干旱河谷颗粒侵蚀及其治理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒侵蚀发生在干旱河谷地区,是裸露的岩石发生破碎,呈颗粒状剥离沿坡面滚落,在坡脚形成碎屑堆积体的现象。岩石裸露是发生颗粒侵蚀的首要条件,小江流域许多崩塌滑坡和人类活动造成的岩石裸露最终发育成颗粒侵蚀体。但是颗粒侵蚀引起关注,则是由于汶川地震发生后,岷江沿岸无数的山体崩塌与滑坡造成了大片完全裸露的山体,使得颗粒侵蚀面积急剧扩大。本文以云南省小江流域的颗粒侵蚀为调查研究对象,通过野外测量和试验得到了颗粒侵蚀的基本特征及相关发育机理,初步开展了针对颗粒侵蚀的治理方法研究。
     小江流域颗粒侵蚀分布于布于干旱河谷区海拔800-2000m的阳坡、半阳坡地带,岩性以细砂岩、千枚岩、板岩、页岩和灰岩为主。颗粒侵蚀的存在形式为颗粒侵蚀体,由坡度常年为50°-70°的裸露侵蚀面、40°左右的颗粒滑动段、35°左右的颗粒堆积体三部分组成。相比于其它侵蚀形式,颗粒侵蚀粒径分布均匀,呈现出较好的分选性,粒径变幅小。颗粒侵蚀的侵蚀强度很大,侵蚀速率主要为在1~10cm/yr,严重破坏植被,带来飞石灾害,并导致坡面泥石流。
     颗粒侵蚀的发育过程受到干旱河谷气候环境和地形地质的综合影响。气候因素的影响尤为重要,主要是气温与湿度的变化,以及太阳辐射。风是侵蚀发育的主要驱动力,模拟风动力实验证明:单位面积内平均每分钟的吹落量与风速的四次方呈正比关系,同等时段内吹落颗粒的最大均值粒径与风速呈线性关系。
     颗粒侵蚀的治理必须从侵蚀面开始。选择当地耐旱的苔藓植物种类,与底泥和营养物质混合后均匀涂抹、喷洒于侵蚀面上。苔藓覆盖层可以抵抗阳光暴晒和风吹剥落,在经过雨季的活力生长期和旱季的生长休眠期,苔藓发育到一定程度即可实现治理。
Grain erosion is defined as the phenomenon of detachment of grains from bare rocks, flow of grains down slope, and accumulation at the toe of the mountain, forming a deposit fan. The prerequisites of grain erosion development is bare rocks. Bare rocks were caused by avalanches, landslides and human activities, which were very common in the Xiaojing River basin. The Wenchuan Earthquake, occured in Sichuan on May 12, 2008, caused numerous rockfalls, avalanches and landsildes. Consequently grain erosion occurred throughout the earthquake area in dry valley of Min River. The process of grain erosion, and control strategies to limit it are studied by field investigations and experiments in the dry valley of Xiaojiang River basin in southwest China.
     Grain erosion occurs in the Xiaojiang River Basin mainly on south facing slopes with altitude ranges from 800m to 2000m. In general, grain erosion occurred mostly in finestone, phylite, slate, shale and limestone rocks. A grain erosion site mainly consists of three sections: a top where surface grain erosion occurs with the slope angle in the range of 50°-70°; a middle where grain flow occurs with a slope angle about 40°; and a bottom where deposit fan forms with the slope angle about 35°. Relatively uniform grain size and lack of large stones are common features of grain erosion, which are much different from those of landslides and avalanches. The rate of grain erosion in the Xiaojing River basin is mainly between 1 to 10 cm/yr. Grain erosion causes flying stones and can injure humans, and results in great damages on vegetation and numerous slope debris flows.
     The develope process of grain erosion is impacted by the combined action of climate, geology and landform. The foremost influence factor is climate, especially the variation of temperature and humidity, and the solar-radiation. Rocks are broken down to grains under the action of insolation and temperature change. Then, wind blows the grains from the bare rock down slope. An experiment was conducted to study the relation of grains blown down by wind with wind speed. Experimental results showed that the amount of grains blown down by wind per area of rock surface per unit time is proportional to the fourth power of the wind speed. However, the size of the grains blown down by wind increases linearly with the wind speed.
     Several experiments proved that grain erosion can be controlled if the bare rocks are covered with a layer of clay suspension with moss. Two drought-enduring moss species were collected from local and neighboring areas and mixed with mixed with the river sediment and humus, and evenly scrawled or sprayed to the bare rocks. The moss layer protected the rocks from insolation and mitigated the effects of temperature change, thus effectively mitigated grain erosion.
引文
[1]崔鹏,王道杰,韦方强.干热河谷生态修复模式及其效应.中国水土保持科学. 2005,03(3):60-64
    [2]王兆印,刘丹丹,施文婧.汶川地震引发的颗粒侵蚀及其治理.中国水土保持科学. 2009,07(6):1-8
    [3]唐克丽等.中国水土保持.北京:科学出版社,2004
    [4] Columbia University, Columbia Encyclopedia,New York: Columbia University Press, 2000.
    [5]杨才敏.土壤侵蚀及其类型划分.山西水土保持科技. 1984,03:31-34
    [6] Goldman S.J., Jackson K. and Bursztynske T.A.. Erosion & Sediment Control Handbook,New York.:McGraw-Hill Book Company, 1986.
    [7] Virginia Soil and Water Conservation Commission, 1980, Virginia Erosion Erosion and Sediment Control Handbook, 2d ed., Richmond, VA.
    [8] N.W.哈德逊.土壤保持(窦葆璋译).北京:科学出版社,1976
    [9] Meyer L.D. Evaluation of the universal soil loss equation. Journal of Soil Water Conservation. 1984,29:99-104
    [10]胡世雄,勒长兴.坡面动力侵蚀过程的实验研究进展.地理科学进展. 1999,18(2):103-110
    [11]牟金泽,孟庆枚.陕北中小流域年产沙量计算.黄土高原水土流失综合治理科学讨论会资料汇编.,1981
    [12]谢树楠,王孟枚等.黄河中游黄土沟壑区暴雨产沙模型的研究.北京:清华大学出版社,1990
    [13]蔡强国,王贵平.黄土高原小流域侵蚀产沙过程与模拟.科学出版社,1998
    [14] Fan,Jen Chen, Wu Min Fon. Estimation of interill soil erosion on steep slopes. Transactions of the American Society of Agricultural Engineer,2001,44(6):1471-1477
    [15]孔亚平,张科利,唐克丽.坡长对侵蚀产沙过程影响的模拟研究.水土保持学报. 2001, 06:17-24
    [16]田风霞,王占礼,郑世清,马春艳.黄土道路侵蚀过程模拟试验研究.水土保持通报,2007,04:9-15
    [17]张晴雯,雷廷武.细沟侵蚀动力过程输沙能力试验研究.土壤学报,2002,04:476-482
    [18]张晴雯,雷廷武.黄土区细沟侵蚀过程中输沙能力确定的解析法.中国农业科学,2004,05:699-703
    [19] HortonR.E. Erosional development of streams and their drainage basins:hydropsical approaeh to quantitative morphology. Bulletin of the Geological Soeiety of Ameriea,1945,05(6):235-247
    [20]李全胜,王兆睿.坡面承雨强度和土壤侵蚀临界坡度的理论探讨.水土保持学报,1995,09(3):50-53
    [21]邵学军.坡面细沟流速与坡度关系的数值模拟.水土保持学报,2001,15(5):1-5
    [22]罗斌,陈强.南方花岗岩地区坡面侵蚀临界坡度探讨.土壤侵蚀与水土保持学报,1999,05(6):67-70
    [23]胡世雄,靳长兴.坡面土壤侵蚀临界坡度问题的理论与实践研究.地理学报,1999,54(4):347-356
    [24]孔亚平,张科利等.坡长对侵蚀产沙过程影响的模拟研究.水土保持报,2001,15(2):17-20
    [25]华绍祖.黄土坡耕地上坡长对侵蚀的影响.水土保持学报,1989,12(3):7-14
    [26]郑粉莉.发生细沟侵蚀的临界坡长与坡度.中国水土保持. 1989,8:23-24
    [27] W.H.Wischmeier and D.D.Smith. Predictiong rainfall erosion losses-a guide to conservation planning, DSDA, Agriculture Research Service Handbook ,1978:508-537
    [28] W.H.Wischmeier and D.D.Smith. Rainfall energy and its relationship to soil loss. Transaction of American Geophysical Union,1958,29:285-291
    [29]刘增文.美国水力侵蚀预测模型WEPP介绍.中国水土保持,1997,12:26-27
    [30] Barnett,R.B. Soil erosion,Experiment and Models,Catena Supplement 17,1990
    [31] De Roo A P J, Weaseling C G, and Ritsema C J. LISEM:A single event physically based hydrological and soil erosion model for drainage basins I:Theory,input and output. Hydro. Processes,1996,10:1107-1117
    [32]杨艳生,史德明.关于土壤流失方程中R指标的研究.中国水土保持,1995,9(1):39-41
    [33]刘善建,林培.黄土丘陵沟壑区土壤侵蚀定量方法与模型的研究.水土保持学报,1953,7(3):73-79
    [34]牟金泽,孟庆枚.降雨侵蚀土壤流失预报方法的初步研究.中国水土保持,1983(6):23-27.
    [35]江忠善,宋文经等.黄土地区天然降雨雨滴特征研究.中国土壤保持,1983,11(3):32-37
    [36]王宏伟,李向荣,赵志雄.陕甘宁盆地中部气田开发对水土流失的影响预测.水土保持学报,1994,8(4):31-35.
    [37]倪晋仁,李英奎.基于土地利用结构变化的水土流失动态评估.地理学报,2001,56(5):611-621
    [38]解明曙,庞薇.关于中国土壤侵蚀类型与侵蚀类型区的划分.中国水土保持,1993,5:8-10
    [39]郑书彦.重力侵蚀分类研究.水土保持研究,2008,15(5):46-48
    [40]张倬元,董孝璧,刘汉超.世界滑坡目录工作组建议的滑坡术语.地质灾害与环境保护,1995,6(1):1-6.
    [41]曹银真.黄土地区重力侵蚀的类型和成因.中国水土保持,1985,06:8-13
    [42]曹银真.黄土地区重力侵蚀的机理及预报.水土保持通报,1981,04:19-23
    [43]张信宝,柴宗新,汪阳春.黄土高原重力侵蚀的地形与岩性组合因子分析.水土保持通报,1989,9(5):40-44
    [44]朱同新,陈永宗.晋西黄土地区重力侵蚀产沙分区的模糊聚类分析.水土保持通报,1989,9(2):27-34
    [45]王德甫,赵学英马浩禄,姚保顺.黄土重力侵蚀及其遥感调查.中国水土保持,1993,12:25-28
    [46]王光谦,薛海,李铁建.黄土高原沟坡重力侵蚀的理论模型.应用基础与工程科学学报,2005,13(4):335-343
    [47]张培震,徐锡伟,闻学泽,冉勇康. 2008年汶川8.0级地震发震断裂的滑动速率、复发周期和构造成因.地球物理学报,2008,51(4):1066-1073
    [48]李智广,曾红娟.汶川地震受灾严重区域崩塌与滑坡体空间分布研究.中国水土保持科学,2009,7(4):14-19
    [49]黄润秋,李为乐.汶川地震触发崩塌滑坡数量及其密度特征分析.地质灾害与环境保护,2009,20(3):1-7
    [50]乔建平,蒲晓虹,王萌,杨宗佶,石莉莉,田宏岭.汶川地震滑坡的分布特点及最大震中距分析.自然灾害学报,2009,18(05):10-15
    [51]赵纪生,魏景芝,吴景发,周正华.汶川8.0级地震滑坡、崩塌机制.震灾防御技术,2008,3(4):379-383
    [52]李光,姚大全,张有林,王行舟,郑颖平,陈安国.汶川8.0级地震崩塌、滑坡的发育特点.防灾科技学院学报,2008,10(3):131-134
    [53] Chepil,W.S. Influence of moisture on erodibility of soil by wind. Soil Science Society of American Proceeding. 1956, 20:288-292
    [54] Woodruff NP,Siddoway FH. A wind erosion equation.Proc. Soil Sci Soc. Am., 1965, (29): 602-608.
    [55] Fryrear.D.W., C.A.Krammes, D.L.Williamson, and T.M.Zobeck. Computer the wind erodible fraction of soils. J.Soil&Water Conserv. 1994,49(2):183-188
    [56] Cole GW,Lyles L, Hagen LJ. A simulation model of daily wind erosion soil loss. Trans.Am.Soc. Agric.Engrs.,1983,(36):1758-1765.
    [57] Hagen.L.J, E.L.Skidmor, and A.Saleh. Wind erosion:Prediction of aggregate abrasion coefficients. Trans,ASAE. 1992,35(06):1847-1850
    [58] Shao YP, Raupach MR, Leys JF. A model for prediction Aeolian sand drift and dust entrainment on scales form paddock to region. Australia Journal of Soil Research, 1996,(34): 309-342.
    [59] Lu H, Shao YP. Toward quantitative prediction of dust storms: an integrated wind erosion modeling system and its applications. Environment Model &Software, 2001,(16):233-249.
    [60]胡云锋,刘纪远,庄大方.土壤风力侵蚀研究现状与进展.地理科学进展,2003,22(3):288-295
    [61]朱震达.中国北方沙漠化现状及发展趋势.中国沙漠,1985,5(3):2-11.
    [62]朱震达,王涛.从若干典型地区的研究对近十余年来中国土地沙漠化演变趋势的分析.地理学报,1990,45(4):430-440.
    [63]王涛,朱震达.中国北方沙漠化的若干问题.第四纪研究,2001,01:45-49
    [64]陈渭南,董光荣,董治宝.中国北方土壤风蚀问题的研究进展和趋势.地球科学进,1994,9(5):6-12.
    [65]李小雁,李福兴.土壤风蚀中有关上壤性质因子的研究历史与动向.中国沙漠,1998,18 (01):91-99
    [66]王光谦,冉启华,刘绿波.风成沙纹过程的计算机模拟.泥沙研究,1998,09:1-6
    [67]孙其诚,王光谦.风沙运动的计算机模拟.科学通报,2001,46(03):254-256
    [68]张国平,张增祥,刘纪远.中国土壤风力侵蚀空间格局及驱动因子分析.地理学报,2001,56(02):146-157
    [69]常旭,吴国雄,郭迁,溜砂坡形成机理及防治措施研究.公路,2006,01:89~91
    [70]王成华,张小刚,阙云,何思明.粒状碎屑溜砂坡的形成和基本特征研究--溜砂坡系列研究之一.岩土力学,2007,28(1):29-35
    [71]王成华,阙云,李新坡,张小刚.粒状碎屑溜砂坡运动特征与动力数值分析--溜砂坡系列研究之二.岩土力学,2007,28(2):219-223
    [72]王成华,阙云,徐骏,李新坡.粒状碎屑溜砂坡运动方程与砂坡土压力计算--溜砂坡系列研究之三.岩土力学,2007,28(7):1299-1303
    [73]徐骏,王成华,何思明,张小刚,周麟.粒状碎屑溜砂坡桩板墙加固防护技术.水土保持学报,2007,14(3):315-317
    [74]孙红月,尚岳全,吕庆.溜砂坡的成灾机理与防治对策.自然灾害学报,2006,15(4):28-32
    [75]张荣祖.横断山区干旱河谷.北京:科学出版社,1992
    [76]石承仓,雍国伟.长江上游干热干旱河谷生态环境现状及生态环境重建的对策.西南农业学报,2004,14(4):114-118
    [77]孙辉,唐亚,黄雪菊,黄成敏.横断山区干旱河谷研究现状和发展方向.世界科技研究与发展,2005,06):55-61
    [78]张彦东,沈有信,刘文耀.金沙江干旱河谷退化草地群落对氮磷施肥的反应.植物研究,2004,24(1):59-64
    [79]杨兆平,常禹.我国西南主要干旱河谷生态及其研究进展.干旱地区农业研究,2007,25(4):90-93
    [80]何永彬,卢培泽,朱彤.横断山—云南高原干热河谷形成原因研究.资源科学,2000,22(5):69-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700