清道夫受体的表达,而增强巨噬细胞吞噬ox-LDL能力,从而促进巨噬细胞向泡沫细胞转化。
     综上所述,Daintain/AIF-1在动脉粥样硬化形成和中后期的发展中发挥重要作用,有可能为动脉粥样硬化预防、诊断甚至治疗提供新的靶标。
Atherosclerosis is an inflammatory disease. Due to the high plasma cholesterol levels, particularly low-density lipoprotein (LDL) cholesterol, including the accumulation of lipids in the arterial wall, atherosclerosis is the major risk factor for atherosclerotic process has been considered by many groups. However, it is far more than that. While lifestyle changes and new ways to reduce the drug concentration in plasma cholesterol, cardiovascular disease is still the leading cause of death in the United States, Europe and most parts of Asia. In fact, atherosclerotic plaque reflects a series of highly responses focused on specific cellular and molecular level, the level of the inflammatory factors. Therefore, generally speaking, atherosclerosis is an inflammatory disease.
     In 1994, Chen et al purified and identified a peptide from pig intestine, named daintain. In 1996, Utans et al cloned a new macrophage factor from the formation of atherosclerotic plaque tissue in cardiac allograft heart rejection, named allograft inflammatory factor-1 (AIF-1), daintain and AIF-1 shares similar two-level structure. So take tegather called it Daintain/AIF-1. As an inflammatory and immune-related inflammatory factor secretd by the macrophages, the researches of Daintain/AIF-1 in inflammation, vascular diseases, cancer and autoimmune diseases get more and more. Previous study in our laboratory showed that, Daintain/AIF-1 can promote tumor proliferation, changes in cell cycle, promotes cell proliferation and increases type 1 diabetes. All of these are closely associated with inflammation and immune response. In addition, we also found Daintain/AIF-1 in atherosclerotic tissues positive, and in the surrounding normal tissue and normal tissue in the arteries as a weak positive or negative. This suggests that Daintain/AIF-1 is closely related with the occurrence of atherosclerosis and the development process. However, the mechanism of Daintain/AIF-1 in atherosclerotic process is not clear. It has been found that Daintain/AIF-1 can promote macrophage, vascular smooth muscle cells and arterial endothelial cell proliferation, migration and enhance the secretory activity of T lymphocytes. Macrophages, vascular smooth muscle cells and arterial endothelial cells exist in atherosclerotic tissue inflect the processes of atherosclerosis, indicating that Daintain/AIF-1 plays an important role in atherosclerosis. It is now clear, macrophage transformation into foam cells, arterial endothelial dysfunction and vascular smooth muscle proliferation in atherosclerosis initiation, development through the process of plaque rupture plays an important role. Thus predictable, Daintain/AIF-1 possibly through activation of macrophages, vascular smooth muscle cells and arterial endothelial cells acts on the atherosclerotic process. Therefore, to further explore the Daintain/AIF-1 in the role and mechanism of artery atherosclerosis, we carried out the following work.
     1. In the present study, we used immunohistochemical staining to detect the distribution of Daintain/AIF-1 in atherosclerotic plaques in the arteries and surrounding tissue. The results showed that atherosclerotic plaque has a large number of Daintain/AIF-1 positive phenomenon, and its surrounding normal tissue and vascular tissue of normal controls can almost not be detected Daintain/AIF-1.
     2. To study Daintain/AIF-1 whether can be a new detection marker of atherosclerosis, we examined the content of Daintain/AIF-1 in the sera. Finding actually atherosclerosis patients is pre difficult, so we used the potential tendency of atherosclerosis in patients with hypertension to detect Daintain/AIF-1 serum levels, and found that compared with normal people, the Daintain/AIF-1 serum levels of these patients were much higher than the controls, and LDL-C levels were proportional with Daintain/AIF-1.
     3. In order to obtain Daintain/AIF-1 protein more economically and conveniently, we designed prokaryotic expression system to express and purify high quality Daintain/AIF-1, and some of its bioactivity has been reported to do the validation.
     4. Others study found that in vitro Daintain/AIF-1 can bind with cystathionineβ-synthase. And for the study of this combination, we employed the original expression to obtain the recombined cystathionineβ-synthase, to study the impact of Daintain/AIF-1 on the enzyme activity, but found no statistical value of its impact.
     5. In vivo, we adopted the short and long-term approach to study the impact of Daintain/AIF-1 on biochemical changes of the mice injected with Daintain/AIF-1 or with not. The results showed that Daintain/AIF-1 could raise C-reactive protein, homocysteine, fibrinogen and blood sugar levels in the sera of mice, and impacted activity of SOD. These factors and the occurrence of atherosclerosis developments are closely linked.
     6. For further study of the impact of Daintain/AIF-1 on monocytic U937 and HUVEC human umbilical vein endothelial cells proliferation and cytokine secretion in vitro, we added Daintain/AIF-1 to the medium, to explore the functional characteristics of Daintain/AIF-1 in U937 and HUVEC. The results show that adding Daintain/AIF-1 the proliferation rate of the experimental group was significantly faster than the control group. In addition, we also found Daintain/AIF-1 can promote C-reactive protein and nitric oxide synthase expression. Through phorbol -12- myristate acetate -13- acetate (PMA) derived U937 macrophages and ox-LDL co-culture experiments, we found that Daintain/AIF-1 presence through enhanced expression of scavenger receptor A to regulate macrophage - foam cell transformation rate.
     In summary, Daintain/AIF-1 plays an important role in atherosclerotic plaque formation and development. Daintain/AIF-1 may be a new indicator on the atherosclerotic prediction, and may be a novel molecular target of atherosclerosis therapy.
引文
[1] Zhou X, Caligiuri G, Hamsten A, et al. LDL immunization induces T-cell dependent antibody formation and protection against atherosclerosis. Arterioscler. Thromb. Vasc. Biol, 2001, 21: 108-114.
    [2] Singh V, Sharma R, Kumar A, et al. Low high-density lipoprotein cholesterol: current status and future strategies for management. Vasc. Health Risk Manag, 2010, 29: 979-996.
    [3] Custodis F, Schirmer SH, Baumh?kel M, et al. Vascular pathophysiology in response to increased heart rate. J. Am. Coll. Cardiol, 2010, 56: 1973-1983.
    [4] John R, Vane FRS, Erik E. Regulatory function of the vascular endothelium. Engl. J. Med, 1990, 323: 27-36.
    [5] Nordy AG, Goodnigt SH. Dietary lipids and thrombosis: relationships to atherosclerosis. Arteriosclerosis, 1990, 10: 149-163.
    [6] Manuck SB, Kaplan JR, Matthews KA. Behavioral antecedents of coronary heart disease and atherosclerosis. Arterioscler. Thromb. Vasc. Biol, 1986, 6: 2-14.
    [7] Roscoe HG, Vogel AW. Lipid changes in the eye concomitant with the development of atherosclerosis in the aorta in the rabbit. Circ. Res, 1968, 23: 633-643.
    [8] Chade AR, Lerman A, Lerman LO. Kidney in early atherosclerosis. Hypertension, 2005, 45: 1042-1049.
    [9] Lernfelt B, Forsberg M, Blomstrand C, et al. Cerebral atherosclerosis as predictor of stroke and mortality in representative elderly population. Stroke, 2002, 33: 224-229.
    [10] Daniel S, Witzum JL. Lipoprotein and atherogenesis. JAMA, 1990, 264: 3047-3052.
    [11] Jacob G, Niva Y, Eyal B, et al. Suppression of early atherosclerosis in LDL-receptor deficient mice by oral tolerance withβ2-glycoprotein. Cardiovasc. Res, 2004, 62: 603-609.
    [12] Aleksandr EV, Nageswara R, Zeenat SH, et al. Thrombin and NAD(P)H Oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis. Circ. Res, 2006, 98: 1254-1263.
    [13] Alexander S, Frank DK, David HM, et al. Regulation of macrophage foam cell formation byαV?3 Integrin: potential role in human atherosclerosis. Am. J. Pathol, 2004, 165: 247-258.
    [14] Tracie S, Ira T. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res, 2009, 50: S382-S387.
    [15] Ira G, Fredrick JS. STARE Editorial: atherosclerosis and thrombosis. Circulation, 1962, 25: 753-755.
    [16] Takagi Y, Dyer CA, Curtiss LK. Platelet-enhanced apolipoprotein E production by human macrophages: a possible role in atherosclerosis. J. Lipid Res, 1988, 29: 859-867.
    [17] Evanko SP, Raines EW, Ross R, et al. Proteoglycan distribution in lesions of atherosclerosis depends on lesion severity, structural characteristics, and the proximity of platelet-derived growth factor and transforming growth factor-beta. Am. J. Pathol, 1998, 152: 533-546.
    [18] Duncan BB, Schmidt MI, Offenbacher S, et al. Factor VIII and other hemostasis variables are related to incident diabetes in adults. The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care, 1999, 22: 767-772.
    [19] Minick CR, Fabricant CG, Fabricant J, et al. Atherosclerosis induced by in fection with a herpesvirus. AM. J. Pathol, 1979, 96: 673-677.
    [20]李贵星,刘双凤.动脉粥样硬化发病机制的研究进展.中国实验诊断学2007, 11: 1268-1271.
    [21] Ross R. Atherosclerosis--an inflammatory disease. N. Engl. J. Med, 1999, 340: 115-126.
    [22] Libby P, Paul MR, Attilio M. Inflammation and atherosclerosis. Circulation, 2002, 105: 1135-1143.
    [23] Libby P. Inflammation in atherosclerosis. Nature, 2002, 420: 868-874.
    [24] Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med, 2005, 352: 1685-1695.
    [25] Gotlieb AI, Langille BL. The role of rheology in atherosclerotic coronary artery disease. Atherosclerosis and coronary artery disease. Philadelphia: Lippincott-Raven,1996, 3: 595-606.
    [26] Chobanian AV, Dzau VJ. Renin angiotensin system and atherosclerotic vascular disease. Atherosclerosis and coronary artery disease. Philadelphia: Lippincott-Raven, 1996, 6: 237-242.
    [27] Nagel T, Resnick N, Atkinson WJ, et al. Shear stress selectively upregulates intercellular adhesion molecule-1 expression in cultured human vascular endothelial cells. J. Clin. Invest, 1994, 94: 885-891.
    [28] Giachelli CM, Lombardi D, Johnson RJ, et al. Evidence for a role of osteopontin in macrophage infiltration in response to pathological stimuli in vivo. Am. J. Pathol, 1998, 152: 353-358.
    [29] Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993, 362: 801-809.
    [30] Resnick N, Collins T, Atkinson W, et al. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc. Natl. Acad. Sci. USA, 1993, 90: 4591-4595.
    [31] Topouzis S, Majesky MW. Smooth muscle lineage diversity in the chick embryo: two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor b. Dev. Biol, 1996, 178: 430-445.
    [32] Hansson GK, Jonasson L, Seifert PS, et al. Immune mechanisms in atherosclerosis. Arteriosclerosis, 1989, 9: 567-578.
    [33] Hwang SJ, Ballantyne CM, Sharrett AR, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: the Atherosclerosis Risk in Communities (ARIC) study. Circulation, 1997, 96: 4219-4225.
    [34] Caterina RD, Basta G, Lazzerini G, et al. Soluble vascular cell adhesion molecule-1 as a biohumoral correlate of atherosclerosis. Arterioscler. Thromb. Vasc. Biol, 1997, 17: 2646-2654.
    [35] Qiao JH, Tripathi J, Mishra NK, et al. Role of macrophage colony stimulating factor in atherosclerosis: studies of osteopetrotic mice. Am. J. Pathol, 1997, 150: 1687-1699.
    [36] Villiers WJS, Smith JD, Miyata M, et al. Macrophage phenotype in mice deficient in both macrophage-colony stimulating factor (op) and apolipoprotein E. Arterioscler. Thromb. Vasc. Biol, 1998, 18: 631-640.
    [37] Shehla P, Rajan S, Michael ER, et al. Estradiol suppresses MCP-1 expression in vivo: implications for Atherosclerosis. Arterioscler. Thromb. Vasc. Biol, 1998, 18: 1575-1582.
    [38] Sean A, Anna HN, Regnstrom J, et al. Effect of immunization with homologous LDL and oxidized LDL on early atherosclerosis in hypercholesterolemic rabbits. Arterioscler. Thromb. Vasc. Biol, 1996, 16: 1074-1079.
    [39] Toussaint JF, Lamuraglia GM, Southern JF, et al. Resonance images lipid, fibrous, calcified, hemorrhagic, and rhrombotic components of human atherosclerosis in vivo. Circulation, 1996, 94: 932-938.
    [40] Burke AP, Fonseca V, Kolodgie FD, et al. Increased serum homocysteine and sudden death resulting from coronary atherosclerosis with fibrous plaques. Arterioscler. Thromb. Vasc. Biol, 2002, 22: 1936-1941.
    [41] Burke AP, Kolodgie FD, Farb A, et al. Morphological predictors of arterial remodeling in coronary atherosclerosis. Circulation, 2002, 105: 297-303.
    [42] Moss ML, Jin SLC, Milla ME, et al. Cloning of a disintegrin metalloproteinase that processes precursor tumor necrosis factor-a. Nature 1997, 385: 733-736.
    [43] Seery LT, Schoenberg DR, Barbaux S, et al. Identification of a novel member of the pentraxin family in xenopus laevis, Proc. R. Soc. B, 1993, 253: 263-270.
    [44] Griselli M, Herbert J, Hutchinson WL, et al. C-reactive protein and comp lement are important mediators of tissue damage in acute myocardial infarction. J. Exp. Med, 1999, 190: 1733-1740.
    [45] Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease application to clinical and public health practice. Circulation, 2003, 107: 499-511.
    [46] Yasojima K, Schwab C, McGeer EG, et al. Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol, 2001, 158: 1039-1051.
    [47] Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator inatherothrombosis? Hypertension, 2004, 44: 1-6.
    [48] Kannel WB, Anderson K, Wilson PWF. White blood cell count and cardiovascular disease insights from the framingham study. JAMA, 1992, 267: 1253-1256.
    [49] Lee CD, Folsom AR, Nieto FJ, et al. White blood cell count and incidence of coronary heart disease and ischemic stroke, and mortality from cardiovascular disease in African-American and white men and women: the atherosclerosis risk in communities study. AM. J. Epidemiol, 2001, 154: 758-764.
    [50] Fibrinogen Studies Collaboration. Plasma fibrinogen level and the risk of major cardiovascular diseases and nonvascular mortality: an individual participant meta-analysis. JAMA, 2005, 294: 1799-1809.
    [51]汲淼,崔娴维,赵威,等.脑梗死溶栓治疗中血浆纤维蛋白原功能的变化.中华医学杂志, 2001, 25: 21-22.
    [52]吴奇志,林涛,翁南星,等.冠心病患者血中C反应蛋白、纤维蛋白原和白细胞的临床意义.宁夏医学杂志, 2002, 24: 140-141.
    [53] Sabeti S, Exner M, Mlekusch W, et al. Prognostic impact of fibrinogen in carotid atherosclerosis: nonspecific indicator of inflammation or independent predictor of disease progression? Stroke, 2005, 36: 1400-1404.
    [54] Liou JY, Ghelani D, Yeh S, et al. Nonsteroidal anti-inflammatory drugs induce colorectal cancer cell apoptosis by suppressing 14-3-3 epsilon. Cancer Res, 2007, 67: 3185-3191.
    [55] Ernst E, Ludwig K. Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature. Resch. Ann. Intern. Med, 1993, 118: 956-963.
    [56] Graham IM, Daly LE, Refsum H, et al. Plasma homocysteine as a risk factor for vascular disease. JAMA, 1997, 277: 1775-1781.
    [57] Stampfer MJ, Malinow MR, Willett WC, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA, 1992, 268: 877-881.
    [58] Boveris A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol, 1984, 105: 429-435.
    [59] Nathan C. Points of control in inflammation. Nature, 2002, 420: 846-852.
    [60] Soutar AK, Harders-Spengel K, DP Wade, et al. Detection and quantitation of low density lipoprotein (LDL) receptors in human liver by ligand blotting, immunoblotting, and radioimmunoassay. LDL receptor protein content is correlated with plasma LDL cholesterol concentration J. Biol. Chem, 1986, 261: 17127-17133.
    [61] Gough PJ, Greaves DR, Suzuki H, et al. Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol, 1999, 19: 461-471.
    [62] Fruebis J, Gonzalez V, Silvestre M, et al. Effect of probucol treatment on gene expression of VCAM-1, MCP-1, and M-CSF in the aortic wall of LDL receptor-deficient rabbits during early atherogenesis. Arterioscler. Thromb. Vasc. Biol, 1997, 17: 1289-1302.
    [63] Yoshida H, Quehenberger O, Kondratenko N, et al. Minimally oxidized low-density lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler. Thromb. Vasc. Biol, 1998, 18: 794-802.
    [64] Lipton BA, Parthasarathy S, Ord VA, et al. Components of the protein fraction of oxidized low density lipoprotein stimulate interleukin-1 alpha production by rabbit arterial macrophage-derived foam cells. J. Lipid Res, 1995, 36: 2232-2242.
    [65] Chen ZW, Ostenson CG, Bergman T, et al. Purification and characterization of a novel porcine gut regulatory peptide, daintain, with effects on insulin release. Eur J Endocrinol (abstr), 1994, 130: 32-33.
    [66] Utans U, Arceci RJ, Yamashita Y, et al. Cloning and characterization of allograft inflammatory factor-1: a novel macrophage factor identified in rat cardiac allograft with chronic rejection. J. Clin. Invest, 1995, 6: 2954-2962.
    [67] Utans U, Quist WC, Mc Manus BM, et al. Allograft inflammatory factory-1. A cytokine-responsive macrophage molecule expressed in transplanted human hearts. Transplantation, 1996, 61: 1387-1392.
    [68] Chen ZW, Ahren B, Ostenson CG, et al. Identification, isolation, and characterization of daintain (allograft inflammatory factor1), a macrophage polypeptide with effects on insulin secretion and abundantly present in the pancreas of prediabetic BB rats. Proc. Natl. Acad. Sci, 1997, 94: 13879-13884.
    [69] Autieri MV. cDNA cloning of human allograft inflammatory factor-1: tissue distribution, cytokine induction, and mRNA expression in injured rat carotid arteries. Biochem. Biophys. Res. Commun, 1996, 228: 29-37.
    [70] Neville MJ, Campbell RD. A new member of the Ig superfamily and a V-ATPase G subunit are among the predicted products of novel genes close to the TNF locus in the human MHC. The Journal of Immunology, 1999, 162: 4745-4754.
    [71] Gruen JR, Weissman SM. Human MHC class III and IV genes and disease associations. Front Biosci, 2001, 6: 960-972.
    [72] Muller WE, Krasko A, Skorokhod A, et al. Histocompatibility reaction in tissue and cells of the marine sponge suberites domuncula in vitro and in vivo: central role of the allograft inflammatory factor 1. Immunogenetics, 2002, 54: 48-58.
    [73] Kruse M, Steffen R, Batel R, et al. Differential expression of allograft inflammatory factor 1 and of glutathione peroxidase during auto- and allograft response in marine sponges. J. Cell. Sci, 1999, 112: 4305-4313.
    [74] Deininger MH, Meyermann R, Schluesener HJ. The allograft inflammatory factor-1 family of proteins. FEBS, 2002, 514: 115-121.
    [75] Ito D, Imai Y, Ohsawa K, et al. Microglia-specific localisation of a novel calcium binding protein, Iba1. Mol. Brain Res, 1998, 57: 1-9.
    [76] Imai Y, Ibata I, Ito D, et al. A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem. Biophys. Res. Commun, 1996, 224: 855-862.
    [77] Tanaka S, Suzuki K, Watanabe M, et al. Up-regulation of a new microglial gene, mrf-1, in response to programmed neuronal cell death and degeneration. J. Neurosci, 1998, 18: 6358-6369.
    [78] Autieri MV, Prystowsky MB, Ohlstein EH. Isolation and characterization of BART-1: A novel balloon angioplasty responsive transcript in rat carotid arteries. DNA Cell Biol, 1996, 15: 297-304.
    [79] Autieri MV, Agrawal N. IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J. Biol. Chem, 1998, 273: 14731-14737.
    [80] Iris FJ, Bougueleret L, Prieur S, et al. Dense Alu clustering and a potential newmember of the NF kappa B family within a 90 kilobase HLA class III segment. Nat. Genet, 1993, 3: 137-1345.
    [81] Hara H, Ohta M, Ohta K, et al. Isolation of two novel alternative splicing variants of allograft inflammatory factor-1. Biol. Chem, 1999, 380: 1333-1336.
    [82] Autieri MV, Chen X. The ability of AIF-1 to activate human vascular smooth muscle cells is lost by mutations in the EF-hand calcium-binding region. Experimental Cell Research, 2005, 307: 204-211.
    [83] Autieri MV, Carbone C, Mu A. Expression of allograft inflammatory factor-1 (AIF1) is a marker of activated human VSMC and arterial injury. Arterioscler. Thromb. Vasc. Biol, 2000, 20: 1737-1744.
    [84] Tian Y, Jain S, Kelemen SE, Autieri MV. AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis. Am. J. Physiol. Cell Physiol. 2009, 296: 256-266.
    [85] Liu S, Tan WY, Chen QR, et al. Daintain/AIF-1 promotes breast cancer proliferation via activation of the NF-kappaB/cyclin D1 pathway and facilitates tumor growth. Cancer Sci, 2008, 99: 952-957.
    [86] Pashenkov M, Efendic S, Zhu J, et al. Augmented expression of daintain/allograft inflammatory factor-1 is associated with clinical disease: dynamics of daintain/allograft inflammatory factor-1 expression in spleen, peripheral nerves and sera during experimental autoimmune neuritis. Scand. J. Immunol, 2000, 52: 117-122.
    [87] Beiter T, Artelt MR, Trautmann K, et al. Experimental autoimmune neuritis induces differential microglia activation in the rat spinal cord. J. Neuroimmunol, 2005, 160: 25-31.
    [88] Watano K, Iwabuchi K, Fujii S, et al. Allograft inflammatory factor-1 augments production of interleukin-6, -10 and -12 by a mouse macrophage line. Immunology, 2001, 104: 307-316.
    [89] Eltze E, Bettendorf O, Rody A, et al. Influence of local complications on capsule formation around model implants in a rat model. J. Biomed. Mater. Res Part A, 2003, 64: 12-19.
    [90]李发芳,吴昌明,陈正望.大炎肽与乳腺肿瘤恶化的关系肿瘤防治研究. 2007, 34: 593-595.
    [91]刘收,陈正望.炎性多肽Daintain促进乳腺癌细胞MCF-7增殖.医学分子生物学杂志. 2008, 5: 129-132.
    [92] Glover MD, Seidel GE Jr. Increased messenger RNA for allograft inflammatory factor-1, LERK-5, and a novel gene in 17.5-day relative to 15.5-day bovine embryos. Biol. Reprod, 2003, 69: 1002-1012.
    [93] Schwab JM, Frei E, Klusman I, et al. AIF-1 expression defines a proliferating and alert microglial/macrophage phenotype following spinal cord injury in rats. J. Neuroimmunol, 2001, 119: 214-222.
    [94] Mittelbronn M, Dietz K, Schluesener HJ, et al. Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta. Neuropathol, 2001, 101: 249-255.
    [95] Postler E, Rimner A, Beschorner R, et al. Allograft inflammatory factor-1 is upregulated in microglial cells in human cerebral infarctions. J. Neuroimmunol, 2000, 104: 85-91.
    [96] Beschorner R, Engel S, Mittelbronn M, et al. Differential regulation of the monocytic calcium-binding peptides macrophage-inhibiting factor related protein-8 (MRP8/S100A8) and allograft inflammatory factor-1 (AIF-1) following human traumatic brain injury. Acta. Neuropathol, 2000, 100: 627-634.
    [97] Deininger MH, Seid K, Engel S, et al. Allograft inflammatory factor-1 defines a distinct subset of infiltrating macrophages/microglial cells in rat and human gliomas. Acta. Neuropathol, 2000,100: 673-680.
    [98] Fauser S, Nguyen TD, Bekure K, et al. Differential activation of microglial cells in local and remote areas of IRBP1169-1191-induced rat uveitis. Acta. Neuropathol, 2001, 101: 565-571.
    [99] Schluesener HJ, Seid K, Kretzschmar J et al. Allograft-inflammatory factor-1 in rat experimental autoimmune encephalomyelitis, neuritis, and uveitis: expression by activated macrophages and microglial cells. Glia, 1998, 24: 244-251.
    [100]张雅娟,王海琳.同种异体移植物炎症因子在子宫内膜异位症的表达.兰州大学学报(医学版), 2007. 33: 4-7.
    [101] Koshiba H, Kitawaki J, Teramoto M, et al. Expression of allograft inflammatory factor-1 in human eutopic endometrium and endometriosis: possible association with progression of endometriosis. J. Clin. Endocrinol. Metab, 2005, 90: 529-537.
    [102] Mentschel J, Deininger MH, Schluesener HJ, et al. Effects of malnutrition on the expression of daintain/AIF-1 in the gut mucosa of pigs. J. Vet. Med. A, 2002, 49: 184-188.
    [103] Yang ZF, Ho DW, Lau CK, et al. Allograft inflammatory factor-1 is crucial for the survival and pro-inflammatory activity of macrophages. Int. Immunol, 2005, 17: 1391-1397.
    [104] Mishima T, Iwabuchi K, Fujii S, et al. Allograft inflammatory factor-1 augments macrophage phagocytotic activity and accelerates the progression of atherosclerosis in ApoE-/- mice. Int. J. Mol. Med, 2008, 21: 181-187.
    [105] Eike MC, Olsson M, Undlien DE, et al. Genetic variants of the HLA-A, HLA-B and AIF1 loci show independent associations with type 1 diabetes in Norwegian families. Genes Immun, 2009, 10: 141-150.
    [106] Autieri MV, Kelemen S, Thomas BA, et al. Allograft inflammatory factor-1 expression correlates with cardiac rejection and development of cardiac allograft vasculopathy. Circulation, 2002, 106: 2218-2223.
    [107] Nagakawa Y, Nomoto S, Kato Y, et al. Over-expression of AIF-1 in liver allografts and peripheral blood correlates with acute rejection after transplantation in rats. Am. J. Transplant, 2004, 4: 1949-1957.
    [108] Grimm PC, McKenna R, Nickerson P, et al. Clinical rejection is distinguished from subclinical rejection by increased infiltration by a population of activated macrophages. J. Am. Soc. Nephrol, 1999, 10: 1582-1589.
    [109] Shimada S, Iwabuchi K, Watano K, et al. Expression of allograft inflammatory factor-1 in mouse uterus and poly(I: C)-induced fetal resorption. Am. J. Reprod. Immunol, 2003, 50: 104-112.
    [110] Kohler C. Allograft inflammatory factor-1/Ionized calcium-binding adapter molecule 1 is specifically expressed by most subpopulations of macrophages andspermatids in testis. Cell Tissue Res, 2007, 330: 291-302.
    [111] Orsmark C, Skoog T, Jeskanen L, et al. Expression of allograft inflammatory factor-1 in inflammatory skin disorders. Acta. Derm. Venereol, 2007, 87: 223-227.
    [112] Herden C, Schluesener HJ, Richt JA. Expression of allograft inflammatory factor-1 and haeme oxygenase-1 in brains of rats infected with the neurotropic Borna disease virus. Neuropathol. Appl. Neurobiol, 2005, 31: 512-521.
    [113] Deininger MH, Weinschenk T, Meyermann R, et al. The allograft inflammatory factor-1 in Creutzfeldt-Jakob disease brains. Neuropathol. Appl. Neurobiol, 2003, 29: 389-399.
    [114] Morohashi T, Iwabuchi K, Watano K, et al. Allograft inflammatory factor-1 regulates trinitrobenzene sulphonic acid-induced colitis. Immunology, 2003, 110: 112-119.
    [115] Kimura M, Kawahito Y, Obayashi H, et al. A critical role for allograft inflammatory factor-1 in the pathogenesis of rheumatoid arthritis. J. Immunol, 2007, 178: 3316-3322.
    [116] Kelemen SE, Autieri MV. Expression of allograft inflammatory factor-1 in T lymphocytes: a role in T-lymphocyte activation and proliferative arteriopathies. Am. J. Pathol, 2005, 167: 619-626.
    [117] Autieri MV, Kelemen SE, Wendt KW. AIF-1 is an actin-polymerizing and Rac1-activating protein that promotes vascular smooth muscle cell migration. Circ. Res, 2003, 92: 1107-1114.
    [118] Tian Y, Autieri MV. Cytokine expression and AIF-1-mediated activation of Rac2 in vascular smooth muscle cells: a role for Rac2 in VSMC activation. Am. J. Physiol. Cell Physiol, 2007, 292: C841-849.
    [119] Autieri MV, Carbone CM. Overexpression of allograft inflammatory factor-1 promotes proliferation of vascular smooth muscle cells by cell cycle deregulation. Arterioscler. Thromb. Vasc. Biol, 2001, 21: 1421-1426.
    [120] Chen X, Kelemen SE, Autieri MV. AIF-1 expression modulates proliferation of human vascular smooth muscle cells by autocrine expression of G-CSF. Arterioscler. Thromb. Vasc. Biol, 2004, 24: 1217-1222.
    [121] Sommerville LJ, Kelemen SE, Autieri MV. Increased smooth muscle cell activationand neointima formation in response to injury in AIF-1 transgenic mice. Arterioscler. Thromb. Vasc. Biol, 2008, 28: 47-53.
    [122] Broglio L, Erne B, Tolnay M, et al. Allograft inflammatory factor-1: a pathogenetic factor for vasculitic neuropathy. Muscle Nerve, 2008, 38: 1272-1279.
    [123] Sommerville LJ, Xing C, Kelemen SE, et al. Inhibition of allograft inflammatory factor-1 expression reduces development of neointimal hyperplasia and p38 kinase activity. Cardiovasc. Res, 2009, 81: 206-215.
    [124] Tian Y, Kelemen SE, Autieri MV. Inhibition of AIF-1 expression by constitutive siRNA expression reduces macrophage migration, proliferation, and signal transduction initiated by atherogenic stimuli. Am. J. Physiol. Cell Physiol, 2006, 290: C1083-1091.
    [125] Chen J, DeVivo M, Dingus J, et al. A region of adenylyl cyclase 2 critical for regulation by G protein beta gamma subunits. Science, 1995, 268: 1166-1169.
    [126] Jia J, Cai Y, Wang R, et al. Overexpression of allograft inflammatory factor-1 promotes the proliferation and migration of human endothelial cells (HUV-EC-C) probably by up-regulation of bFGF. Pediatr. Res, 2010, 67: 29-34.
    [127] Jia J, Bai Y, Fu K, et al. Expression of allograft inflammatory factor-1 and CD68 in haemangioma: implication in the progression of haemangioma. Br. J. Dermatol, 2008, 159: 811-819.
    [128] Del GF, Jimenez SA. T cells expressing allograft inflammatory factor 1 display increased chemotaxis and induce a profibrotic phenotype in normal fibroblasts in vitro. Arthritis Rheum, 2007, 56: 3478-3488.
    [129] Kuschel R, Deininger MH, Meyermann R, et al. Allograft inflammatory factor-1 is expressed by macrophages in injured skeletal muscle and abrogates proliferation and differentiation of satellite cells. J. Neuropathol. Exp. Neurol, 2000, 59: 323-332.
    [130] Autieri MV, Carbone C, Mu A. Expression of allograft inflammatory factor-1 is a marker of activated human vascular smooth muscle cells and arterial injury. Arterioscler. Thromb. Vasc. Biol, 2000, 20: 1737-1744.
    [131] Sacks FM, Pfefer MA, Moye LA, et al. The effect of pravastation on coronary events after myocardial infarction in patients with average cholesterol levels. N. Engl. J. Med, 1996, 335: 1001-1009.
    [132] Wmi-dms JK, Sukhova GK, Herrington DM, et al. Pravastatin has cholesterol lowering independent effects on the artery wall of atherosclerotic monkeys. Am. J. Coil. Cardio, 1998, 31: 684-691.
    [133] Pepys MB, Berger A. The renaissance of C-reactive protein. J. BMJ, 2001, 322: 4-5.
    [134] Schiefer B, Schiefief E, Hilfiker K1iner D, et al. Expression of allgiotensin II and interleukin 6 in human coronary atherosclerotic plaques. Circulation, 2000, 101: 1372-1378.
    [135] The long-term intervention with pravastatin in ischaemic disease (LIPID) study group. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad rangeofinitial cholesterol levels. N. Engl. J. Med, 1998, 339: 1349-1357.
    [136] Lavallie ER, Diblasio EA, Kovacic S, et al. A thioredoxin gene fusion system that circumvents inclusion body formation in the E. coli cytoplasm. Nature Biotechnology, 1993, 11: 187-193.
    [137] Fu K, Zhao YY, Tang WX, et al. Preparation and identification of monoclonal antibodies against daintain. Hybridoma, 2006, 25: 952-971.
    [138]李权,钟向阳,夏昆,等.人异体移植炎症因子在大肠杆菌中的表达和纯化.生命科学研究, 1999, 4: 326-331.
    [139] Finkelstein JD, Martin JJ. Methionine metabolism in mammals, distribution of homocysteine between competing pathways. J. Biol. Chem, 1984, 259: 9508-9513.
    [140] Mills JL, McPartlin JM, Kirke PN, et al. Homocysteine metabolism in pregnancies complicated by neural tube defects. Lancet, 1995, 345: 149-151.
    [141] Munke M, Kraus JP, Ohura T, et al. The gene for cystathionineβ-synthase (CBS) maps to the subtelomeric region on human chromosome 21q and to proximal mouse chromosome 17. Am. J. Hum. Genet, 1988, 42: 550-559.
    [142] Fowler B. Homocystein-an independent risk factor for cardiovascular and thrombotic diseases. Ther. Umsch, 2005, 62: 641-646.
    [143]吴淑庆,钱令嘉.胱硫醚β-合成酶基因表达调控研究进展.医学分子生物学杂志, 2004, 1: 165-167.
    [144]周爱儒.生物化学,第六版,第十六章,血液的生物化学.人民卫生出版社.
    [145] Balla G, Vercellotti GM, Muller-Eberhard U, et al. Exposure of endothelial cells to free heme potentiates damage mediated by granulocyte and toxic oxygen species. Lab. Invest, 1991, 64: 648-655.
    [146] Balla G, Jacob HS, Eaton JW, et al. Hemin: a possible physiological mediator of low density lipoprotein oxidation and endothelial cell injury. Arterioscler. Thromb, 1991, 11: 1700-1711.
    [147] Miller YI, Shaklai N. Oxidative crosslinking of LDL protein induced by hemin: involvement of tyrosines. Biochem. Mol. Biol. Int, 1994, 34: 1121-1129.
    [148] Camejo G, Halberg C, Manschik-Ludin A, et al. Hemin binding and oxidation of lipoproteins in serum: mechanisms and effect on the interaction of LDL with human macrophages. J. Lipid Res, 1998, 39: 755-766.
    [149] Kraus J, Packman S, Fowler B, et al. Purification and properties of cystathionine beta-synthase from human liver. J. Biol. Chem, 1978, 253: 6523-6528.
    [150]李丽帆,方显明,顾国龙,等.胱硫醚β-合酶活性测定及应用.第四军医大学学报, 2009, 30: 863-864.
    [151] Antoniades C, Antonopoulos AS, Tousoulis D, et al. Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur. Heart J. 2009, 30: 6-15.
    [152] Sabaawy HE, Zhang F, Nguyen X, et al. Human heme oxygenase-1 gene transfer lowers blood pressure and promotes growth in spontaneously hypertensive rats. Hypertension, 2001, 38: 210-215.
    [153] Durante W. Heme oxygenase-1 in growth control and its clinical application to vascular disease. J. Cell. Physiol, 2003, 195: 373-382.
    [154] Abraham NG, Kappas A. Heme oxygenase and the cardiovascular-renal system. Free Radic. Biol. Med, 2005, 39: 1-25.
    [155] Price KD, Price CS, Reynolds RD. Hyperglycemia-induced ascorbic acid deficiency promotes endothelial dysfunction and the development of atherosclerosis. Atherosclerosis, 2001, 158: 1-12.
    [156] Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc. Diabetol, 2002, 1: 1-10.
    [157] Furst DE, Breedveld FC, Kalden JR, et al. Updated consensus statement on biological agents for the treatment of rheumatic diseases. Ann. Rheum. Dis, 2007, 66 Suppl 3: 2-22.
    [158] Gabriel SE. Cardiovascular morbidity and mortality in rheumatoid arthritis. Am. J. Med, 2008, 121: S9-14.
    [159] Dimitrios T, Theodora P, Philippos O, et al. Plasma C-reactive protein and risk of cancer: a prospective study from Greece. Cancer Epidemiol. Biomarkers Prev, 2006, 15: 381-384.
    [160] Matthias D, Becker CH, Reizler R, et al. Homocysteine induced arteriosclerosis like alteration of the aorta in normotensive and hypertensive rats. Arterioscerosis, 2002, 122: 201-216.
    [161]朱燕青.同型半胱氨酸:动脉粥样硬化的一个独立危险因素.生理科学进展, 2002, 28: 334-336.
    [162] Chen C, Conklin BS, Ren Z, et al. Homocysteine decreases endothelium-dependent vasorelaxion in porcine arteries. J. Surg. Res, 2002, 102: 22-30.
    [163]田青平.同型半胱氨酸促平滑肌细胞增殖的信号传递途径.中华医学杂志, 2000, 80: 25-28.
    [164]余意君,汪道文.同型半胱氨酸和闭塞性血管疾病.心血管病学进展, 2003, 24: 375-379.
    [165]范伯丽,董会奕,蒋宝琦,等.同型半胱氨酸血症血小板及内皮细胞活性的体内研究.中华心血管病杂志, 2004, 32: 126-129.
    [166] Li H, Lewis A, Brodsky S, et al. Homocysteine induces 3-hydroxy-3-methylutaryl coenzyme a reductase in vascular endothelial cell: a mechanism for development of atherosclerosis? Circulation, 2002, 105: 1037-1043.
    [167] Laukkanen MO, Leppanen P, Turunen P, et al. Gene transfer of extracellular superoxide dismutase to atherosclerotic mice. Antioxid. Redox Signal, 2001, 3: 397-402.
    [168] Adachi T, Weisbrod RM, Pimentel DR, et al. S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat. Med, 2004, 10: 1200-1207.
    [169] Jialal I, Devaraj S, Venugopal SK. C-reactive protein: risk marker or mediator in atherothrombosis? Hypertension, 2004, 44: 6-11.
    [170] Manson JE, Colditz GA, Stampfer MJ, et al. A prospective study of maturity-onset diabetes mellitus and risk of coronary heart disease and stroke in women. Arch. Intern. Med, 1991, 151: 1141-1147.
    [171] Libby P, Nathan DM, Abraham K, et al. National heart, lung, and blood institute, national institute of diabetes and digestive and kidney Diseases, working group on cardiovascular complications of type 1 diabetes mellitus. Circulation, 2005, 111: 3489-3493.
    [172]云枝,徐慧,冯文化.急性冠脉综合征患者C--反应蛋白含量测定及意义.中国全科医学, 2003, 6: 115-117.
    [173]吴红军,张莉,兰亚明. C--反应蛋白水平与冠心病相关性研究.心血管康复医学杂志, 2004, 13: 77-78.
    [174]王利波,陈宇凯,江帆,等. C-反应蛋白浓度反映急性冠脉事件严重程度的临床意义.中国全科医学, 2004, 71: 168-169.
    [175]励伟芬,柳茵,钟良.等.充血性心力衰竭患者血浆C-反应蛋白水平变化及其意义.心脑血管病防治, 2004, 4: 30-32.
    [176] Aviles RJ, Martin DO, Apperson HC, et al. Inflammation as a risk factor for fibriadom. Circulation, 2003, 108: 3006-3010.
    [177] Barbato JE, Tzeng E. Nitric oxide and arterial disease. J. Vasc. Surg, 2004, 40: 187-193.
    [178] Sehulz E, Anter E, Keaney JF. Oxidative stress, antioxidants, and endothelial function. Curr. Med. Chem, 2004, l1: 1093-1104.
    [179] Soreseu D, Griendling KK. Reactive oxygen species, mitochondria, and NAD (P)H oxidases in the development and progression of heart failure. Congest, Heart Fail, 2002, 8: 132-140.
    [180]谭健苗,杨永宗,袁中华,等.巨嗜细胞源性与肌源性泡沫细胞的不同特性研究.广州医学院学报, 2001, 29: 25-29.
    [181] Printseva O, Peclo MM. GownAM. Various cell types in human atherosclemticlesions express ICAM-1. Further immunocytochemical and immunochemical studies employing monoclonal antibody 10F3. Am. J. Pathol, 1992, 140: 889-896.
    [182] Winther MPJ, Dijk KWV, Havekes LM, et a1.Macrophage scavenger receptor class A,a multifunctional receptor in atherosclerosis fJl. Arterioscler. Thromb. Vasc. Biol, 2000, 20: 297-299.
    [183] Geller, DA, Lowenstein CJ, Shapiro RA, et al. Molecular cloning and expression of inducible nitric oxide synthase from human hepatocytes. Proc. Natl. Acad. Sci. USA, 1993, 90: 3491-3495.
    [184] Brauner A, Hertting O, Alkstrand E, et al. CAPD peritonitis induces the production of a novel peptide, daintain/allograft inflammatory factor-1. Perit. Dial. Int, 2003, 23: 5-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700