基于SEBS模型的黑河中游作物需水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物需水量是农田水循环的一个关键的方面,它也决定了在生态环境系统中的水份和热量的输入输出,定量对作物需水量进行估算是评价陆地生态系统生产力、区域用水量、作物的产量的基础,同时也是区域内研究气候变化的重要组成部分。
     本文利用定量遥感方法估算了黑河中游2009年的作物需水量。由于本研究区涉及黑河中游整个陆面范围,空间尺度较大,且研究区内地形复杂多变,土地利用类型也比较丰富,这给本研究带来了一定的难度。为了能够更好地达到本研究的目的,本研究在利用遥感蒸散发模拟模型(SEBS)对黑河中游作物需水量进行模拟和分析的同时,也使用了其他方法进行了作物需水量的估算,并探讨了遥感蒸散发模拟模型(SEBS)中相关的输入部分参数的敏感性,用来深入了解时空尺度上作物需水量的反演的理论基础和物理机制。依据最初的研究目的,我们收集和整理了2009年相关的遥感数据、气象数据和植被等数据,还有地面气象站点的验证资料,在对SEBS遥感模型的基础上,应用这一模型进行黑河中游作物需水量进行模拟。并在这基础上对作物需水量的时空分布格局和影响作物需水量的因子的敏感性进行了分析。本文主要在以下几个方面进行了比较深入的工作:
     (1)不同月份的蒸散发
     2009年4月至9月研究区月均蒸散发量分别为56.55mm,72.37mm,89.10mm,73.54mm,72.81mm,38.38mm,蒸散发量最大值出现在6月,最小值出现在9月,呈现先增加后减小的趋势。4月至9月的蒸散发量变化范围在86.06-641.64mm之间,东北部的酒泉地区及研究区中部的高台、临泽、张掖、山丹及河道周边的蒸散发量很高,东北部及西北部的荒漠地区蒸散发量明显小于农田,且从分布图上可看出耕地边界明显,与该地区的土地利用数据相吻合。
     (2)作物需水量时空分布
     2009年作物生长季四个生长阶段作物需水量差异很大,全区各阶段需水量平均值分别为53.61mm,226.38mm,72.32mm,80.77mm,生长初期作物需水量最小,占全生长期的11.56%,生长发育期作物需水量最大,生长发育期作物需水量占全生长期的48.83%,生长中期与生长末期作物需水量分别占全生长期的15.60%,17.42%。各生长阶段的作物需水量从大到小排列为:生长发育期>生长末期>生长中期>生长初期。
     生长初期、发育期、中期和末期各生长阶段的作物需水量日平均值分别为1.29mm、2.89mm、2.83mm和1.92mm。各生长阶段的日作物需水量从大到小排列为生长发育期>生长中期>生长末期>生长初期。
     黑河中游作物需水量的空间差异很大。在全生长期内,作物需水量整体分布具有从南向北递增的趋势。研究区内全生长期作物需水量在88.34-632.17mm之间,平均值为463.63mm,临泽、张掖、酒泉三地的作物需水量较高且很接近(560mm左右),高台地区的作物需水量为529.58mm,山丹、民乐的作物需水量较小,分别为510.33mm、491.24mm。
     (3)不同方法计算作物需水量结果
     PM-Kc法计算得出的各阶段作物需水量基本上大于SEBS模拟得出的结果。其中生长初期、生长发育期、生长中期和生长末期各阶段两种方法的日平均差值分别为:0.03mm、0.43mm、1.24mm,0.62mm。
     (4)SEBS模型输入参数敏感性分析
     通过分析发现日蒸散发对模型输入参数敏感性各不相同。分析黑河中游日蒸散发的平均效应可知:黑河中游日蒸散发对日均气温、日照时数和空气湿度的敏感性十分小,平均日蒸散发相对变化量不超过1%;黑河中游日蒸散发对风速、归一化植被指数、地表比辐射率、地表反照率的敏感性较小都不超过5%;黑河中游日蒸散发对覆盖度、地面气压、参考高度处气压和地表温度的敏感性大于20%。各参数敏感性从大到小依次为:地表温度>参考高度处气压>地面气压>覆盖度>风速>地表比辐射率>地表反照率>归一化植被指数>日照时数>空气湿度>日均气温。
Crop water requirement is very important for water cycle, and is a determinant for the estimation of water and heat transfer in the Soil-Plant-Atmosphere Continuum (SPAC). Quantitative estimation of crop water requirement is the base of appraising terrestrial NPP, regional water consumption, soil water transport, crop production, and land use/land planning. Especially, quantitative estimation of crop water requirement is important for the study on global or regional climate change.
     This study aims to simulate crop water requrement of the year2009by means of quantitative remote-sensing methods, the study ares covers the middle reach of Heihe River basin in northwest China. Due to the, for there are very comples terrains, various climate zones and diversiform land use, it is difficult to estimating crop water requrement at such spatial extent. In order to achieving this research purpose, the first step is simulation and analysis of crop water requierment, and secondly, sensitivity analyses of each parameters. This study lays particular emphasis analyzing on temporal and spatial analysis of crop water requirement of the middle Heihe river and the uncertainty of relevant key parameters of remote-sesing models for simulation crop water requirement, trying to arasp and understand physics mechanism of remote-sensing estimation of large space-time scale crop water requirement. According to this purpose, we firstly collected and processed relevant meteorological data, remote-sensing images, soil and vegetation data and ground validation information of the year2009, and secondly, on the basis of the remote sensing model of SEBS, we used this method to estimate crop water requirement of several days about the year2009. And quantitatively analyzedspatial-temporal patterns of crop water requirement. we also conducted the sensitivity analysis of the influence factors of SEBS. The main progresses includes:
     (1) Evapotranspiration in different months
     The average monthly evapotranspiration was56.55,72.37,89.10,73.54,72.81and38.38mm respecively in April to September of2009. The maximum evapotranspiration was obtained in June and the minimum in September, the pattern of evapotranspiration showing a increase-then-decrease trend. Evapotranspiration from April to September varied from86.06to641.64mm, the evapotranspiration at Jiuquan region (in northeast part of study area),at Gaotai, Linze, Zhangye, Shandan (in middle part) and at those areas near Heihe river are relatively higher, the evapotranspiration in northeast and north-western desert region significantly less than farmland. The arable land boundary is reflected in the distribution map of evapotranspiration.
     (2) Spatial and temporal distribution of crop water requirement
     The crop water requirement of growing season in four growth stages in2009varied significantly. The crop water requirement in study area of each stage were53.61,226.38,72.32and80.77mm, respecively. Within initial stage, the water requirement is minimum and account for11.56%of the entire growing season, whereas within development stage, the water requirement reaches maximum and account for48.83%of entire growing season. The crop water requirement in mid-season stage and late-season stage account for15.60%and17.42%. The crop water requirement in different stage over the entire growing stage follows a decreasing order:development stage> late-season stage> mid-season stage> initial stage.
     The daily crop water requirement in different growing stage was1.29mm,2.89mm,2.83mm and1.92mm, respectively. The different daily crop water requirement in dicreasing order as follows:development stage> mid-season stage> late-season stage> initial stage.
     The results show that the trend of crop water requirement gradually increased from south to north part, and crop water requirement varied from88.34to632.17mm over the entire growing season, with a mean of463.63mm. The spatial pattern of Crop evapotranspiration varied significantly. The crop water requirement for Linze, Zhangye and Jiuquan was relatively higher and very closed to560mm, and for Gaotai, Shandan and Minle, the water requirement was529.58,510.33and491.24mm, respectively.
     (3) Comparison of different methods for calculation of crop water requirement
     The crop water requirement was calculated from PM-Kc method was greater than the the SEBS model simulated results in different growing stages. The daily average difference of crop water requirement for initial stage, the development stage, mid-season stage and late-season stage was0.03mm,0.43mm,1.24mm,0.62mm.
     (4) Input parameter sensitivity analysis of SEBS model
     The sensitivity analysis shows that daily evapotranspiration changed less than1%with the10%variation of average daily temperature, sunshine hours and air humidity. For the variation of wind speed, normalized difference vegetation index, surface emissivity and surface albedo, the daily evapotranspiration varied less than5%. The daily evapotranspiration varied larger than20%for the variation of ground coverage, the surface pressure, the reference height of the pressure and land surface temperature. The sensitivity analysis shows that the daily evapotranspiration varied acoording to the variation of each parameters as (from most sensitive to least sensitive):land surface temperature> reference height of the pressure> surface pressure> the percent of ground coverage> wind speed> surface emissivity surface albedo> normalized difference vegetation index> sunshine hours> air humidity> average daily temperatures.
引文
[1]Anderson M C, Norman J M, Diak G R, Kustas W P, Mecikalski J R. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing [J]. Remote Sensing of Environment.1997, (60):195-216.
    [2]Angus D E, Watts P J. Evapotranspiration-How good is the Bowen ratio method? [J]. Agricultural Water Management.1984, (8):133-150.
    [3]Bastiaanssen W, Menenti M. Mapping groundwater losses in the western desert of Egypt with satellite measurement of surface reflectance and surface temperature [J]. Water Management and Remote Sensing.1990,42:61-91.
    [4]Bastiaanssen W. Regionalization of surface flux densities and moisture indicators in composite terrain:a remote sensing approach under clear skies in Mediterranean climates [D]. Ph.D. dissertation, Wageningen Agriculture University.1995,273 pp. (ISBN 90-5485-465-0).
    [5]Berghe H F M. Heat and water transfer at the bare soil surface [D]. Ph.D. Thesis, Wageningen Agriculture University, The Netherlands,1986.
    [6]Bouchet R. J. Evapotranspiration reelet potentielle, Signification climatique. AssociationScience Hydrology Process. Berkeley California Symposia Publication.1963,62: 134-142.
    [7]Brown K W, Rosenberg N J. A resistance model to predict evapotranspiration and its application to a sugar beet field [J]. Agronomy Journal.1973,65:199-209.
    [8]Brown K W, Rosenberg N J. A resistance model to predict evapotranspiration and its application to a sugar beetfield [J]. Agronomy Journal.1973,65:635-641.
    [9]Brutsaert W. Evaporation into the Atmosphere. Theory, History, and Applications [M]. Reidel Publishing Company, Dordrecht, Netherlands,1982. pp:299.
    [10]Burman R, Pochop LO. Evaporation,1994. Evapotranspiration and Climate Data. The Netherlands:Elsevier Science.
    Caselles V, Artigao M M, Hurtado E, Coll C, Brasa A. Mapping actual evapotranspiration by
    combining landsat TM and NOAA-AVHRR Images:application to the Barrax area, Albacete,
    Spain[J]. Remote Sensing of Environment.1998,63:1-10.
    [11]Chehbouni A, Nouvellon Y, Lhomme J P, Watts C, Boulet G, Kerr Y H, Moran M S, Goodrich D C. Estimation of surface sensible heat flux using dual angle observations of radiative surface temperature[J]. Agricultural and Forest Meteorology.2001,108(1):55-65.
    [12]Dickinson R E. Modeling evapotranspiration for three-dimensional global climate models. In: J.E. Hanson, T. Takahashi (Eds.), Climate Processes and Climate Variability. Am. Geophys. Union,1984, pp.58-72.
    [13]Granger R J. Satellite-derived estimates of evapotranspiration in the Gediz basin [J]. Journal of Hydrology.2000,229 (1-2):70-76.
    [14]Hatfield J L, Perrier A, Jackson K D. Estimation of evapotranspiration at one-time-of-day using remotely sensed surface temperature [J]. Agricultural Water Management.1983,7: 105-110.
    [15]Hatfield J L, Perrier A, Jackson K D. Estimation of evapotranspiration at one-time-of-day using remotely sensed surface temperature [J]. Agricultural Water Management.1983,7: 105-110.
    [16]Hillel D. Soil and water. Physical principles and processes [M]. Vander, Louvain (Belgium). 1974.
    [17]Kustas W P, Norman J M.A two-source energy balance approach using directional radiometric temperature observation for sparse canopy covered surface [J]. Agronomy Journal.2000,92:847-854.
    [18]Kustas W P. Estimates of evapotranspiration with a one and two layer model of heat transfer over partial canopy cover [J]. Journal of Applied Meteorology.1990(29):704-715.
    [19]Lhomme J P, Monteny B, Amadou M. Estimating sensible heat flux from radiometric temperature over sparse millet [J]. Agricultural and Forest Meteorology.1994(68):77-91.
    [20]Mecikalski J R, Diak G R, Anderson M C, Norman J M. Estimating fluxes on continental scales using remotely sensed data in an atmospheric land exchange model [J]. Journal of Appied Meteorology.1999,38:1352-1369.
    [21]Menenti M, Choudhury B J. Parametrization of land surface evapotranspiration using a location-dependent potential evapotranspiration and surface temperature range. In:Bolle H J et al. Exchange processes at the land surface for a range of space and time scales. IAHS Publications.1993,212:561-568.
    [22]Menenti M, Choudhury, B. J. Parametrization of land surface evapotranspiration using alocation-dependent potential evapotranspiration and surface temperature range. In:Bolle H. J, etc. Exchange processes at the land surface for a range of space and time scales. IAHSPublications,1993, (212):561-568.
    [23]Menenti M. Physical aspects of and determination of evaporation in deserts applying remote sensing techniques. Report 10 (special issue), Institute for Land and Water Management Research (ICW), The Netherlands.1984.
    [24]Moran M S, Jackson R D, Raymond L H, Gay L W, Slater P N. Mapping surface energy balance components by combining Landsat thematic mapper and ground-based meteorological data [J]. Remote Sensing of Environment.1989,30:77-87.
    [25]Morton F J. Estimating Evaporation and Transpiration from Climatological Observations [J]. Journal of Applied Meteorology.1975,75(4):488-497.
    [26]Morton F. L. Operational estimates of area evapotranspiration and their significance to the science and practice of Hydrology [J]. Journal of Hydrology.1983,66:1-76.
    [27]Morton F. L. Potential evaporation and river basin evaporation [J]. Journal of the Hydraulics Division-ASCE,1965,91(Hy6):67-97.
    [28]Njoku E G, Patel IR. Observations of the seasonal variability of soil moisture and vegetation cover over Africa using satellite microwave radiometer, ISLSCP, Proceedings of an International Conference held in Rome, Italy. ESA, SP-248, Paris,1986,349-356.
    [29]Norman J M, Kustas W P, Humes K S. A two-source approach for estimating soil and vegetation energy fluxes from observation of directional radiometric surface temperature [J]. Agricultural and Forest Meteorology.1995,77:263-293.
    [30]Norman JM, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations directional radiometric surface temperature [J]. Agricultural and Forest Meteorology.1995,77:263-293.
    [31]Olioso A, Chauki H, Courault D, Wigneron J P. Estimation of evapotranspiration and photosynthesis by assimilation of remote sensing data into SVAT models [J]. Remote Sensing of Envi ronment.1999,68 (30):41-356.
    [32]Penman H L, Long J F. Weather in wheat, and essay in micro-meteorology [J]. Quarterly Journal of the Royal Meteorological Society.1960,86:16-50.
    [33]Penman H L. Natural Evaporation from Open Water, Bare Soil and Grass [J]. Proceedings the Royal of Society.1948,193(1032):120-145.
    [34]Roerink G J, Su Z, Menenti M. S-SEBI:A simple remote sensing algorithm to estimate the surface energy balance [J]. Physics Chemistry of Earth (B).2000,25(2):147-157.
    [35]Rosenberg N J, Blad B. L, Verma S. B. Microclimate-the Biological Environment of Plants. New York:John Wiley & Sons,1983.
    [36]Rosenberg N J, Blad B. L., Verma S. B. Microclimate-the Biological Environment of Plants [M].1983, New York:John Wiley & Sons.
    [37]Seguin B, Itier B. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data [J]. International Journal of Remote Sensing.1983,4(2):371-383.
    [38]Sellers P J, Randall D A, Collatz G J, Berru J A, Field C B, Dazlich D A, Zhang C, Collelo G D. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I:Model Formulation [J]. Journal of Climate.1996,9:676-705.
    [39]Shuttle W J. Below-canopy fluxes in a simplified one dimensional theoretical description of vegetation-atmosphere interaction [J]. Boundary-Layer Meteorology.1979,17(3):315-331.
    [40]Su Z, Menenti M. Mesoscale climate hydrology:the contribution of the new observingsystems. Report USF-2,99-05, Publications of the National Remote Sensing Board (BCRS),1999:141.
    [41]Su Z. A Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes from point to continental scale. Su Z, Jacobs C, eds. Advanced Earth Observation-Land Surface Climate. Publications of the National Remote Sensing Board (BCRS),2001, USP-2,183.
    [42]Su Z. Remote sensing of land use and vegetation for mesoscale hydrological studies [J]. International Journal of Remote Sensing.2000,21:213-233.
    [43]Thornthwatie C W, Benjamin Holzman.The Determination of evaporation from land and water surfaces [J]. Monthly Water Review.1939,64,4-11.
    [44]Tucker C J, Holben B N, Elgin J H, Mcmurtrey E. Remote sensing of total dry matter accumulation in winter wheat [J]. Remote Sensing of Environment.1981,11:171-190.
    [45]Webb E K. Profile relationships, the log linear range and extension to strong stability [J]. Quarterly Journal of the Royal Meteorological Society.1976,96:85-100.
    [46]布德柯著(李怀瑾等译).地表面热量平衡[M].北京:科学出版社.1960.
    [47]陈镜明.现有遥感蒸散模式中的一个重要缺点及改进[J].科学通报.1988,33(6):454-458.
    [48]陈仁升,康尔泗,杨建平,王书功.黑河干流山区流域月蒸发力计算模型[J].水文.2002,22(6):5-10.
    [49]程国栋.黑河流域可持续发展的生态经济学研究[J].冰川冻土.2002,24(4):335-342.
    [50]程玉菲.黑河干流中游平原作物蒸发蒸腾量时空分布研究[D].兰州大学硕士论文.2006.
    [51]崔亚莉,徐映雪,邵景力,邵景力.应用遥感方法研究黄河三角洲地表蒸发及其与下垫 面关系[J].地学前缘.2005,12(5):159-165.
    [52]樊引琴.作物蒸发蒸腾量的测定与作物需水量计算方法的研究[D].西北农林科技大学硕士论文.2001.
    [53]高前兆,李福兴.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社.1990.
    [54]贾立,王介民,Msaimo M卫星遥感结合地面资料对区域表面动量粗糙度的估算[J].大气科学.1999,32(5):632-640.
    [55]康引忠,蔡焕杰,冯绍元.现代农业与生态节水的技术创新与未来研究重点[J].农业工程学报.2004,20(001):1-6.
    [56]康绍忠,蔡焕杰.农业水管理[M].北京:中国农业出版社.
    [57]刘昌明,何希吾.21世纪中国水问题方略[M].北京:科学出版社.2001.
    [58]罗金耀.节水灌溉李云与技术[M].武汉:武汉大学出版社.2003.
    [59]马耀明,刘东升,苏中波,李召良,Menenti M,王介民.卫星遥感藏北高原非均匀陆表地表特征参数和植被参数[J].大气科学.2004,28(1):34-42.
    [60]马耀明,马伟强,李茂善,孙方林,王介民.黑河中游非均匀地表能量通量的卫星遥感参数化[J].中国沙漠.2004,24(4):329-399.
    [61]马耀明,刘东升,王介民,黄荣辉,苏中波,高峰.卫星遥感敦煌地区地表特征参数研究[J].高原气象.2003,22(6):531-536.
    [62]莫兴国.用平流-干旱模型估算麦田潜热及平流[J].中国农业气象.1995,16:1-4.
    [63]潘志强,刘高焕,周成虎.基于遥感的黄河三角洲农作物需水时空分析[J].水科学进展.2005,16(1):62-68.
    [64]潘志强,刘高焕.黄河三角洲蒸散的遥感研究[J].地球信息科学.2003,(3):91-96.
    [65]钱正英,张光斗.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利水电出版社.2001.
    [66]孙景生,刘玉民,康绍忠,熊运章.夏玉米田作物蒸腾与棵间土壤蒸发模拟计算方法研究[J].玉米科学.1996,(1):76-80.
    [67]孙卫国,中双和.农田蒸散量计算方法的比较研究[J].南京气象学院学报.2000,23(1):101-105.
    [68]田国良.用NOAA-AVHRR数字图像和地面气象站资料估算麦田的蒸散和土壤水分[M].北京:科学出版社.1990.
    [69]王根绪,程国栋,徐中民.中国西北干旱区水资源利用及其生态环境问题[J].自然资源学报.1999,14(002):109-116.
    [70]王志强.浑善达克沙地牧草需水量的模拟计算方法及人工牧草灌溉制度研究[D].内蒙古农业大学.2006.
    [71]魏丽,钟强.利用产AVHRR资料分析黑河地区地表特征[J].高原气象.1989,8(3):189-196.
    [72]吴艾笙,钟强.黑河地区的地表反射率与植被指数[J].大气科学.1993,17(2):155-162.
    [73]夏军,孙雪涛,谈戈.中国西部流域水循环研究进展与展望[J].地球科学进展.2003,18(001):58-67.
    [74]夏军,谈戈.全球变化与水文科学新的进展与挑战[J].资源科学.2002,24(3):1-7.
    [75]谢贤群.遥感改进的测定农田蒸发量的能量平衡-空气动力学阻抗模式[J].气象学报,1988,46(1):102-106.
    [76]辛晓洲.用定量遥感方法计算地表蒸散[D].2003,中科院遥感所博士学位论文.
    [77]徐中民,张志强,程国栋.甘肃省1998年生态足迹计算与分析[J].地理学报.2000,55(5): 607-616.
    [78]杨志峰,崔保山,刘静玲,王西琴,刘昌明.生态环境需水量理论、方法与实践[M].北京:科学出版社.2003.
    [79]詹志明,冯兆东,秦其明.陇西黄土高原陆面燕散的遥感研究田[J].地理与地理信息科学.2004,20(1):16-19.
    [80]张长春,王晓燕,崔亚莉,等.黄河三角洲地表特征参数的遥感研究[J].水文地质工程地质.2005,29(2):71-75.
    [81]张桂华,符淙斌,王长耀.遥感信息结合植物光合生理特性研究区域作物产量水分胁迫模型[J].大气科学.2000,24(5):683-693.
    [82]张仁华,孙晓敏,刘纪远,苏红波,朱治林.定量遥感反演作物蒸腾和土壤水分利用率的区域分异[J].中国科学(D辑).2001,31(11):959-968.
    [83]张仁华,孙晓敏,王伟民,许金萍,朱治,田静.一种可操作的区域尺度地表通量定量遥感二层模型的物理基础[J].中国科学(D辑).2004,34(增刊Ⅱ):200-216.
    [84]张仁华,孙晓敏.以微分热惯量为基础的地表蒸发全遥感信息模型及在甘肃沙坡头地区的验正[J].中国科学(D辑).2002,32(12):1041-1051.
    [85]张仁华.试验遥感模型及地面基础[M].1996,北京:科学出版社.
    [86]钟强.应用AVHRR的卫星辐射资料计算青藏高原地区的行星反照率与射出长波辐射[J].高原气象.1984,3(2):1-9.
    [1]常学向,赵爱芬,赵文智,陈怀顺.黑河中游荒漠绿洲区免灌植被土壤水分状况[J].水土保持学报.2003,17(2):126-129.
    [2]高前兆,李福兴.黑河流域水资源合理开发利用[M].兰州:甘肃科学技术出版社,1990.
    [3]加孜拉·阿布都拉扎克.黑河流域中游灌区水平衡模型研究[D].河海大学.2006.
    [4]张勃,李吉均.河西地区黑河流域水资源空间组合与优化利用研究[J].盐湖研究.2001,9(1):36-42.
    [5]张俊华.西北干旱区黑河中游土壤有机碳分布及其变化机制研究[D].兰州大学.2007.
    [6]张永芳.黑河中游土地利用/覆被变化的环境效应[D].西北师范大学.2009.
    [1]Bosveld F C. Exchange processes between a coniferous forest and the atmosphere [D]. Wageningen University.1999.
    [2]Brutsaert W, Land-surface water vapor and sensible heat flux:Spatial variability, homogeneity, and measurement scales [J]. Water Resources Research.1998,34,2433-2442.
    [3]Brutsaert W. Aspects of bulk atmospheric boundary layer similarity under free-convective conditions [J]. Reviews of Geophysics.1999,37,439-451.
    [4]Brutsaert W. Evaporation into the Atmosphere [M]. Reidel Publishing Company, Dordrecht, Netherlands.1982, pp:299.
    [5]Brutsaert W. On a derivable formula for long-wave radiation from clear skies [J]. Water Resources Research.1975, 11(5):742-744.
    [6]Kustas W P, Daughtry, C S T. Estimation of the soil heat flux/net radiation ratio from spectral data [J]. Agricultural and Forest Meteorology.1989,49:205-223.
    [7]Massman W J. Molecular diffusivities of Hg vapor in air,02 and N2 near STP and the kinematic viscosity and the thermal diffusivities of air near STP [J]. Atmospheric Environment.1999,33, (3):453-457.
    [8]MassmanW J. An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure [J]. Boundary-Layer Meteorology.1997,83,407-421.
    [9]Menenti M, Choudnury B J. Parametrization of land surface evapotranspiration using a location-dependent potential evapotranspiration and surface temperature range. In:H.J. Bolle et al. (Eds). Exchange processes at the land surface for a range of space and time scales. IAHS Publ.1993, No.212:561-568.
    [10]Menenti M. Physical aspects of and determination of evaporation in deserts applying remote sensing techniques. Report 10 (special issue), Institute for Land and Water Management Research (ICW), The Netherlands.1984,202pp.
    [11]Monteith J L. Evaporation and environment, Symposia of the Society for Experimental Biology,1965,19,205-234.
    [12]Monteith J L. Principles of environmental physics [M]. Edward Arnold Press,1973, pp:241.
    [13]Su Z, C. Jacobs (Eds.). Advanced Earth Observation-Land Surface Climate, report USP-2, 01-02, Publications of the National Remote Sensing Board (BCRS),2001,184pp.
    [14]Su, Z. Remote sensing of land use and vegetation for mesoscale hydrological studies [J]. International Journal of Remote Sensing.2000,21,213-233.
    [15]Wieringa J. Representative roughness parameters for homogeneous terrain [J]. Boundary Layer Meteorology.1993,63,323-363.
    [16]Wieringa J. Roughness-dependent geographical interpolation of surface wind speed averages [J]. Quarterly Journal of the Royal Meteorological Society.1986,112,867-889.
    [17]Xi Chen, Li B L, Li Q, Li J L, Abdulla S. Spatio-temporal pattern and changes of evapotranspiration in arid Central Asia and Xinjiang of China [J]. Journal of Arid Land.2012, 4(1):105-112.
    [18]崔旭东,陶正平,张俊,王晓勇.基于SEBS方法的蒸散量计算及可靠度分析—以鄂尔多斯高原海流兔河为例[J].勘察科学技术.2011,6:10-12,55.
    [19]杜嘉,张柏,宋开山,王宗民,曾丽红,金翠,黄妮.基于NOAA/AVHRR数据估算三江 平原蒸散量研究初探[J].水土保持研究.2009,16(2):56-62.
    [20]何延波,Su Z B, Jia L,干石立SEBS模型在黄淮海地区地表能量通量估算中的应用[J].高原气象.2006,25(6):1092-1100
    [21]蔺文静,董华,王贵玲,Z.Su,陈立.河北平原区域蒸发蒸腾量遥感估算[J].国土资源遥感.2008,1:86-90.
    [22]陆桂华,张建云,杨扬,周国良,戚建国.大范围旱情监测技术[J].水利水电技术.2003,4:44-46.
    [23]裴超重,钱开铸,吕京京,辛元红,梁四海,万力.长江源区蒸散量变化规律及其影响因素[J].现代地质.2010,24(2):362-368.
    [24]王国华,赵文智.遥感技术估算干旱区蒸散发研究进展[J].地球科学进展.2011,26(8):848-858.
    [25]王一谋,颜长珍,王建华.黑河流域土地利用数据,中国科学院寒区旱区环境与工程研究所.2011.
    [26]张仁华.实验遥感模型及地面基础[M].北京:科学出版社.1996.
    [27]赵军,刘春雨,潘竞虎,刘英英,杨东辉.基于MODIS数据的甘南草原区域蒸散发量时空格局分析[J].资源科学.2011,33(2):341-346.
    [28]赵英时等.遥感应用分析原理与方法[M].北京:科学出版社.2003.
    [1]Baldocci D, Kelliher FM, Black T A, et al. Climate and vegetation controls on boreal zone energy exchange [J]. Global Change Biology.2000,6(Supp 11):69-83.
    [2]Betts AK, Ball JH. Albedo over the boreal forest [J]. Journal of Geophysical Research.1997, 102(24):28901-28910.
    [3]Charney J G. Dynamics of deserts and drought in the Sahel [J]. Quarterly Journal of the Royal Meteorological Society.1975,101:193-202.
    [4]Dajima T, Kajiwara K, Tateishi R. Global land cover classification by NOAA AVHRR data [A]. In:Proceedings 11th ACRS[C]. Guangzhou:[s. n],1990. S-3-1-S-3-6.
    [5]Henderson-Sellers A. The project for inter comparison of land-surface parameterization schemes [J]. Bulletin of the American Meteorological Society.1993,74(7):1335-1348.
    [6]Liang S, Chad J S., Russ A L, Fang H, Chen M, Walthall C L, Daughtry C S T, Hunt R J. Narrowband to Broadband Conversions of Land Surface Albedo:Ⅱ. Validation. Remote Sensing Environment.2002,84:25-41.
    [7]Liang S. Narrowband to Broadband Conversions of Land Surface Albedo I:Algorithms. Remote Sensing of Environment.2001,76 (2),213-238.
    [8]Liang SL. An Optimization Algorithm for Separating land surface temperature and emissivity from multispectral thermal infrared imagery [J]. IEEE Transaction on Geosecience and remote sensing.2001,39(2):267-274.
    [9]Sebrino JA, Juan C, Jimenez-munoz, Leonardo Paolini. Land surface temperature retrieval from LANDSATTM5. Remote Sensing of Environment.2004,90(4):434-440.
    [10]Sellers P J, Tucker C J, Collatz A J, Los S O, Justice C O, Dazlich D A, Randall D A. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part II:The generation of global fields of terrestrial biophysical parameters from satellite data [J]. Journal of Climate. 1996, (9):706-737.
    [11]Sobrino J.A., Raissouni N. Toward remote sensing methods for land cover dynamic monitoring:application to Morocco [J]. Journal of Remote Sensing.2000,21(2),353-366.
    [12]Wan Z M, Dozier J. A generalized split-window algorithm for retrieving land surface temperature from space [J]. IEEE Transaction on Geosecience and remote sensing.1996, 34(4):892-905.
    [13]Wang S, Grant R F, Verseghy D L, Black T A. Modeling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme [J]. International Journal of Climatology.2002,22:1249-1265.
    [14]Wang S, Grant RF, Verseghy D L, Black T A. Modeling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS the Canadian land surface scheme [J]. Ecological Modeling.2001,142:135-142.
    [15]Wang S, Grant RF, Verseghy DL, Verseghy D L, Black T A. Modeling carbon dynamics of boreal forest ecosystems using the Canadian land surface scheme [J]. Climatic Change.2002, 55:451-477.
    [16]鲍艳,吕世华,奥银焕.反照率参数化改进对裸土地表能量和热过程模拟的影响[J].太阳能学报.2007,28(7):775-782.
    [17]陈维英,肖乾广,盛永伟.距平植被指数在1992年特大干旱监测中的应用[J].环境遥感. 1986,1(4):106-112.
    [18]郭广猛,杨青生.利用MODIS数据反演地表温度的研究[J].遥感技术与应用.2004,19(1):34-36.
    [19]郭铌,陈添宇,陈乾.用NOAA气象卫星资料对甘肃省河东地区土地覆盖分类[J].高原气象.1995,14(4):467-475.
    [20]郭铌,陈添宇,雷建勤.用NOAA卫星可见光和红外资料估算甘肃省东部农田区土壤湿度[J].应用气象学报.1997,8(2):212-218.
    [21]郭铌,杨兰芳,王涓力.黑河流域生态环境气象卫星遥感监测研究[J].高原气象.2002,21(3):267-273.
    [22]郭铌,李栋梁,蔡晓军.1995年中国西北东部特大干旱的气候诊断与卫星监测[J].干早区地理.1997,9(3):69-74.
    [23]郭铌.植被指数及其研究进展[J].干旱气象.2003,21(4):71-75.
    [24]季国良,马晓燕,邹基玲.黑河地区绿洲和沙漠地面辐射收支的若干特征[J].干旱气象.2003,9(3):29-33.
    [25]刘树华,文平辉,张云雁.陆面过程和大气边界层相互作用敏感性试验.气象学报.2001,59(5):533-548.
    [26]盛永伟,陈维英,肖乾广.利用气象卫星植被指数进行我国植被的宏观分类[J].科学通报.1995,40(1):68-71.
    [27]孙睿,朱启疆.中国陆地植被净第一性生产力及季节变化研究[J].地理学报.2000,55(1):36-45.
    [28]王新生,徐静,柳菲,高守杰.近10年我国地表比辐射率的时空变化.地理学报.2012,67(1):93-100.
    [29]王新生,徐静,柳菲,高守杰.近10年我国地表比辐射率的时空变化[J].地理学报.2012,67(1):93-100.
    [30]吴锦奎,丁永建,王根绪,山崎佑介,田隆平.干旱区人工绿洲间作农田蒸散研究[J].农业工程学报.2006,22(9):16-20.
    [31]肖乾广,陈维英,盛永伟.用NOAA气象卫星的AVHRR遥感资料估算中国的净第一性生产力[J].植物学报.1996,38(1):35-39.
    [32]肖乾广,周嗣松,陈维英.用气象卫星数据对冬小麦进行估产的试验[J].环境遥感.1986,1(4):37-43.
    [33]杨永民,冯兆东,周剑基.于SEBS模型的黑河流域蒸散发[J].兰州大学学报(自然科学版).2008,44(5):1-6.
    [34]赵少华,邱国玉,林辉,秦其明MODIS数据反演地表温度的应用研究[J].干旱区资源与环境.2010,24(3):51-55.
    [35]赵英时.遥感应用分析原理与方法[c].北京:科学出版社.2003.
    [36]周剑,程国栋,李新,王根绪.应用遥感技术反演流域尺度的蒸散发[J].水力学报.2009,40(6):679-687.
    [1]Allen R G, Pereira L S, Raes D, Smith M. Crop evapotranspiration-guidelines for computing crop water requirements//FAO Irrigation and Drainage Paper 56. Rome, Italy:Food and Agriculture Organization of the United,1998.
    [2]Allen R G, Tasumi M, Trezza R.Satellite-Based energy balance for mapping evapotranspiration with internalized calibration (METRIC)-model [J]. Journal of irrigation and drainage engineering.2007,133(4):380-394.
    [3]Bastiaanssen, W. G. M, Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., Allen, R. G. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions [J]. Journal of Irrigation and Drainage Engineering.2005, 131(1),85-93.
    [4]Bastiaanssen, W. G. M. Regionalization of surface flux densities and moisture indicators in composite terrain:A remote sensing approach under clear skies in Mediterranean climates. Ph.D. Dissertation, CIP Data Koninklijke Bibliotheek, Den Haag, the Netherlands.1995.
    [5]Bastiaanssen, W. G. M. Remote sensing in water resources management:The state of the art. International Water Management Institute, Colombo, Sri Lanka.1998a.
    [6]Bastiaanssen, W. G. M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin [J], Turkey. Journal of Hydrology,2000,229,87-100.
    [7]Bastiaanssen, W. G. M. The surface energy balance algorithmfor land SEBAL.2:Validation [J]. Journal of Hydrology.1998,212-213,213-229.
    [8]Brisson N, Itier B, L'Hotel J C, Lorendeau J Y. parameterization of the Shuttleworth-Wallace model to estimate daily maximum transpiration for use in crop models [J]. Ecological Modeling.1998,107(2-3):159-169.
    [9]Kashyap P S, Panda R K. Evaluation of evapotranspiration estimation methods and development of crop-coefficients for potato crop in a sub-humid region [J]. Agricultural Water Management.2001,50(1):9-25.
    [10]Moges S A, Katambara Z, Bashar K. Decision support system for estimation of potential evapo-transpiration in Pangani Basin [J]. Physics and Chemistry of the Earth.2003, 28(20-27):927-934.
    [11]杜尧东,刘作新,张运福.参考作物蒸散计算方法及其评价.河南农业大学学报.2001,35(1):57-61.
    [12]房军,方小宇,吕东玉,古今用.丘陵半干旱区作物需水规律的研究进展[J].安徽农业科学.2006,34(19:4847-4849).
    [13]李春强,李保国,洪克勤.河北省近35年农作物需水量变化趋势分析[J].中国生态农业学报.2009,17(2):359-363.
    [14]刘宏谊,马鹏里,杨兴国,杨启国,甘肃省主要农作物需水量时空变化特征分析[J].干旱地区农业研究.2005,23(1):39-44.
    [15]马鹏里,杨兴国,陈瑞生,刘宏谊,杨启国.农作物需水量随其后变化响应研究[J].西北植物学报.2006,26(2):0348-0353.
    [16]史海滨,何京丽,郭克贞,宝力特.参考作物腾发量计算方法及其适用性评价[J].灌溉排水.1997,16(2):50-54.
    [17]孙景生,康少忠.我国水资源利用现状与节水灌溉发展对策[J].农业工程学报.2000,16(2):1-5.
    [18]王瑶,赵传燕,田风霞,王超.黑河中游春小麦需水量空间分布[J].生态学报.2011,39(9):2374-2382.
    [19]吴锦奎,丁永建,王根绪,山崎佑介,田隆平.干旱区人工绿洲间作农田蒸散研究[J].农业工程学报.2006,22(9):16-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700