生物质微波裂解制备液体燃料的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是一种重要的可再生资源,基于裂解技术将生物质转化为优质液体燃料对于缓解我国能源紧张、减轻环境污染和实现国民经济可持续发展具有重要意义。
     利用热分析仪考察了若干种生物质的裂解特性。研究表明,三种陆地生物质(松木、棉秆、杉木)的裂解温度与其灰分产率呈反变关系。六种无机化合物(NaOH、Na_2CO_3、Na_2SiO_3、NaCl、TiO_2、HZSM-5)对三种陆地生物质的催化裂解行为随无机添加剂的酸碱性变化呈现一定规律性的变化。六种海藻的热稳定性远低于三种陆地高等植物的热稳定性。建立了描述不同类型生物质裂解的一步反应模型,同时建立了描述木质纤维素类生物质裂解的三组分平行独立反应模型。
     建立了一套小型生物质微波裂解装置,微波频率2450MHz,微波功率在0-4kW范围内线性可调,串联三级冰浴U形管冷却可凝组分,使用锯末作裂解原料时,采用碳化硅作微波吸收剂,木块微波裂解无需外加微波吸收剂。利用该装置进行了三种陆地生物质锯末的微波裂解实验,裂解温度控制在470℃左右,着重考察了八种无机添加剂对三种陆地植物在微波场中裂解的催化效应。
     三种陆地生物质锯末微波裂解液体产率在10-30%之间,液体产物中水分含量30%左右。八种无机添加剂显著增加固体产物产率,减少气体产物产率,而对液体产率的影响不是很显著。其中NaCl、H_3PO_4和Fe_2(SO_4)_3使液体产率有较显著提高。
     裂解气体主要是H_2、CH_4、CO和CO_2。八种添加物均使四种气体的析出时间提前,其中NaOH、Na_2CO_3、Na_2SiO_3、NaCl作用效果最明显,它们可使气体析出时间提早4-6min。八种添加剂中多数使H_2、CH_4和CO的摩尔分数增加,CO_2的摩尔分数下降。
     与Py-GC-MS分析及喷动流化床裂解液体产物相比,微波裂解产物中轻组分含量较大,其中羟基丙酮为绝对优势组分,NaOH、Na_2CO_3等碱性催化剂能进一步促进羟基丙酮的生成,其相对浓度可达50%左右;而H_3PO_4、Fe_2(SO_4)_3可以大大提高糠醛和4-甲基愈创木酚或(z)-2-丁烯-1,4-二醇的生成选择性,二者总相对浓度可达80%。同时,研究表明,松木微波裂解半焦具有很好的气化反应性。
     最后,结合传统的煤炭间接液化技术路线及最新的生物质基原料合成液体烷烃的研究思路,提出了充分利用微波裂解得到的具有独特组成与分布的液体产物、富氢气体及活性半焦制备优质液体燃料的综合技术路线。
Biomass is an important renewable resources and its conversion to high qulity liquid fuels based on pyrolysis technology is of great significance to relax energy tension and environmental pollution of our country and to realize sustainable development of national economy.
     The thermal characteristics of several types of biomass were investigated by utilizing thermal analyzer.The study indicates that the pyrolysis temperature for the three land biomass species(pine wood,cotton stalk and fir wood) changes inversely with the yield of the ash from the biomass.The catalytic effects of the six inorganic compounds(NaOH,Na_2CO_3,Na_2SiO_3,NaCl,TiO_2 and HZSM-5) on pyrolysis of the three land biomass species vary regularly to some extent with the acidity or basicity of these compounds.The thermal stability of the six seaweeds are much lower than that of the three land plants. The one-step reaction models for pyrolysis of all the studied biomass species have been established and a three compoment-parallel-independent reaction model for pyrolysis of lignocellulusic biomass has also been proposed.
     A bench scale microwave pyrolysis installation has been set up, the frequency employed is 2450MHz and the power capacity can be adjusted from zero to 4kW proportionally. A serial three phase U-shaped tube train immersed in the ice-water mixture bath is used for cooling and collecting the condensable components. SiC is used as microwave absorber when the sawdust is to be pyrolyzed and it is not used when the wood blocks are the feedstock. This installation is used for pyrolysis of the sawdust of the three land plants at ca. 470℃and the emphasis is put on the catalytic effects of the eight inorganic additives on the microwave pyrolysis.
     The oil yield is between 10-30% and ca. 30% water exists in the liquid products. All of the eight additives have increased yields of solid products greatly and decreased yields of gaseous products more or less. Yields of liquid products are subjected to no dramatic change except NaCl, H_3PO_4 and Fe_2(SO_4)_3 have increased the liquid yields moderately.
     The gases produced from pyrolysis consist mainly of H_2, CH_4, CO and CO_2. All of the eight additives have made these gases evolve earlier, among which the four sodium additives have the most marked effect, which can make the gases evolve 4-6min earlier. Most additives have made the molar fraction of H_2, CH_4 and CO increase and those of CO_2 decrease.
     More light components, among which acetol takes priority, appear in the liquid products from microwave pyrolysis compared with Py-GC-MS analysis and fast pyrolysis in the conduit-spouting fluidized reactor. The acetol formation can be further enhanced up to a relative concentration of 50% by alkaline catalysts NaOH, Na_2O_3 etc, whereas furfural and 4-methyl guaiacol or (z)-2-butene-1,4-diol can be selectively formed with a total relative concentration of the two components up to 80% when H_3PO_4 or Fe_2(SO_4)_3 is used as the catalyst. Meanwhile, the study indicates that the semicoke from microwave pyrolsysis has good gasification reactivity.
     The reactivity and gasification kinetics of the semicoke from pine wood by microwave pyrolysis have been investigated by utilizing thermal analyzer. The results show that strong bases NaOH and Na_2CO_3 have greatly increased the reactivity of the semicoke and complete gasification time is very short. Neutral salts NaCl and Fe_2(SO_4)_3 have also increased the reactivity of the semicoke considerably. The reactivity of the semicoke in the low conversion range mainly depends on the microstructure of itself, whereas that rising quickly in the high conversion range can be ascribed to the prompt concentration rise of the minerals. The reactivity of the semicoke from microwave pyrolysis is higher than that from conventional pyrolysis and this can be due to the more open hole and higher specific surface area of the former formed by devolatilization from inner part to external part. It is found that the gasification process is controlled by external diffusion through applying non-reacted shrinkage reaction core model.
     Finally, an integrated technology route for preparing high quality liquid fuel has been proposed through fully utilizing the liquid products with unique composition and distribution, hydrogen rich gases and active semicoke obtained by microwave pyrolysis, combining the traditional technological route for indirect liquefaction of coal and the latest thoughtway for synthesis of liquid alkanes from biomass-derived feedstock. Figure [74] table [26] reference [126]
引文
[1]国家发改委能源所.中国可持续发展能源及碳排放情景研究[J].中国能源,2003,25(6):4-10.
    
    [2]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    
    [3]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].北京:化学工业出版社,2002.
    
    [4]颜涌捷.生物质能转化技术的研究与开发[J].上海节能,2006(3):13-16.
    
    [5]陈明强.生物质在喷动流化床内快速裂解制液体燃料的基础研究[D].上海:华东理工大学,2003.
    
    [6]George W. Huber, Juben N. Chheda, Christopher J. Barrett, James A.dumesic. Production of Liquid Alkanes by Aqueous-Phase Processing of Biomass-derived Carbohydrates[J] .Science,2005,308(3): 1446-1450.
    
    [7]梁斌.生物柴油的生产技术[J].化工进展,2005,26(4):577-585.
    
    [8]Shashikant Vilas Ghadge, Hifjur Raheman. Process optimization for biodiesel production from mahua(Madhuca indica) oil using response surface methodology[J]. Bioresource Technology, 2006, 97:379-384
    
    [9]Seungdo Kim, Bruce E. Dale. Life cycle assessment of various cropping systems utilized for producing biofuels: Bioethanol and biodiesel[J]. Biomass and Bioenergy, 2005,29: 426-439
    
    [10]Siti Zullaikah, Chao-Chin Lai, Shaik Ramjan Vali. A two-step acid-catalyzed processfor the production of biodiesel from rice bran oil[J]. Bioresource Technology, 2005,96:1889-1896
    
    [11]Wei Du, Yuan-Yuan Xu, De-Hua Liu.Study on acyl migration in immobilized LipozymeTL-catalyzed transesterification of soybean oil for biodiesel production[J]. Journal of Molecular Catalysis B: Enzymatic 2005,37:68-71
    
    [12]L. Bournay, D. Casanave, B. Delfort. New heterogeneous process for biodiesel production: A way to improve the quality and the value of the crude glycerin produced by biodiesel plants[J]. Catalysis Today 2005,106:190-192
    
    [13]Abderrahirn Bouaid, Yolanda Diaz, Mercedes Martinez. Pilot plant studies of biodieselproduction using Brassica carinata as raw material[J]. Catalysis Today 2005, 106: 193-196
    
    [14]Andrea Salis, Marcella Pinna, Maura Monduzzi. Biodiesel production from trioleinand short chain alcohols through biocatalysis[J]. Journal of Biotechnology 2005,119:291-299
    
    [15]M. Di Serio, R. Tesser, M. Dimiccoli. Synthesis of biodiesel via homogeneous Lewis acid catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2005, 239: 111-115
    
    [16]Hengwen Han, Weiliang Cao, Jingchang Zhang.Preparation of biodiesel from soybean oil using supercritical methanol and CO_2 as co-solvent[J]. Process Biochemistry,2005,40:3148-3151
    
    [17]Frederique R. Abreu, Melquizedeque B. Alves, Caio C.S. Macedo, New multiphasecatalytic systems based on tin compounds active for vegetable oil transesterificatonreaction[J]. Journal of Molecular Catalysis A: Chemical ,2005,227 263-267
    
    [18]Satoshi Furuta, Hiromi Matsuhashi, Kazushi Arata. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure[J]. CatalysisCommunications, 2004,5:721-723
    
    [19]Ghassan M. Tashtoush, Mohamad I. Al-Widyan, Mohammad M. Al-Jarrah.Experimentalstudy on evaluation and optimization of conversion of waste animal fat into biodiesel[J]. Energy Conversion and Management, 2004,45:2697-2711
    
    [20]于冲,吴永志,夏海华.巴西美国汽油醇产业的发展简况及对我国的启示[J]. 酿酒,2005,32(3):11-12.
    
    [21]李十中.发展生物质能应兼顾粮食与能源双重安全[J].产业趋势,2005,10:46-47.
    
    [22]郭廷杰.美、日利用纤维素生物质原料制燃料乙醇的技术开发[J].能源技术, 2004,2:61-65.
    
    [23]王树荣,骆仲泱,谭洪等.生物质热裂解生物油特性的的分析研究[J].工程热物理 学报,2004,25(6):1049-1052.
    
    [24]朱锡锋.生物质液化制备合成气的研究[J].可再生能源,2003,1:11-14.
    
    [25]蒋云峰,武戈,邓蜀平等.间接液化合成油品现状和前景分析[J].煤化工,1999,2: 12-15.
    
    [26]李建芬,肖波,江建方等.农林生物质热裂解制取合成气的研究[J].能源工程, 2006,1:19-21.
    
    [27]Dinesh Mohan, Charles U. Pittman, Jr., and Philip H. Steele, Pyrolysis of Wood/ Biomass for Bio-oil: A Critical Review[J], Energy & Fuels, 2006,20:848-889.
    
    [28]张素平.生物质质制液体燃料的研究[D].上海:华东理工大学,2002.
    
    [29]郭晓亚.生物质油催化裂解精制研究[D].上海:华东理工大学,2003.
    
    [30]张光全,董海山.生物质闪速热裂解制备生物质油[J].能源研究与利用,2006,5: 48-52.
    
    [31]Rong Ran,Haiping Yang,Terence Chin et al. Influence of temperature on the distributionof gaseous products from pyrolyzing palm oil wastes[J].Combustion and??Flame,2005,142:24-32.
    
    [32]H.Haykiri-Acma, S.Yaman, S.Kucukbayrak.Effect of heating rate on the pyrolysis yields of rapeseed[J].Renewable Energy,2005,XX:1-8(article in press).
    
    [33]V.Minkova, M.Razvigorova, E.Bjornbom et al.Effect of water vapour and biomass nature on the yield and quality of the pyrolysis products from biomass[J]. Feul ProcessingTechnology 2001, 71:53-61.
    
    [34]Ayhan Demirbas.Effect of initial moisture content on the yields of oily products from pyrolysis of biomass[J].J.Anal.Appl.Pyrolysis 2004,71:803-815.
    
    [35]S. Sensoz, D.Angin, S.Yorgun.Influence of particle size on the pyrolysis of rapeseed(Brassica napus L.): fuel proerties of bio-oil[J].Biomass and Bioenergy, 2000, 19:271-279.
    
    [36]Elisabeth sabeth Schroder.Experiments on the pyrolysis of large beechwood particlesin fixed beds[J].J.Anal.Appl.Pyrolysis ,2004,71:669-694.
    
    [37]Ayse E.Putun, Esin Apaydin, Ersan Putun.Bio-oil production from pyrolysis and steam pyrolysis of soybean-cake: product yields and composition[J].Energy, 2002 ,27:703-713.
    
    [38]C.Acikgoz, O.onay, O.M.Kockar.Fast pyroysis of linseed: product yields and compositions[J]. J.Anal.Appl.Pyrolysis, 2004, 71:417-429.
    
    [39]Asri Gani, Ichiro Naruse. Effect of cellulose and ligin content on pyrolysis and combustion characteristics for several types of biomass[J]. Renewable Energy, XXXX(X): XXX-XXX (article in press).
    
    [40]Piyali Das, Anuradda Ganesh, Pramod Wangikar. Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products[J]. Biomass and Bioenergy, 2004, 27:445-457.
    
    [41]YANG Chang-yan, LU Xue-song, LIN Wei-gang et al.TG-FTIR Study on Corn Straw Pyrolysis-influence of Minerals[J]. CHEM.RES.CHINESE U.,2006,22(4): 524-532.
    
    [42]M. Muller-Hagedorn, H.Bockhorn, L.Krebs et al. A comparative kinetic study on the pyrolysis of three different wood species[J].J.Anal.Appl.Pyrolysis, 2003,68(69): 231-249.
    
    [43]D. Vamvuka , S. Troulinos, E. Kastanaki. The effect of mineral matter on the physicaland chemical activation of low rank coal and biomass materials[J]. Fuel, xx (xxxx):1-9.
    
    [44]A.B.Bridgwater. Production of high grade fuels and chemicals from catalytic pyrolysisof biomass[J]. Ctalysis Today, 1996,29:285-295.
    
    [45]G.Dobele,G.Rossinskaja,T.Dizhbite,GTelysheva et al. Application of catalysts for??obtaining 1,6-anhydrosaccharides from cellulose and wood by fast pyrolysis[J]. J.Anal. Appl. Pyrolysis, 2005, 74: 401-405.
    
    [46]Eleni Antonakou, Angelos Lappas, Merete H.Nilsen et al. Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals[J].Fuel, 2006,85:2202-2212.
    
    [47] Judit Adam, Marianne Blazso,Erika et al. Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts[J].Fuel, 2005,84:1494-1520.
    
    [48]Paul T. Williams, Nittaya Nugranad.Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks[J]. Energy, 2000,25:493-513.
    
    [49]Funda Ates, Ayse E. Putun, Ersan Putun etc.Fixed bed pyrolysis of Euphorbia rigidawith different catalysts[J].Energy Conversion and management, 2005,46: 421-432.
    
    [50] Anne Eva Borgund, Tanja Barth et al, Effects of base catalysis on the product distributionfrom pyrolysis of woody biomass in the presence of water[J]. Organic Geochemistry1999,30:1517-1526.
    
    [51]J.Arauzo, D.Radlein, J.Piskorz et al.A new catalyst for the catalytic gasification of biomass[J]. Energy & fuels, 1994, 8:1192-1196.
    
    [52]郭汉贤.应用化工动力学[M].北京:化学工业出版社,2003.
    
    [53]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2001.
    
    [54]M.J.Safi, I.M.Mishra, B.Prasad.Global degradation kinetics of pine needles in air [J]. Thermochimica Acta, 2004,412:155-162.
    
    [55]S.Volker, Th.Rieckmann.Thermokinetic investigation of cellulose pyrolysis-impact of initial and final mass on kinetic results[J]. J.Anal. Appl. Pyrolysis, 2002, 62:165-177.
    
    [56]A.A.Zabaniotou, GKalogiannis, E.Kappas et al. Olive residues(cuttings and kernels)rapid pyrolysis product yields and kinetics[J]. Biomass and Bioenergy, 2000,18: 411-420.
    
    [57]Gabor Vdrhegyi, Michael Jerry Antal. Kinetic modeling of biomass pyrolysis[J]. J.Anal. Appl. Pyrolysis, 1997,42:73-87.
    
    [58]Ramin Radmanesh, Yann Courbariaux, Jamal Chaouki et al. A unified lumped approachin kinetic modeling of biomass pyrolysis[J]. Fuel, 2006,85:1211-1220.
    
    [59]J.J.M.Orfao, F.J.A. Antunes, J.L. Figueiredo. Pyrolysis kinetics of lignocellulosic materials-three independent reactions model[J]. Fuel, 1999, 78:349-358.
    
    [60]D.Vamvuka, E. Kakaras, E. Kastanaki et al. Pyrolysis characteristics and kinetics of biomass residues mixtures with lignite[J]. Fuel, 2003, 82:1949-1960.
    
    [61]Renzo Difelice, Gianfilippo Coppola, Sergio Rapagna and Nader Jand.Modeling of biomass devolatilization in a fluidized bed reactor[J]. The Canadian Journal of Chemical Engineering, 1999, 77:325-332.
    
    [62]Colomba Di Blasi. Dynamic behaviour of stratified downdraft gasifiers[J]. Chemical Engineering Science, 2000, 55:2931-2944.
    [63]A.M.C. Janse, R.W.J. Westerhout, W.Prins. Modeling of flash pyrolysis of a single wood particle[J].Chemical Engineering and Processing 2000, 39:239-252.
    [64]B.V.Babu, A.S.Chaurasia.Pyrolysis of biomass: improved models for simultaneous kinetics and transport of heat, mass and momentum[J]. Energy Conversion and Management 2004,45: 1297-1327.
    [65]Mathew J.Hagge, Kenneth M.Bryden. Modeling the impact of shrinkage on the pyrolysis of dry biomass[J]. Chemical Engeneering Science 2002, 57: 2811-2823.
    [66]Kenneth M.Bryden, Mathew J.Hagge. Modeling the combined impact of moisture and char shrinkage on the pyrolysis of a biomass particle[J]. Fuel 2003, 82:1633- 1644.
    [67]B.V.Babu, A.S.Chaurasia.Modeling for pyrolysis of solid particle: kinetics and heat transfer effects[J]. Energy Conversion and Management, 2003,44:2251-2275.
    [68]L.M.L.Helsen, E.V.M.Van den Bulck.Study of a new macro-particle model for the low-temperature pyrolysis of dried wood chips[J]. Heat and Mass Transfer, 2001, 38:165-181.
    [69]R.K. Jalan, V.K. Srivastava. Studies on pyrolysis of a single biomass cylindrical pellet-kinetic and heat transfer effectsfJ]. Energy Conversion & Management 1999, 40:467-494.
    [70]B.Krieger-Brockett. Microwave pyrolysis of biomass[J].Res. Chem. Intermed.1994, 20(1): 39-49.
    [71]M. Miura, H. Kaga, A. Sakurai et al. Rapid pyrolysis of wood block by microwave heating[J]. J. Anal. Appl. Pyrolysis, 2004,71:187-199.
    [72]K. El harfi, A.Mokhlisse, M.B.Chanaa, A.Outzourhit. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation[J].Fuel, 2000,79:733-742.
    [73]L.Bilali, M. Benchanaa, K. El harfi, A.Mokhlosse, A.Outzourhit. A detailed study of the microwave pyrolysis of the Moroccan (Youssoufia)[J]. J. Anal. Appl. Pyrolysis, 2005, 73:1-15.
    [74] A.Dominguez, J.A. Menendez, M.Inguanzo et al. Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges[J].Journal of Chromatography A,2003,1012:193- 206.
    [75]J.A. Menendez, M.Inguanzo, J.J. Pis et al. Microwave-induced pyrolysis of sewage sludge[J],.Water research,2002,36: 3261-3264.
    
    
    [76]A.G.W. Bradbury, Y. Sakai, F. Shafizadeh, A kinetic model for pyrolysis of cellulose[J]. J. Appl. Polym. Sci, 1979,23:3271-3280.
    
    [77]O. Boutin, M. Ferrer, J. Le'de.Radiant flash pyrolysis of cellulose-Evidence for theformation of short life time intermediate liquid species[J]. Journal of Analytical andApplied Pyrolysis, 1998,47:13-31.
    
    [78]Haruo Kawamoto, Masaru Murayama, Shiro Saka. Pyrolysis behavior of levoglucosanas an intermediate in cellulose pyroysis: polymerization into polysaccharide asa key reaction to carbonized product formation[J]. J Wood Sci49, 2003, 49: 469-473.
    
    [79]H. Kawamoto, W. Hatanaka, S. Saka. Thermochemical conversion of cellulose inpolar solvent (sulfolane) into levoglucosan and other low molecular-weight substances[J]. J. Anal. Appl. Pyrolysis, 2003,70:303-313.
    
    [80]Qingfeng Liu,Chunxiang Lv, Yonggang Yang, Fu He.Licheng Ling, Study on thepyrolysis of wood-derived rayon fiber by thermogravimetry -mass spectrometry[J].Journal of Molecular Strucuture, 2005,733:193-202.
    
    [81]王树荣,廖艳芬,谭洪等.纤维素快速裂解机理实验研究(Ⅱ.机理分析)[J].燃料化 学学报,2003,31:317-321.
    
    [82]廖艳芬,王树荣,骆仲泱等.纤维素快速裂解机理实验研究(Ⅰ.试验研究)[J].燃 料化学学报,2003,31:133-138.
    
    [83]Carlos Amen -Chen, Hooshang Pakdel, Christian Roy, Production of monomeric phenols by thermochemical conversion of biomass: a review[J]. Bioresource Technology,2001,79:277-299.
    
    [84]Piroska Szabo, Gabor Varhegyi, Ferenc Till, Oscar Faix. Thermogravimetric/ mass spectrometric characterization of two energy crops, Arundo donax and Miscanthussinensis[J] Journal of Analytial and Applied Pyrolysis 1996,36:179-190.
    
    [85] A.A.Pappa, N.E.Tzamtzis, M.K. Statheropoulos et al. Thermal analysis of Pinus Halepensis pine needles and their main components in the presence of (NH_4)_2HPO_4 and (NH_4)_2SO_4[J].Thermochimica Acta 1995,261:165-173.
    
    [86]文丽华,等.木材热解特性和动力学研究[J].消防科学与技术,2004,23(1):2-5.
    
    [87]宋春财,胡浩权.秸秆及其主要组分的催化热解及动力学研究[J].煤炭转化, 2003,26(3):91-97.
    
    [88]Seyhan N.Ege. Organic chemistry[M], D.C. Heath and Company Lexington, Massachusetts/Toronto, 1984.
    
    [89]黄知清,严兴洪.海藻研究开发的发展概述[J].海洋技术,2002,3(21):22-25.
    
    [90]JAMES D, JOHN S. Ablative fast pyrolysis of biomass in the entrained-flow??cyclone reactor at SERI[C]//Solar energy research institute June, 1982.
    
    [91]ORFAO J J M, ANTUNES F J A, et al. Pyrolysis kinetic of lignocellulosic materialls-three dependent reactions model[J]. Fuel, 1999, 78:349-358.
    
    [92]METTE S, ANKER J, et al. Investigation of biomass pyrolysis by thermogravimetricanalysis and differential scanning calorimetry [J].Journal of Analytical andApplied Pyrolysis,2001,78: 765-780
    
    [93]SVENSON J, PETTERSSON J B C, et al. Fast pyrolysis of the main componentsof brich wood [J]. Combustion Science and Technology, 2004,176:977-990.
    
    [94]BROWN A L, DAYTON D C, et al.A study of cellulose pyrolysis chemistry andglobal kinetics at high heating rates[J]. Entergy &Fuel, 2001, 15:1286-1294.
    
    [95]MILLER R S, BELLAN J A. Generalized biomass pyrolysis model based on superimposedcellulose, hemicellulose and lignin kinetics[J]. Combustion Science andTechnology, 1997, 126:97-137.
    
    [96]JANSE A M C, WESTERHOUT R W J, et al. Modelling of flash pyrolysis of asingle particle[J].Chemical Engineering and Processing, 2000, 39:239-252.
    
    [97]于伯龄,姜胶东.实用热分析[M].北京:纺织工业出版社,1990.
    
    [98]Popescu.Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions-A variant on the Ozawa-Flynn-Wall method[J]. ThermochimActa, 1996,285(2):309-323.
    
    [99]王鹏.环境微波化学技术[M].北京:化学工业出版社,2003.
    
    [100]金钦汉,微波化学[M].北京:科学出版社,2001.
    
    [101]Wang Jun, Zhang Mingxu, Chen Mingqiang et al.Catalytic effects of six inorganic compounds on pyrolysis of three kinds of biomass[J]. Thermochimica acta, 2006, 444:110-114.
    
    [102]王华,刘荣厚,张春梅等.卡尔费休方法测定生物油含水量的试验研究[J].可再 生能源,2005,3:17-20.
    
    [103]邱涵,陈素俭等.气相色谱法测定丁酮中水分的含量[J].海峡药学,2000,12(4): p33.
    
    [104]王惠,王满营,张兴等.净叶宝乳油中水分的气相色谱法测定[J].分析测试学报, 2001,20(6):50-52.
    
    [105]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M],化学工业出版社,2004: p52.
    
    [106]W. Iwasaki.A consideration of the economic efficiency of hydrogen production from biomass[J]. International Journal of Hydrogen Energy, 2003, 28: 939-944.
    
    [107]J.Stsuzo, D.Radlein, J.Piskorz, D.S.Scott.A new catalyst for the catalytic gasificationof biomass[J].Energy&Fuels, 1994,8:1192-1196.
    
    [108]邬义明.植物纤维化学[M].北京:中国轻工业出版社,1991.
    
    [109]高洁.纤维素科学[M].北京:科学出版社,1999.
    
    [110]T.W.Graham Slolmons, Craig B.Fryhle. Organic chemistry[M]. Beijing: Chmical Industry Press, 2002:p1110.
    
    [111]蒋挺大.木质素[M].北京:化学工业出版社,2000.
    
    [112]Ana S. Dias, Martyn Pillinger, Anabela A.Valente. Dehydration of xylose into furfural over micro-pesporous sulfonic acid catalysts[J] Journal of Catalysis,2005, 229:414-423.
    
    [113]Keikhosro Karimi, Shauker Kheradmandinia, Mohammad J. Taherzadeh. Conversionof rice straw to sugars by dilute-acid hydrolysis[J].Biomass and Bioenergy 2006 ,30: 247-253.
    
    [114]S.Abad, J.L.Alonso, V.Santos, J.C.Paraj6.Furfural from wood in catalyzed acetic acid media: A mathematical assessment[J].Bioresource Technology 1997,62:115-122.
    
    [115]Michael Jerry Antal, Jr.Tongchit Leesomboon, William S.Mok et al. Mechanism of formation of 2-furaldehyde from D-xylose[J]. Carbonhydrate Research, 1991, 217:71-85.
    
    [116]卢春兰,徐绍平,邓晓龙等.生物质热解半焦炭的反应性研究[J].林产化学与工 业,2005,25(3):16-20.
    
    [117]Nestor Tancredi,Tomas Cordero, Jose Rordriguez-mirasol et al. CO_2 gasification of eucalyptus wood chars[J]. Fuel,1996,75(13):1505-1508.
    
    [118]米铁,陈汉平,唐汝江等.生物质半焦气化的反应动力学[J].太阳能学报,2005,26 (6):766-771.
    
    [119]李爱民,刘连芳,李润东.生物质热解半焦产率及特性的研究[J].农业环境科学 学报,2003,22(2):214-216.
    
    [120]闵凡飞,陈清如,张明旭,新鲜生物质热解气化半焦特性的XRD研究[J].中国矿 业大学学报,2006,35(3):336-340.
    
    [121] Alejandro Molina and Mondragon.Reactivity of coal gasification with steam andCO_2[J]. Feul, 1998,77:1831-1839.
    
    [122]Osvalda Senneca, Piero Salatino and Sabato Masi. Microstrctural changes andloss of gasification reactivity of chars upon heat treatment[J]. Feul,1998, 77(13):1483-1493.
    
    [123]李彦旭,田青平,郭汉贤等.氧化铁脱硫剂高温煤气脱硫行为的研究[J].燃料化 学学报,1998,26(2):130-134.
    
    [124]樊惠玲,郭红生,郭汉贤等.氧化锌脱硫中氢的气氛效应及动力学表征[J].燃料 化学学报,1998,26(5):440-445.
    
    [125]樊惠玲,郭汉贤,上官炬等.氧化锌脱硫中固体扩散的动力学分析[J].燃料化学 学报,2000,28(4):368-371.
    
    [126]曾蒲君,王承宪.煤基合成燃料工艺学[M].徐州:中国矿业大学出版社,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700