DDAH2启动子甲基化介导同型半胱氨酸促内皮细胞凋亡的作用及EGCG对其作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:同型半胱氨酸(homocysteine, Hcy)可通过诱导内皮细胞凋亡而促进动脉粥样硬化的发生发展。研究提示,内源性非对称二甲基精氨酸(Asymmetric dimethylarginine, ADMA)升高所诱导的氧化应激介导了Hcy的作用。ADMA是一种主要的内源性NOS抑制物,能竞争性抑制NOS活性,减少NO合成。二甲基精氨酸二甲氨水解酶(Dimethylarginine dimethylaminohydrolase, DDAH)能特异性水解ADMA。DDAH有1、2两种亚型,其中DDAH2主要分布于内皮及血管组织。研究表明,DDAH/ADMA通路介导的内皮细胞凋亡是多种疾病的病理基础。
     近来研究提示,DNA甲基化是AS的早期标志,并与内皮细胞功能密切相关。且DNA甲基化在调节DDAH表达中起关键作用。
     表没食子儿茶素-3-没食子酸(Epigallocatechin-3-gallate, EGCG)为多酚类物质,是绿茶的主要活性成分,具有抗氧化、抗炎等多种活性。最新研究发现,EGCG可抑制癌细胞中DNA甲基转移酶(DNMTs)活性并可重新激活癌细胞中的甲基化沉默基因,从而起到抑制癌症进展的作用。
     目的:观察Hcy对人脐静脉内皮细胞(human umbilical vein endothelial cells, HUVECs)凋亡的影响是否与诱导DDAH2基因启动子的甲基化进而降低其表达有关。同时确定EGCG对HUVECs凋亡的保护作用是否与抑制DNMT1的表达进而抑制Hcy诱导的DDAH2高甲基化有关。
     方法:HUVECs活性及细胞凋亡率分别用MTT法和流式细胞仪法检测;DDAH2表达水平通过实时定量PCR检测,DDAH2启动子甲基化程度通过甲基化PCR检测(methylation-specific PCR, MSP),并通过Western blot检测DNMT1的蛋白表达水平。
     结果:Hcy可降低HUVECs活性并诱导其凋亡。同时,Hcy可呈剂量依赖性(0.3 to 3.0 mM)抑制DDAH2 mRNA表达,同时伴有DNMT1蛋白的表达水平显著上调以及DDAH2基因的启动子区域的高甲基化。DNMT抑制剂5-Aza或者EGCG可显著抑制Hcy的上述作用。
     结论:Hcy呈剂量依赖性抑制HUVECs的活性并诱导HUVECs凋亡。此种作用与其上调DNMT1表达进而诱导DDAH2启动子高甲基化使其表达降低有关。EGCG可抑制Hcy的上述作用。这些结果阐述了Hcy致动脉粥样硬化的新机制,为预防和治疗动脉粥样硬化提供了新的思路。
Background:Evidence suggests that homocysteine facilities atherosclerosis via induction the apoptosis of endothelial cells. Recent investigations suggested that the effects of Hcy are mediated by the oxidative stress via elevation of plasma level of asymmetric dimethylarginine (ADMA). ADMA is an endogenous inhibitor of NO synthase (NOS), which can competitively inhibit the activity of NOS and reduce the production of NO. Dimethylarginine dimethylaminohydrolase (DDAH) is the specific hydrolase of asymmetric dimethylarginine and plays a key role in modulation of ADMA level both in tissue and in cells. DDAH has two isoforms, DDAH1 and DDAH2. DDAH2 is highly expressed in endothelium and vasculatures. It is reported that the apoptosis of endothelial cells mediated by DDAH/ADMA pathway is the foundation of various cardiovascular diseases.
     Recent research suggests that DNA methylation is an early marker of atherosclerosis and is closely related to endothelial function. Meanwhile, DNA methylation is main way in the modulation of DDAH expression.
     Epigallocatechin-3-gallate (EGCG), a major polyphenol and a key active ingredient, derived from green tea, is found to possess beneficial effects on atherosclerosis, coronary heart disease, hypertension, diabetes mellitus and obesity. Recent research suggests that EGCG can inhibit DNMTs activity and reactivate methylation-silenced genes in cancer cells.
     Objective:The aim of this study was to determine whether the apoptosis induced by Hcy is related to the hypermethylation of DDAH2 gene in human umbilical vein endothelial cells (HUVECs). We also observed the effects EGCG on such effect of Hcy.
     Methods:The expression of DDAH2 gene was analyzed using quantitative real-time PCR. The methylated patterns of DDAH2 gene were determined with methylation-specific PCR (MSP). Western blot was used to determine protein expression of DNMT1.
     Results:Our data clearly showed that Hcy inhibited the activity of HUVECs and induced cell apoptosis in a dose-dependent manner. Meanwhile, Hcy upregulated DNMT1 expression and downregulated DDAH2 expression accompanied by the hypermethylation in DDAH2 promoter.5-Aza, the inhibitor of DNMT1, or EGCG inhibited such effects of Hcy.
     Conclusions:It is concluded Hcy induces apoptosis of HUVECs, which is due to the upregulation of DNMT1 and the consequent hypermethylation of DDAH2 promoter. EGCG can reverse such effects of Hcy. These findings provide novel mechanism for the role of Hcy in the progression of atherosclerosis and provide new insights into the treatment and prevention of atherosclerosis.
引文
[1]Ross R.Atherosclerosis--an inflammatory disease[J]. N Engl J Med, 1999,340(2):115-126.
    [2]Libby P, Ridker PM, Maseri A. Inflammation and Atherosclerosis[J]. Circulation, 2002,105(9):1135-1143.
    [3]Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C. Homocysteine and coronary atherosclerosis:from folate fortification to the recent clinical trials[J].Eur Heart J,2009,30(1):6-15.
    [4]Stuhlinger MC, Oka RK, Graf EE, et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia:role of asymmetric dimethylarginine[J]. Circulation, 2003,108(8):933-938.
    [5]Stuhlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP. Homocysteine impairs the nitric oxide synthase pathway:role of asymmetric dimethylarginine [J].Circulation,2001,104(21):2569-2575.
    [6]Eikelboom JW, Lonn E, Genest J, Jr., Hankey G, Yusuf S. Homocyst(e)ine and cardiovascular disease:a critical review of the epidemiologic evidence[J].Ann Intern Med,1999,131(5):363-375.
    [7]Nijveldt RJ, Teerlink T, Siroen MP, van Lambalgen AA, Rauwerda JA, van Leeuwen PA. The liver is an important organ in the metabolism of asymmetrical dimethylarginine (ADMA) [J].Clin Nutr,2003,22(1):17-22.
    [8]Nakagawa T, Kanai Y, Ushijima S, Kitamura T, Kakizoe T, Hirohashi S. DNA hypermethylation on multiple CpG islands associated with increased DNA methyltransferase DNMT1 protein expression during multistage urothelial carcinogenesis[J] J Urol,2005,173(5):1767-1771.
    [9]Etoh T, Kanai Y, Ushijima S, et al. Increased DNA methyltransferase 1 (DNMT1) protein expression correlates significantly with poorer tumor differentiation and frequent DNA hypermethylation of multiple CpG islands in gastric cancers[J].Am J Pathol,2004,164(2):689-699.
    [10]Tomikawa J, Fukatsu K, Tanaka S, Shiota K. DNA methylation-dependent epigenetic regulation of dimethylarginine dimethylaminohydrolase 2 gene in trophoblast cell lineage[J].J Biol Chem,2006,281(17):12163-12169.
    [11]Zhang JG, Liu JX, Li ZH, Wang LZ, Jiang YD, Wang SR. Dysfunction of endothelial NO system originated from homocysteine-induced aberrant methylation pattern in promoter region of DDAH2 gene[J].Chin Med J,2007, 120(23):2132-2137.
    [12]Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection[J]. Cardiovasc Hematol Disord Drug Targets,2007,7(2):135-144.
    [13]Basu A, Lucas EA. Mechanisms and effects of green tea on cardiovascular health[J].Nutr Rev,2007,65(8):361-375.
    [14]Wolfram S. Effects of green tea and EGCG on cardiovascular and metabolic health[J]. J Am Coll Nutr,2007,26(4):373-388.
    [15]Widlansky ME, Hamburg NM, Anter E, et al. Acute EGCG Supplementation Reverses Endothelial Dysfunction in Patients with Coronary Artery Disease[J].J Am Coll Nutr,2007 2007,26(2):95-102.
    [16]Fang M, Chen D, Yang CS. Dietary Polyphenols May Affect DNA Methylation [J]. J Nutr,2007,137(1):223-228.
    [17]Gao Z, Xu Z, Hung MS, et al. Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells [J].Anticancer Res,2009,29(6): 2025-2030.
    [18]Berletch JB, Liu C, Love WK, Andrews LG, Katiyar SK, Tollefsbol TO. Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG [J]. J Cell Biochem,2008,103(2):509-519.
    [19]Lee WJ, Shim J-Y, Zhu BT. Mechanisms for the Inhibition of DNA Methyltransferases by Tea Catechins and Bioflavonoids[J].Mol Pharmacol,2005, 68(4):1018-1030.
    [20]Welch GN, Loscalzo J. Homocysteine and Atherothrombosis[J].N Engl J Med,1998,338(15):1042-1050.
    [21]McCully KS. Chemical pathology of homocysteine. Ⅳ. Excitotoxicity, oxidative stress, endothelial dysfunction, and inflammation[J]. Ann Clin Lab Sci,2009, 39(3):219-232.
    [22]Tyagi N, Sedoris KC, Steed M, Ovechkin AV, Moshal KS, Tyagi SC. Mechanisms of homocysteine-induced oxidative stress[J].Am J Physiol Heart Circ Physiol,2005,289(6):H2649-2656.
    [23]Gluckman PD, Hanson MA, Buklijas T, Low FM, Beedle AS. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases[J]. Nat Rev Endocrinol,2009,5(7):401-408.
    [24]Turunen MP, Aavik E, Yla-Herttuala S. Epigenetics and atherosclerosis[J]. Biochim Biophys Acta,2009,1790(9):886-891.
    [25]Ingrosso D, Perna AF. Epigenetics in hyperhomocysteinemic states. A special focus on uremia[J].Biochim Biophys Acta,2009,1790(9):892-899.
    [26]Stenvinkel P, Karimi M, Johansson S, et al. Impact of inflammation on epigenetic DNA methylation-a novel risk factor for cardiovascular disease[J]? J Intern Med,2007,261(5):488-499.
    [27]Newman PE. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis[J]? Med Hypotheses,1999,53(5):421-424.
    [28]Hiltunen MO, Turunen MP, Hakkinen TP, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions[J].Vascular Medicine, 2002,7(1):5-11.
    [29]Post W, Goldschmidt-Clermont P, Wilhide C, et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system[J].Cardiovascular Research,1999,43(4):985.
    [30]Laukkanen MO, Mannermaa S, Hiltunen MO, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene[J]. Arterioscler Thromb Vasc Biol,1999,19(9):2171-2178.
    [31]Chan GC, Fish JE, Mawji IA, Leung DD, Rachlis AC, Marsden PA. Epigenetic Basis for the Transcriptional Hyporesponsiveness of the Human Inducible Nitric Oxide Synthase Gene in Vascular Endothelial Cells[J].J Immunol,2005,175(6): 3846-3861.
    [32]Liu C, Xu D, Sjoberg J, Forsell P, Bjorkholm M, Claesson HE. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation[J].Exp Cell Res,2004,297(1):61-67.
    [33]Zhu S, Goldschmidt-Clermont PJ, Dong C. Inactivation of Monocarboxylate Transporter MCT3 by DNA Methylation in Atherosclerosis[J].Circulation,2005, 112(9):1353-1361.
    [34]Zawadzki C, Chatelain N, Delestre M, et al. Tissue factor pathway inhibitor-2 gene methylation is associated with low expression in carotid atherosclerotic plaques[J]. Atherosclerosis,2009,204(2):4-14.
    [35]Pons D, de Vries FR, van den Elsen PJ, Heijmans BT, Quax PH, Jukema JW. Epigenetic histone acetylation modifiers in vascular remodelling:new targets for therapy in cardiovascular disease[J]. Eur Heart J,2009,30(3):266-277.
    [36]Parmacek MS. MicroRNA-modulated targeting of vascular smooth muscle cells[J].J Clin Invest,2009,119(9):2526-2528.
    [37]Zhang QJ, Wang Z, Chen HZ, et al. Endothelium-specific overexpression of class Ⅲ deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice[J].Cardiovasc Res,2008,80(2):191-199.
    [38]Urbich C, Kuehbacher A, Dimmeler S. Role of microRNAs in vascular diseases, inflammation, and angiogenesis[J]. Cardiovascular Research,2008,79(4):581.
    [39]Backdahl L, Herberth M, Wilson G, et al. Gene body methylation of the dimethylarginine dimethylamino-hydrolase 2 (Ddah2) gene is an epigenetic biomarker for neural stem cell differentiation[J]. Epigenetics,2009,4(4):248-254.
    [40]Choi JS, Choi YJ, Kang SW, Bae JY, Kang YH. EGCG and quercetin attenuate oxidized LDL-induced endothelial apoptosis via differential MAPK-responsive pathways[J] Journal of Molecular and Cellular Cardiology,2007,42(6):82.
    [41]Ou H-C, Song T-Y, Yeh Y-C, et al. EGCG protects against oxidized LDL-induced endothelial dysfunction by inhibiting LOX-1-mediated signaling[J]. J Appl Physiol,2010,00879-02009.
    [42]Ludwig A, Lorenz M, Grimbo N, et al. The tea flavonoid epigallocatechin-3-gallate reduces cytokine-induced VCAM-1 expression and monocyte adhesion to endothelial cells[J]. Biochemical and Biophysical Research Communications,2004,316(3):659-665.
    [43]Hong MH, Kim MH, Chang HJ, et al. (-)-Epigallocatechin-3-gallate inhibits monocyte chemotactic protein-1 expression in endothelial cells via blocking NF-[kappa]B signaling[J].Life Sciences,2007,80(21):1957-1965.
    [44]Jin YR, Im JH, Park ES, et al. Antiplatelet activity of epigallocatechin gallate is mediated by the inhibition of PLCgamma2 phosphorylation, elevation of PGD2 production, and maintaining calcium-ATPase activity[J]. J Cardiovasc Pharmacol, 2008,51(1):45-54.
    [45]Kang WS, Chung KH, Chung JH, et al. Antiplatelet activity of green tea catechins is mediated by inhibition of cytoplasmic calcium increase[J]. J Cardiovasc Pharmacol,2001,38(6):875-884.
    [46]Stangl V, Lorenz M, Stangl K. The role of tea and tea flavonoids in cardiovascular health[J].Mol Nutr Food Res,2006,50(2):218-228.
    [47]Yang TT, Koo MW. Hypocholesterolemic effects of Chinese tea[J]. Pharmacol Res,1997,35(6):505-512.
    [48]Koo SI, Noh SK. Green tea as inhibitor of the intestinal absorption of lipids: potential mechanism for its lipid-lowering effect[J]. Journal of Nutritional Biochemistry,2007,18(3):179-183.
    [49]Fang MZ, Wang Y, Ai N, et al. Tea Polyphenol (-)-Epigallocatechin-3-Gallate Inhibits DNA Methyltransferase and Reactivates Methylation-Silenced Genes in Cancer Cell Lines[J]. Cancer Res,2003,63(22):7563-7570.
    [1]Bird A. Perceptions of epigenetics. Nature,2007,447(7143):396~398.
    [2]David R, Mellissa M. Epigenetics and human disease:translating basic biology into clinical applications. CMAJ,2006,174(3):341~348.
    [3]Klose R J, Bird A P. Genomic DNA methylation:the mark and its mediators. Trends Biochem Sci,2006,31(2):89~97.
    [4]Suetake I, Shinozaki F, Miyagawa J, et al. DNMT3L Stimulates the DNA Methylation Activity of Dnmt3a and Dnmt3b through a Direct Interaction. J Biol Chem,2004,279(26):27816~27823.
    [5]Araujo F D, Croteau S, Slack A D, et al. The DNMT1 target recognition domain resides in the N terminus. J Biol Chem,2001,276(10):6930~6936.
    [6]Bestor T H. The DNA methyltransferases of mammals. Hum Mol Genet, 2000,9(16):2395~2402.
    [7]Prokhortchouk E, Defossez P. The cell biology of DNA methylation in mammals. Biochim Biophys Acta, Mol Cell Res,2008,1783(11):2167~2173.
    [8]Chen Q, Ken S, Xing Z, et al. The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol,2002,9(3):217~224.
    [9]Chen T, Tsujimoto N, Li E. The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol,2004,24(20):9048~9058.
    [10]Kapoor A, Agius F, Zhu J. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett,2005,579(26):5889~5898.
    [11]Bhattacharya S K, Ramchandani S, Cervoni N, et al. A mammalian protein with specific demethylase activity for mCpG DNA. Nature,1999,397 (6720): 579~583.
    [12]Ng H, Zhang Y, Hendrich B, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet,1999, 23(1):58~61.
    [13]Wade P A, Gegonne A, Jones P L, et al. Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation. Nat Genet,1999,23(1):62~66.
    [14]Jost J P, Siegmann M, Sun L, et al. Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase. J Biol Chem,1995,270(17):9734~9739.
    [15]Zhu B, Benjamin D, Zheng Y, et al. Overexpression of 5-methylcytosine DNA glycosylase in human embryonic kidney cells EcR293 demethylates the promoter of a hormone-regulated reporter gene. Proc Natl Acad Sci USA,2001,98(9):5031~5036.
    [16]Hendrich B, Hardeland U, Ng H, et al. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature,1999,401 (6750):301~304.
    [17]Zhu B, Zheng Y, Angliker H, et al.5-Methylcytosine DNA glycosylase activity is also present in the human MBD4 (G/T mismatch glycosylase) and in a related avian sequence. Nucleic Acids Res,2000,28(21):4157~4165.
    [18]Rai K, Huggins I J, James S R, et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell,2008,135(7): 1201~1212.
    [19]Barreto G, Schaefer A, Marhold J, et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation.Nature,2007,445(7128): 671~675.
    [20]Jin S G, Guo C, Pfeifer G P. GADD45A does not promote DNA demethylation. PLoS Gene,2008,4(3):e1000013.
    [21]Weiss A, Keshet I, Razin A, et al. DNA demethylation in vitro:involvement of RNA. Cell,1996,86(5):709~718.
    [22]Weiss A, Cedar H. The role of DNA demethylation during development. Genes Cells,1997,2(8):481~486.
    [23]Kangaspeska S, Stride B, Metivier R, et al. Transient cyclical methylation of promoter DNA. Nature,2008,452(7183):112~115.
    [24]Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature,2008,452(7183):45~50.
    [25]Shen J C, Rideout W M I, Jones P A. High frequency mutagenesis by a DNA methyltransferase. Cell,1992,71 (7):1073~1080.
    [26]Szyf M. DNA demethylation and cancer metastasis:therapeutic implications. Expert Opin Drug Discovery,2008,3(5):519~531.
    [27]Yu Q, Thieu V T, Kaplan M H. Stat4 limits DNA methyltransferase recruitment and DNA methylation of the IL-18Ralpha gene during Thl differentiation. EMBO J,2007,26(8):2052~2060.
    [28]Macleod D, Charlton J, Mullins J, et al. Spl sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev,1994,8(19):2282~2292.
    [29]Brandeis M, Frank D, Keshet I, et al. Spl elements protect a CpG island from de novo methylation. Nature,1994,371(6496):435~438.
    [30]Furuta T, Shuto T, Shimasaki S, et al. DNA demethylation-dependent enhancement of toll-like receptor-2 gene expression in cystic fibrosis epithelial cells involves SP1-activated transcription. BMC Mol Biol,2008,9:39~53.
    [31]Kishikawa S, Murata T, Kimura H, et al. Regulation of transcription of the Dnmtl gene by Spl and Sp3 zinc finger proteins. Eur J Biochem,2002, 269(12):2961~2970.
    [32]Jinawath A, Miyake S, Yanagisawa Y, et al. Transcriptional regulation of the human DNA methyltransferase 3A and 3B genes by Sp3 and Spl zinc finger proteins. Biochem J,2005,385(2):557~564.
    [33]Newman P E. Can reduced folic acid and vitamin B12 levels cause deficient DNA methylation producing mutations which initiate atherosclerosis?. Med Hypotheses,1999,53(5):421~424.
    [34]Hiltunen M O, Turunen M P, Hakkinen T P, et al. DNA hypomethylation and methyltransferase expression in atherosclerotic lesions. Vasc Med,2002,7(1):5-11.
    [35]Post W S, Goldschmidt-Clermont P J, Wilhide C C, et al. Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res,1999,43(4):985~991.
    [36]Kim J, Kim J Y, Song K S, et al. Epigenetic changes in estrogen receptor beta gene in atherosclerotic cardiovascular tissues and in-vitro vascular senescence. Biochim Biophys. Acta Mol Basis Dis,2007,1772(1):72~80.
    [37]Ying A K, Hassanain H H, Roos C M, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res,2000,46(1):172~179.
    [38]Zhu S, Goldschmidt-Clermont P J, Dong C. Inactivation of Monocarboxylate Transporter MCT3 by DNA Methylation in Atherosclerosis. Circulation,2005, 112(9):1353~1361.
    [39]Chan G C, Fish J E, Mawji I A, et al. Epigenetic basis for the transcriptional hyporesponsiveness of the human inducible nitric oxide synthase gene in vascular endothelial cells. J Immunol,2005,175(6):3846~3861.
    [40]Laukkanen M O, Mannermaa S, Hiltunen M O, et al. Local hypomethylation in atherosclerosis found in rabbit ec-sod gene. Arterioscler, Thromb, Vasc Biol,1999,19(9):2171~2178.
    [41]Liu C, Xu D, Sjoberg J, et al. Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Exp Cell Res,2004,297(1):61~67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700