砾石对坡面径流及入渗影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量化土壤中砾石对坡面径流和入渗的影响有助于深入理解坡面水土过程、促进水土资源的保护和利用。本文在室内模拟降雨条件下研究了不同砾石含量、坡度及降雨强度下的坡面产流、径流泥沙及入渗过程,得出以下结论:
     (1)模拟高强度降雨条件下(120mm/h),坡面流流速和弗汝德数随着坡度增加而增大,坡面水深和阻力系数呈减小的趋势。与均质土壤相比,含砾石土壤的雷诺数及阻力系数增大。坡度为5°时,随着砾石质量分数的增加,坡面流由缓流转变为急流;坡度为10°和15°时,5中砾石质量分数的土壤的坡面流均为急流。坡面产流前入渗量随着砾石质量分数的增加呈减小的趋势,入渗减少量与砾石体积含量呈显著线性正相关。
     (2)在模拟降雨条件下对5种土壤(砾石质量分数分别为0、10%、20%、30%、40%)的坡面流速及产流产沙过程进行研究,以期深入了解含砾石土壤的水土流失过程。研究结果表明,含砾石土壤的坡面流速和径流量大于不含砾石的土壤;在降雨初期0~10min内,含砾石土壤的产沙量随时间呈显著增加趋势,峰值出现在10min左右,随后产沙量逐渐降低;降雨后期30~60min内,含砾石土壤的产沙量又呈增加趋势,尤其是砾石含量为30%和40%的土壤产沙量显著增加,且随时间有一定波动。试验中,5种土壤的总产沙量与砾石含量正相关,径流含沙率与产沙量则呈显著线性正相关。
     (3)通过室内模拟降雨试验,分析了3个坡度下含砾石土壤中的径流和产沙过程,研究结果表明:不同砾石含量的土壤在不同坡度下的产流在0-20min内有明显增加的趋势,之后径流趋于平稳。随着砾石含量的增加,坡度对径流的影响减弱。坡面产沙高峰期出现在0-20min内,且高峰期产沙量占总产沙量比例相对较大;当坡度为15°时,砾石含量(质量含量百分比)为20%、30%和40%的土壤在30min后产沙量又增加,与其他坡度相比,土壤总产沙量也明显增加。实验中坡度是决定土壤产沙量的主要因素。
     (4)通过室内模拟降雨研究降雨强度对含砾石土壤产沙及入渗的影响。结果明:整个降雨过程中,60mm/h的降雨强度下,产沙率变化相对平稳,在90mm/h和120mm/h的降雨强度下,土壤产沙率的变化均因为有细沟而产生波动,120mm/h的降雨强度下,细沟出现的时间较90mm/h的降雨强度提前了5~20min;降雨强度的增加导致土壤总产沙量也显著增加,当降雨强度从90mm/h增加到120mm/h时,总产沙量的增加量是降雨强度从60mm/h增加到90mm/h时总产沙量增加量的0.83~2.82倍;随着降雨强度的增加,土壤的入渗率有减少的趋势。Kostiakov模型和Horton模型均可以很好模拟3种降雨强度下含砾石土壤的入渗过程,而在60mm/h的降雨强度下,Horton模型优于Kostiakov模型,在90mm/h和120mm/h的降雨强度下,Kostiakov模型优于Horton模型。
     (5)在65mm/h降雨强度和5种坡度(5°、10°、15°、20°、25°)下,土壤的产流时间随着砾石覆盖度的增加呈增加的趋势,也就是说砾石覆盖度越大越能延缓坡面产流,产流时间与砾石覆盖度呈线性正相关关系。砾石覆盖度对土壤的产流产沙有一定的影响,尤其对泥沙量的影响较为显著,在坡度一定的情况下,随着砾石覆盖度的增加,土壤的泥沙量呈增加的趋势,值得注意的是,当砾石覆盖度从20%增加到50%,泥沙量显著增加,与覆盖度为0的土壤相比增加了10到20倍;在坡度为5°、10°、15°时,土壤的径流量随着砾石覆盖度的增加呈增加的趋势,而在坡度为20°、25°时,土壤的径流量随砾石覆盖度的增加呈先减少后增加的趋势,说明坡度对土壤径流量有重要的影响。
Gravel is different from soil particles in density, size, and water permeability, surface andchemical structure, this will affect and change the structure and the physical properties for soiland the exsitace of rock fragments in soil lead to differences of the movement of watercompared to that in homogeneous soil, In this paper, study on runoff and infiltration in theslope as affected by gravels, the main conclusions were drawn as follows:
     (1) In this study, simulated rainfall experiments were carried out in order to investigate soilhydraulic parameters and infiltration for soil with five gravel contents (massive fractions as0,10%,20%,30%and40%) under three slope gradients (5°,10°and15°) and rainfall intensity of120mm/h. The results showed that Fronde number and overland flow velocity for theexperimental soils increased and runoff depths and Darcy-weisbach friction coefficientsdecreased with increasing slope gradient. The Reynolds number and the Darcy-weisbachfriction coefficients for the soils containing gravels were larger than that of the soil withoutgravels. The runoff type of the soils belonged to laminar flow and then the runoffs changed fromslow-flow into torrent flow with the increase of gravel content on the slope of5°. The overlandflows of the soils on the slopes of10°and15°were torrent flows. The infiltration amount priorto runoff generation decreased with the increase of gravel content. Reduction of infiltration wassignificantly linearly related to gravel content. the infiltration after runoff containing gravel of10%is larger than that of the soil containing gravels of0,20%,30%and40%. Both of Kostiakovinfiltration model and Philip equation could describe the rainfall infiltration process well.
     (2) In this study, the flow velocity and the processes of runoff and sediment generationsalong the slopes for five soils (gravel mass contents were0,10%,20%,30%, and40%,respectively) were investigated under rainfall simulation experiments in order to improve theunderstanding of soil and water loss process in the soil containing gravels. The resultsindicated that the flow velocity for soil containing gravels was larger than the soil withoutgravels. During the initial0-10min of the rainfall, sediment yields in the soils with gravelsincreased sharply with time and the peak period of sediment generations appeared around10min. Then, sediment yields decreased gradually. At the later stage of the rainfall (30-60min), the sediment yields for the soils with gravels increased again especially for the soils with30%and40%gravel contents their sediment yields enhanced significantly and fluctuated with time.In the experiments, the total sediments yield was positively linked to the gravel content in thesoil and the sediment concentration was positively linearly related to the sediment yield.
     (3) Investigation on the process of runoff and sediment in stony soil can help tounderstand soil and water process in this kind soil and also provide significant soil parametersfor soil erosion process-modeling. In this study, the processes of runoff and sediment in soilcontaining gravels under three slope gradients were analyzed by simulated rainfallexperiments. The results indicated that the runoffs in stony soil increased obviously during0-20min and then became steady. The effect of gradient on runoff was weakened with theincreasing of gravels in the soils. The peak period of sediment generation appeared between0-20min. The sediment yields generated during this stage accounted for a considerableproportion to the total. When the gradient reached15°, the sediment yields of soils with thegravel contents of20%,30%and40%increased again after30min. And total soil sedimentyields under this gradient increased greatly compared with others. In the experiments, thegradient of the slope dominated the sediment yield.
     (4) The sediment yield and infiltration are affected by rainfall intensity based onsimulated rainfalls. The results showed that the sediment delivery rate changed smoothlyunder rainfall intensity of60mm/h and the sediment delivery rate fluctuated due to rill duringrainfall, the appearance of rill need more time of5~20minutes under rainfall intensity of90mm/h than that under rainfall intensity of120mm/h, the total sediment yield was increasedobviously with the addition of rainfall intensity, the increased quantity of total sediment yieldfrom60mm/h of the rainfall intensity to90mm/h was0.83~2.82times more than that from90mm/h of the rainfall intensity to120mm/h; with the increasing of the rainfall intensity, theinfiltration rate was decreasing, The rainfall infiltration process in soil containing gravelsunder three rainfall intensities could be well simulated by the experiential infiltration modelof Kostiakov and Horton. Horton model showed better fitting effect of water Infiltrationprocess under rainfall intensity of60mm/h, Kostiakov model showed the fine fitting effectunder the rainfall intensity of90mm/h and120mm/h.
     (5) The runoff generation time increases with the increase of gravel coverage degreesunder rainfall intensity of65mm/h and the five different slopes, The runoff generation timewas linearly related to gravel coverage degrees; the runoff and sediment yield are affected bygravel coverage degree, the influence of sediment yield is significant, compared to the soilwith the gravel coverage degree of0, the sediment yield significantly increase when thegravel coverage degree increase from20%to50%, the runoff increase with the increase of gravel coverage degree under the slopes of5°、10°and15°, the runoff is less after trend ofincrease under the slopes of20°and25°, the slope has the important influence for the runoff.
引文
贾恒义等.1993.神木试区的土壤资源.中国科学院水利部西北水土保持研究所集刊,18:36-46.
    吕国安,陈明亮,王春潮.2000.丹江口库区石渣土土壤水分特性研究.华中农业大学学报,19(4):342-345.
    唐克丽等.1993.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方法.中国科学院水利部西北水土保持研究所集刊,18:2-15.
    王慧芳,邵明安.2006.含碎石土壤水分入渗实验研究.水科学进展,17(5):604-609.
    张永涛等.2002.石质山地不同条件的土壤入渗特性研究.水土保持学报,16(4):123-126.
    周蓓蓓,邵明安.2006.土石混合介质饱和导水率的研究.水土保持学报,20(6):62-66.
    朱元骏,邵明安.2006.不同碎石含量的土壤降雨入渗和产沙过程初步研究.农业工程学报,22(2):64-67.
    朱冰冰,李占斌等.2010.草本植被覆盖对坡面降雨径流侵蚀影响的试验研究.土壤学报,47(3):401-405
    吴淑芳,吴普特等.2010.黄土坡面径流剥离土壤的水动力过程研究.土壤学报,47(2):223-227
    赵晓娥,魏琳等.2010.强降雨条件下坡面径流的水动力学特性研究.水土保持学报,23(6):45-48
    董伟.2008.黄石地区降雨侵蚀力指标R值的研究.湖北水利水电职业技术学院学报,4(3):29-32
    郑世清,田风霞等.2009.植物路与土质路产流产沙过程研究.泥沙研究,4:1-6
    张赫斯,张丽萍等.2010.红壤坡地降雨产流产沙动态过程模拟试验研究.生态环境学报,19(5):1210-1214
    张强,郑世清等.2010.黄土区土质道路人工模拟降雨及放水条件下产流产沙特征.农业工程学报,26(5):82-87
    师长青.2009.砾石对土壤可蚀性的影响及土壤可蚀性值估算方法.土壤通报,40(6):1398-1401
    蒋志云,彭红涛等.2010.砾石覆盖层截留降雨的模拟试验研究.中国农学通报,26(18):410-414
    符素华,路柄军等.2010.地表砾石对降雨径流及土壤侵蚀的影响.水土保持学报,24(2)15-18
    肖培青,郑粉莉,姚文艺等.2009.坡沟系统坡面径流流态及水力学参数特征研究[J].水科学进展,20(2):236-241.
    王全九.2005.土壤溶质迁移理论研究进展[J].灌溉排水学报.24(3):77-80.
    朱元骏,邵明安.2010.含砾石土壤降雨入渗过程模拟[J].水科学进展,21(6):779-787.
    唐克丽,侯庆春,王斌科等.1993.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向[J].水土保持研究,18(2):2-15
    贾恒义,雍绍萍,王富乾.1993.神木试区的土壤资源[J].水土保持研究,18(2):36-46.
    吴淑芳,吴普特,原立峰.2010.坡面径流调控薄层水流水力学特性试验[J].农业工程学报,26(3):14-19.
    李君兰,蔡强国,孙莉英等.2011.坡面水流速度与坡面含砂量的关系[J].农业工程学报,27(3):73-78.
    张强,郑世清,田凤霞等.2010.黄土区土质道路人工降雨及放水试验条件下产流产沙特征[J].农业工程学报,26(5):83-87.
    邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006:62-64.
    耿晓东,郑粉莉,刘力等.2010.降雨强度和坡度双因子对紫色土坡面侵蚀和产沙的影响[J].泥沙研究,45(6):48-53.
    马东豪.黄土区土石混合介质水分运动试验研究及数值模拟[D].博士论文,北京:中国科学院地理科学与资源研究所,2008.
    吕国安,陈明亮,王春潮.2000.丹江口库区石渣土土壤水分特性研究[J].华中农业大学学报,19(4):342-345.
    Barkensiek, D.L. et al.,1986. Determining the saturated hydraulic conductivity of a soil containing rockfragments. Soil Sci. Soc. Am. J.,50:834-835.
    Brakensiek, D.L. and Rawls W.J.1994. Soil containing rock fragments: effects on infiltration. In: J. Poesenand H. Lavee (editors), Rock fragments in soils: surface dynamics. Catena,23:99-110.
    Childs, S.W. and Flint, A.L.1990. Physical properties of forest soils containing rock fragments. In: Gessel,S.P., Lacate, D.S., Weetman, G.F. and Powers, R.F.(eds.), Sustained Productivity of Forest Soils. Universityof British Cloumbia, Faculty of Forestry Publ., Bancouver,B.C., pp.95-121.
    Dunn, A.J. and Mehuys, G.R.1984. Relationship between gravel content of soils and saturated hydraulicconductivity in laboratory tests. In: Nichols, J.D.(Ed.), Erosion and Productivity of Soils Containing RockFragments. Special Publication,13. Soil Science Society of America, Madison, WI.
    Fu S.H., Liu B.Y. and Duan S.H.2002. The effect of soil erosion on rock fragment content in Beijing hillyarea.12thISCO Conference, Beijing2002.
    Gilley, E., et al.1992. Darcy-Weisbach roughness coefficients for gravel and cobble surfaces. J. Irrig. Drain.Div. Am. Soc. Civ. Eng., pp.104-122.
    Ingelmo-Sanchez, F., et al.1980. Evaporacio n de agua en suelos de distinta textura. Anuario del Centrode Edafologi a y Biolog a Aplicada de Salamanca,6:255-280.
    Lavee, H. and Poesen, J.1991. Overland flow generation and continuity on stone-covered soil surfaces.Hydrol. Process,5:345-360.
    Mehuys, G.R., et al.1975. Effect of stones on the hydraulic conductivity of relatively dry desert soils. SoilSci. Soc. A. J.,39:37-42.
    Peck, A.J. and Watson, J.D.1979. Hydraulic conductivity of flow in non-uniform soil. Workshop on SoilPhysics and Field heterogeneity, Canberra, Australia. Unpublished.
    Poesen, J.1986. Surface sealing as influenced by slope angle and position of simulated stones in the toplayer of loose sediments. Earth Surf. Process. Landforms,11:1-10.
    Poesen, J. and Ingelmo-Sanchez, F.1992. Runoff and sediment yield from topsoils with different porosityas affected by rock fragment cover and position. Catena,19:451-474. Corey, A.T. and Kemper, W.D.1986.
    Conservation of soil water by gravel mulches. Hydrology papers no.30. Colorado State University, FortCollins,23pp.
    Poesen, J. and Lavee, H.1991. Effects of size and incorporation of synthetic mulch on runoff and sedimentyield from inerrills in a laboratory study with simulated rainfall. Soil tillage Res.,21:209-223.
    Poesen, J., et al.1990. The hydrological response of soil surfaces to rainfall as affected by cover andposition of rock fragments in the top layer. Earth Surf. Process. Landforms,15:653-671.
    Ravina, I. and Magier, J.1984. Hydraulic conductivity and water retention of clay soils containing coarsefragments. Soil Sci. Soc. Am. J.,48,736-740.
    Rieke-Zapp, D., et al.2001. Rocks and Rills: the impact of rock fragments on soil loss by concentrationflow erosion in laboratory experiments. In: D.E. Stott, R.H. Mohtarand B.c. Steinhardt (eds). Sustaining theglobal farm. The10th international soil conservation organization meeting held may24-29,1999at PurdueUniversity and the USDA-ARS National Soil Erosion Research Laboratory,796-802, pp.
    Saini, G.R. and Grant, W.J.1980. Long-term effects of intensive cultivation on soil quality in thepotato-growing areas of New Brunswick (Canada) and Maine (U.S.A). Can.J.Soil Sci.,60:421-428.
    Sauer, T.J. and Logsdon, S.D.2002. Hydraulic and physical properties of stone soils in a small watershed.Soil Sci. Soc. Am. J.,66:1947-1956.
    Savat, J.1990. Resistance to flow in rough supercritical sheet flow. Earth Surf. Process. Landforms,5:103-122.
    Unger, P.W.1991. Soil profile gravel layers: I. Effect on water storage, distribution, and evaporation. SoilSci. Soc. Am. Proc.,35:631-634.
    Valentin, C.1994. Surface sealing as affected by various rock fragment covers in West Africa. Catena,23:87-97.
    Yair, A. and Lavee, H.1976. Runoff generative process and runoff yield from arid talus mantles slopes.Earth Surf. Process,1:235-247.
    Zhu Yuanjun, Shao Ming’an.2006. Estimation saturated hydraulic of soil containing rock fragments withdisc infiltrometer. Transactions of the Chinese Society of Agricultural Engineering,22(11)1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700