IVF出生小鼠及其后代基因组DNA甲基化修饰变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分IVF出生小鼠及其之间交配出生后代行为学、形态学及全基因组甲基化模式的研究
     目的:通过IVF小鼠模型的建立,完成以IVF为代表的ART出生群体之间婚育安全性动物模型方面的评估,揭示ART的对人类未来可能的表观遗传学效应。
     材料和方法:
     1.建立IVF小鼠模型,获得IVF出生F1代小鼠;6-7周龄时,IVF F1代小鼠雌雄性合笼,自然交配受孕,获其F2子代;
     2.,以自然出生小鼠为对照,分别于6-7周龄时,进行F1代,F2代小鼠的水迷宫实验,评价其学习及记忆能力;
     3.以自然出生小鼠为对照,开展F1代,F2代小鼠的体重、器官测量,外表结构畸形观察、组织器官的大体和组织形态学检测和分析;
     4.应用小鼠全基因组甲基化芯片,对F1代及F2代小鼠及自然妊娠出生小鼠各四只进行全基因组水平的甲基化的检测,比较三组全基因组水平的甲基化的模式;
     5.选取8个在F1、F2代同时发生高甲基化的启动子位点Cryga、Fgf1、Nos3、Mb、Myog、Notch3、Th釉Vavl以及4个只有在F2代发生高甲基化的启动子位点:Col9a2、Fgf6、Lck和Slc5al进行亚硫酸氢盐测序,对芯片的部分结果进行验证;
     6.采用荧光定量PCR方法检测经亚硫酸氢盐测序证实在F1代阳性的位点Fgf1、Nos3、Notch3、Th和Vavl以及在F2代的阳性位点Col9a2、Fgf1、Fgf6、Nos3、Notch3、Slc5a1、Th及Vavl的表达,明确甲基化状态其对其mRNA表达情况的影响。
     结果:
     1.成功建立IVF F1代小鼠模型及F2代模型;
     2.水迷宫实验显示IVF F1、F2代组与自然妊娠出生小鼠相比在潜伏期、游泳距离等方面无显著性差异;
     3. IVF F1、F2代的体重、器官比重及组织形态学与自然妊娠出生小鼠相比无显著性差异;
     4.小鼠脑组织全基因组甲基化芯片结果显示,在F1代中共有225个CpG岛及191启动子区域发生了高甲基化;22个CpG岛和28启动子区域发生了低甲基化。F2代有196个CpG岛和213个启动子区域高甲基化;69个CpG岛,56个启动子发生了低甲基化。F1代与F2代相比,共有113个启动子和143个CpG岛发生了共同的高甲基化;
     5.在经亚硫酸氢盐测序验证的8个启动子中,Fgf1、Nos3, Notch3、Th及Vavl在F1、F2代甲基化的程度较自然妊娠组高,差异有显著性,符合芯片发现的结果。4个只在F2代发生高甲基化的位点中,有3个发生了高甲基化,符合芯片的发现;
     6.荧光定量PCR方法显示Fgf1、Nos3、Notch3、Lck, Co19a2、Fgf6及Slc5a1的表达受到其甲基化状态得影响,其mRNA的表达有不同程度的降低,但Th、Vavl没有显示这种趋势。
     结论:
     1. IVF对F1、F2代小鼠的学习和记忆能力、生长发育及器官形态等没有明显的影响;
     2.IVF出生小鼠脑组织基因组DNA甲基化修饰存在改变,尤以高甲基化异常明显,并可影响到基因的表达;
     3. IVF出生小鼠的部分基因组DNA甲基化修饰异常可以传递给其相互交配出生的后代,同时这些后代也有新的DNA甲基化修饰异常发生,此类异常甲基化同样可影响基因的表达。
     第二部分IVF所致异常甲基化向后代传递的遗传方式研究
     目的:分析IVF出生小鼠基因组DNA异常甲基化的子代传递方式,为探索异常甲基化发生机制和可能阻断途径提供研究基础。
     材料和方法:
     1.将IVF出生的雌性及雄性F1代小鼠分别与野生型雄性及雌性小鼠交配获得母源和父源IVF F2代小鼠;
     2.选取3个前期研究中发现在F1、F2代同时发生高甲基化位点:Fgfl、Nos3、Notch3以及3个只有在F2代发生高甲基化位点:Col9a2、Fgf6、Slc5a4,分别在母源和父源IVFF2代小鼠考察上述启动子区域的甲基化模式
     3.荧光定量PCR方法检测Fgf1、Nos3、Notch3、Col9a2、Fgf6及Slc5al在母源和父源IVF F2代小鼠中枢神经系统中的表达,明确甲基化状态其对其mRNA表达的影响。
     结果:
     1.2个在IVF F1和F2代同时发生高甲基化的位点:Fgf1、Notch3以及3个只有在IVF F2代发生高甲基化位点:Col9a2. Fgf6和Slc5a1,在母源IVF F2代小鼠脑组织中,其甲基化程度与自然妊娠出生小鼠无显著差异。但Nos3仍表现出高甲基化,且荧光定量PCR结果显示Nos3基因的表达也存在不同程度的降低;
     2.3个在IVF F1和F2代同时发生高甲基化的位点:Fgf1、Nos3、Notch3以及3个只有在F2代发生高甲基化位点:Col9a2、Fgf6及Slc5al,在父源IVF F2代小鼠的脑组织中,其甲基化程度与自然妊娠出生小鼠均无显著差异。
     结论:
     1. IVF F1代雄性小鼠发生的基因组DNA甲基化修饰异常,在其后代可得以纠正;
     2. IVF F1代雌性小鼠发生的甲基化修饰异常,存在传递给其后代的风险;
     3. IVF出生小鼠相互交配出生的F2代小鼠的异常甲基化可能主要是通过母源传递。
     第三部分Nos3启动子在母源F3代的甲基化状态及IVF出生双胎子代脐血印迹基因调控区KvDMRl、H19/IGF2 DMR及PEG1的甲基化状况
     目的:进一步考察在母源IVF F2代小鼠中发生异常的Nos3位点是否可以进一步传递;研究IVF双胎子代脐血中几个重要印记基因调控区的甲基化状况,分析IVF双胎子代中印迹状态异常风险。
     材料和方法:
     1.将论文第二部分的母源IVF F2代进一步与野生型的C57/BL6J雄性小鼠之间交配,获的母源IVF F3代,以自然妊娠子代为对照;同时荧光定量RT-PCR进一步检测Nos3所调控基因的mRNA表达水平
     2.共收集59对双胎脐血标本,其中29对IVF双胎组成研究组,30对自然妊娠双胎组成对照组,采用亚硫酸氢盐测序对两个母源性甲基化印记区域(KvDMR1、PEG1)及一个父源性甲基化印记区域(H19/IGF2 DMR)进行甲基化模式检测和比较。
     结果:
     1.在母源IVF F2代小鼠中异常甲基化的Nos3位点在母源IVF F3代与自然妊娠出生的小鼠相比已无差别,Nos3基因表达水平到母源F3代已经无显著性变化;
     2.IVF和自然妊娠双胎子代均未发现有PEG1基因的印记缺失,二组甲基化程度无显著性差异(P=0.103)。3例IVF双胎子代中存在KvDMR1低甲基化,甲基化程度在21%左右,发生率为5.08%(3/58),1例自然妊娠双胎子代存在低甲基化,发生率为1.67%(1/60),二者相比,无统计学差异(P=0.611)。IVF和自然妊娠双胎子代各有1例存在H19/IGF2 DMR的高甲基化,二组甲基化程度没有显著性差异(P=0.103)。
     结论:
     1.在F1代和母源IVF F2代发生异常高甲基化的Nos3启动子位点在母源IVF F3代得到了纠正;
     2.虽然没有发现IVF和自然妊娠双胎子代在KvDMR1, H19/IGF2 DMR及PEG1的甲基化模式和程度的统计学差异,但IVF子代较多的异常甲基化人数仍然提示IVF可能存在一定的表观遗传风险,有关结论优待增加样本的进一步研究。
Part I Behavioral, morphological and genome-wide DNA methylation evaluation in IVF-conceived mouse and their cross-bred descendants
     Objective:By establishing the IVF-conceived mouse model, we want to gain a prospective understanding of the marriage safety between ART-born children in human population, reveal the possible effect of IVF on the epigenetic inheritance, and privide theoretical foundation for empirical study in human population.
     Materials and methods:
     1. Mice model derived from in vitro fertilizationand embryo transfer (IVF-ET) were built and crossed. Naturally conceived (NC) mice were used as the control group. Effects of IVF on the spatial learning and memory capability at Fl generation were examined by Morris water maze at 6 weeks old. After Morris water maze were finished, Fl male mice were bred to F1 female mice to get the Fl generation;
     2. Effects of IVF on the spatial learning and memory capability at F2 generation were detected as did in F1 generation. After Morris water maze test, organs, including brain, heart, liver, lung, stomach, intestine, kidney, spleen, testis and ovary were excised, weighted and stained with hematoxilyn and eosin (H&E). The effects of IVF on development were detected by checking the specific gravity of the organs from male and in the female mice at 7 week;
     3. Genome-wide DNA methylation status were investigated in central nervous system (CNS) at F1,2 generation and naturally conceived mice by using the MM8 CpG promoter microarray;
     4. Eight concomitant hypermethylated promoters in F1 and F2 generation (Cryga, Fgfl, NosS, Mb, Myog, Notch3, Th, Vavl) and four unique hypermethylated promoters (Col9a2, Fgf6, Lck, SlcSa1) only in F2 generation, which associated with organ development function were further validated by bisulfite genomic sequencing;
     5. Expression of bisulfite sequencing confirmed genes(Fgfl, Nos3, Notch3, Th, Vavl in Fl, F2 generation and Col9a2, Fgf6, Slc5al in F2 generation) were analyzed by quantitative real-time RT-PCR in order to evaluate the relationship between promoter methylation and gene expression.
     Result(s):
     1. IVF-born mice model were successfully established;
     2. No differences in learning and memory ability including incubation period and the swimming distances were detected by the water maze test between IVF-born mice (F1), their cross-bred F2 generation and naturally conceived littermates;
     3. No statistically significant reduction or increase in the weight of total body. Obvious phenotypic abnormalities and defects, such as small eye, brachyury, short ear extra toes from first week to 6-7week old were not fount in F1 and F2 generation, but significant decrease in gravity of spleen in Fl generation mice was observed when compared with naturally conceived littermates;
     4.225 CpG islands and 191 promoters were hypermethylated at Fl generation. In contrast, only 22 CpG islands and 28 promoters showed a trend towards hypomethylation.196 CpG islands and 213 promoters were hypermethylated and 69 CpG islands,56 promoters were hypomethylated in F2 generation. A comparison of F1 to F2 epigenome identified 113 concomitant hypermethylated promoters and 143 hypermethylated CpG islands;
     5. Fgfl, Nos3, Notch3, Col9a2, Fgf6 and Slc5al were found with a gain in DNA methylation as validated by bisulfite genomic sequencing in F1 and F2 generation, which confirmed the results obtained by MeDIP-CHIP. No significant differences in Cryga, Mb, Myog in F1, F2 generation and Lck in F2 generation were found, which suggest they were false positive loci;
     6. Fgfl, Nos3, Notch3, Col9a2, Fgf6 and Slc5al displayed lower levels of expression, which further validated their methylation status, but expression of Th and Vavl were not disturbed by their hypermethylated promoters, indicating that some genes were not susceptible to perturbation by promoter methylation.
     Conclusion(s):
     1. Learning and memory ability in IVF-conceived mice and their cross-bred F2 generation were not affected;
     2. Even the growth and development of Fl, F2 generation were not disturbed, IVF can slightly modify the epigenome at the central nerve system in F1 generation;
     3. IVF-induced DNA methylation aberration can be transmitted from Fl to F2 generation, and de novo aberrant DNA methylation occurred in F2 generation;
     4. Our findings suggest that there are some epigenetic risks in the marital events between ART-born children in human population and the exact mechanism need further investigation.
     Part II The inheritance of IVF-induced aberrant DNA methylation in IVF descendants
     Objective:To determine the mode of epigenetic inheritance in IVF-induced aberrant DNA methylation and find the way they got transmitted to their following descendants, which could pave a road for investigating the precipitating factor of epigenetic disorders in human.
     Materials and methods:
     1. Female and male IVF-born F1 generation mice were mated to wild-type male and female mice to get the female-and male-line-derived F2 generation;
     2. Three concomitantly hypermethylated promoters loci (Fgfl, Nos3, Notch3) that were previously found in IVF-born mice and their F2 generation and three loci (Col9a2, Fgf6, Slc5a1) that found hypermethylated only in F2 generation were examined in female-line and male-line derived F2 generation;
     3. Expressions of these genes(Fgfl, Nos3, Notch3, Col9a2, Fgf6 and Slc5al) in male-and female-line-derived F2 generation were analyzed by quantitative real-time RT-PCR.
     Results:
     1. In female-line derived F2 generation, Fgfl, Notch3 and three de novo hypermethylated promoters indicated normal methylation status in central nerve system, but Nos3 was still hypermethylated and displayed disturbed levels of mRNA;
     2. In male-line-derived F2 generation, Fgfl, Nos3, Notch3 and three de novo hypermethylated promoters (Col9a2, Fgf6, Slc5a1) have come to normal methylation status, and all of the six loci did no show significant difference in the methylation values and their expression were not disturbed.
     Conclusions:
     1. Hypermethylated have been repaired by some pathways in male-line-derived F2 generation at the following phases of development in order to assure the integrity of the epigenome and IVF-induced aberrant DNA methylation might not be transmitted through male-line gametes;
     2. Epigenetic disturbances induced by IVF, such as aberrant methylation, can not be completely eliminated in the maternal germ line in mice, which were responsible for the epigenetic inheritance to their following generation. The risk of animals with maternally transmitted methylation aberrations depends on the efficiency of maternal epigenome repair following after fertilization.
     PartⅢNos3 methylationo in female-line F3 generation and evaluation of DNA methylation status at differentially methylated regions (DMRs) in IVF-conceived newborn twins
     Objective:To study the aberrant methylated Nos3 in female-line F3 generation. The effects of in-vitro fertilization (IVF) on the stability of DNA methylation at differentially methylated regions (DMRs) in IVF-conceived twins were investigated.
     Materials and methods:
     1. Nos3, which was found hypermethylated in IVF-born mice and can be transmitted through female gamete, was further investigated in female-line F3 generation; Its expressions was detected by real-time RT-PCR;
     2.59 pairs of twins were recruited, including 29 pairs conceived through IVF and 30 pairs naturally conceived twins. Umbilical cord blood samples were collection after cesarean section. DNA was extracted from umbilical cord blood. Two maternally methylated regions (KvDMR1 and PEG1) and one paternally methylated region (H19/IGF2 DMR) were analyzed using bisulfite-based technologies.
     Results:
     1. The methylation tendency of Nos3 has come to normal pattern at F3 generation. No differences were detected in the expressions of Nos3 in F3 generation;
     2. The median methylation percentages of IVF-conceived at PEG1 were 5 comparable to naturally conceived controls, and no significant differences were found (P=0.103) There was a trend toward hypomethylation in 3 children from 3 separate pairs of twins out of 29 (5.08%) pairs of IVF children who had methylation levels slightly lower than 21%, but 1 child out of 30 pairs (1.67%) of control children also displayed hypomethylation (Fisher's exact test,_P=0.611). One IVF child had an H19/IGF2 DMR methylation level of 68%. However, one naturally conceived case with a methylation level slightly higher than 70%was also found. Statistical analysis did not reveal significant differences in the methylation percentages of the H19/IGF2 DMR (P=0.103).
     Conclusion:
     1. Aberrant hypermethylated Nos3, which was found in IVF-born Fl generation and their female line F2 generation, has been corrected at F3 generation;
     2. Our results suggest no significant increase in imprint variability at these DMRs, but KvDMRl showed slightly more variable levels of methylation in IVF cases than in spontaneous cases, and the greater variance in the IVF kids has a biologically meaningful consequence and is still sources of concern for future investigation. Large samples of study are needed to systematically assess the potential epigenetic risk in IVF-conceived twins.
引文
1. Niemitz EL, Feinberg AP. Epigenetics and assisted reproductive technology:a call for investigation. Am J Hum Genet.2004,74(4):599-609.
    2. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum Reprod.2008, 23(12):2826-34.
    3. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet.2008, 17(1):1-14.
    4. Suzuki MM, Bird A.DNA methylation landscapes:provocative insights from epigenomics. Nat Rev Genet.2008,9(6):465-76.
    5. Halliday J, Oke K, Breheny S, Algar E, J Amor D. Beckwith-Wiedemann syndrome and IVF:a case-control study. Am J Hum Genet 2004;75(3):526-8.
    6.φrstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet 2003;72(1):218-9.
    7. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002; 71:162-4
    8. Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES.Abnormal methylation at the KvDMRl imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod 2009;15(8):471-7.
    1. de Mouzon J, Goossens V, Bhattacharya S, Castilla JA, Ferraretti AP, Korsak V, et al. Assisted reproductive technology in Europe, 2006: results generated from European registers by ESHRE. Hum Reprod 2010;25(8):1851-62.
    2. Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ. Assisted reproductive technologies and the risk of birth defects—a systematic review. Hum Reprod 2005;20(2):328-38.
    3. Hansen M, Kurinczuk JJ, Bower C, Webb S. The risk of major birth defects after intracytoplasmic sperm injections and in vitro fertilization. N Engl J Med 2002;346:725-30.
    4. McDonald SD, Han Z, Mulla S, Ohlsson A, Beyene J, Murphy KE, et al. Preterm birth and low birth weight among in vitro fertilization twins: a systematic review and meta-analyses. Eur J Obstet Gynecol Reprod Biol 2010;148(2):105-13.
    5. Schieve LA, Meikle SF, Ferre C, Peterson HB, Jeng G, Wilcox LS.Low and very low birth weight in infants conceived with use of assisted reproductive technology. N Engl J 2002; 346(10):731-7.
    6. Rimm AA, Katayama AC, Diaz M, Katayama KP. A meta-analysis of controlled studies comparing major malformation rates in IVF and ICSI infants with naturally conceived children. J Assist Reprod Genet 2004;21(12):437-43.
    7. Olson CK, Keppler-Noreuil KM, Romitti PA, Budelier WT, Ryan G, Sparks AE, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril2005;84(5):1308-15.
    8. Bower C, Hansen M.Assisted reproductive technologies and birth outcomes: overview of recent systematic reviews. Reprod Fertil Dev 2005;17(3):329-33.
    9. Kurinczuk JJ. Safety issues in assisted reproduction technology. From theory to reality—just what are the data telling us about ICSI offspring health and future fertility and should we be concerned? Hum Reprod 2003;18(5):925-31.
    10. Stromberg B, Dahlquist G, Ericson A, Finnstrom O, Roster M, Stjernqvist K. Neurological sequelae in children bom after in-vitro fertilisation: a population-based study. Lancet 2002;359(9305):461-5.
    11. Lidegaard O, Pinborg A, Anderson AN. Imprinting diseases and IVF: Danish National IVF cohort study. Hum Reprod 2005;20:950-954.
    12. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCN1OT gene. Am J Hum Genet 2003;72(5):1338-41.
    13. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology.Fertil Steril 2009;91(2):305-15.
    14. Owen CM, Segars JH Jr. Imprinting disorders and assisted reproductive technology.Semin Reprod Med 2009;27(5):417-28.
    15. Odom LN, Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes 2010;17(6):517-22.
    16. Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet 2009;17(12):l582-91.
    17. Kobayashi H, Sato A, Otsu E, Hiura H, Tomatsu C, Utsunomiya T, et al. Aberrant DNA methylation of imprinted loci in sperm from oligospermic patients. Hum Mol Genet 2007;16(21):2542-51.
    18. Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMRl imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod 2009;15(8):471-7.
    19. Rauch TA, Zhong X, Wu X, Wang M, Kernstine KH, Wang Z, Riggs AD, et al. High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proc Natl Acad Sci U S A 2008; 105:252-7.
    20. Nakamura T, Arai Y, Umehara H, Masuhara M, Kimura T, Taniguchi H, et al. PGC7/Stella protects against DNA demethylation in early embryogenesis. Nat Cell Biol 2007:9(1):64-71.
    21. Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447(7143):425-32.
    22. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR.Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2010;19(l):36-51.
    23. Stouder C, Deutsch S, Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod Toxicol 2009;28(4):536-41.
    24. Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009 Dec;17(12):1582-91.
    25. Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 1984; 11:47-60.
    26. Logue SF, Paylor R, Wehner JM. Hippocampal lesions cause learning deficits in inbred mice in the Morris water maze and conditioned-fear task. Behav Neurosci 1997;111(1):104-13.
    27. Ecker DJ, Stein R Xu Z, Williams CJ, Kopf GS, Bilker WB, et al. Long-term effects of culture of preimplantationmouse embryos on behavior. Proc Natl Acad Sci USA 2004;101:1595-1600.
    28. Fernandez-Gonzalez R, Moreira P, Bilbao A, Jimenez A, Perez-Crespo M,Ramirez MA, et al. Long-term effect of in vitro culture of mouse embryos with serum on mRNA expression of imprinting genes, development, and behavior.Proc Natl Acad Sci U S A 2004;101:5880-85.
    29. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 (Suppl):245-54.
    30. Farthing CR, Ficz G, Ng RK, Chan CF, Andrews S, Dean W, et al. Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes. PLoS Genet 2008;4(6):el000116.
    31. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei expression of imprinted genes on day 9.5 of development. Hum Mol Genet 2008;17(l):l-14.
    32. Fortier AL, Lopes FL, Darricarrere N, Martel J, Trasler JM. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet 2008;17(11):1653-65.
    1. Xing Y, Shi S, Le L, Lee CA, Silver-Morse L, Li WX. Evidence for transgenerational transmission of epigenetic tumor susceptibility in Drosophila. PLoS Genet 2007;3(9): 1598-606.
    2. Ferguson LR, Karunasinghe N, Philpott M. Epigenetic events and protection from colon cancer in New Zealand. Environ Mol Mutagen 2004;44(1):36-43.
    3. Fujii T.Transgenerational effects of maternal exposure to chemicals on the functional development of the brain in the offspring.Cancer Causes Control 1997;8(3):524-8.
    4. Crews D, Gore AC, Hsu TS, Dangleben NL, Spinetta M, Schallert T, et al. Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A 2007;104(14):5942-6.
    5. Titus-Ernstoff L, Troisi R, Hatch EE, Hyer M, Wise LA, Palmer JR, et al. Offspring of women exposed in utero to diethylstilbestrol (DES): a preliminary report of benign and malignant pathology in the third generation. Epidemiology 2008; 19(2):251-7.
    6. Hitchins MP. Inheritance of epigenetic aberrations (constitutional epimutations) in cancer susceptibility.Adv Genet 2010;70:201-43.
    7. Frost JM, Monk D, Moschidou D, Guillot PV, Stanier P, Minger SL, et al. The effects of culture on genomic imprinting profiles in human embryonic and fetal mesenchymal stem cells. Epigenetics 2011;6(1).
    8. Kim KP, Thurston A, Mummery C, Ward-van Oostwaard D, Priddle H, Allegrucci C, et al. Gene-specific vulnerability to imprinting variability in human embryonic stem cell lines.Genome Res 2007; 17(12): 1731-42.
    9. Pick M, Stelzer Y, Bar-Nur O, Mayshar Y, Eden A, Benvenisty N. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cells. Stem Cells 2009;27(11):2686-90.
    10. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature 2010;467(7313):285-90.
    11. Emanuel I.Maternal health during childhood and later reproductive performance. Ann N YAcad Sci 1986;477:27-39.
    12. Hennessy E, Alberman E.Intergenerational influences affecting birth outcome. II. Preterm delivery and gestational age in the children of the 1958 British birth cohort. Paediatr Perinat Epidemiol 1998;12 Suppl 1:61-75.
    13. Collins JW Jr, Wu SY, David RJ. Differing intergenerational birth weights among the descendants of US-born and foreign-born Whites and African Americans in Illinois.Am J Epidemiol 2002; 155(3):210-6.
    14. Dobrovic A, Kristensen LS. DNA methylation, epimutations and cancer predisposition, hit J Biochem Cell Biol 2009;41(1):34-9.
    15. Cropley JE, Martin DI, Suter CM. Germline epimutation in humans. Pharmacogenomics2008;9(12):1861-8.
    16. Roemer I, Reik W, Dean W, Klose J. Epigenetic inheritance in the mouse. Curr Bioll997;7(4):277-80.
    17. Rakyan VK, Chong S, Champ ME, Cuthbert PC, Morgan HD, Luu KV, et al. Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 2003;100(5):2538-43.
    18. Rakyan V, Whitelaw E.Transgenerational epigenetic inheritance.Curr Biol 2003;13(1):R6.
    19. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 2004;20(1):63-8.
    20. Reik W, Santos F, Dean W. Mammalian epigenomics: reprogramming the genome for development and therapy.Theriogenology 2003;59(1):21-32.
    21. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 2006;114(4):567-72.
    22. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003;35(2):88-93.
    23. Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, et al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 2003;35(2):88-93.
    24. Lin WY, Chiu TY, Lee LT, Lin CC, Huang CY, Huang KC. Betel nut chewing is associated with increased risk of cardiovascular disease and all-cause mortality in Taiwanese men. Am J Clin Nutr 2008;87(5): 1204-11.
    25. Chen TH, Chiu YH, Boucher BJ.Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program.Am J Clin Nutr 2006;83(3):688-92.
    26. Boucher BJ, Ewen SW, Stowers JM. Betel nut (Areca catechu) consumption and the induction of glucose intolerance in adult CD1 mice and in their Fl and F2 offspring. Diabetologia 1994;37(l):49-55.
    27. Dunn GA, Bale TL. Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 2009; 150(11):4999-5009.
    28. Harrison M, Langley-Evans SC.Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy. Br J Nutr 2009;101(7):1020-30.
    29. Dobrovic A, Kristensen LS.DNA methylation, epimutations and cancer predisposition, hit J Biochem Cell Biol 2009;41(l):34-9.
    30. Venkatachalam R, Ligtenberg MJ, Hoogerbrugge N, de Bruijn DR, Kuiper RP,Geurts van Kessel A. The epigenetics of (hereditary) colorectal cancer. Cancer Genet Cytogenet 2010;203(l):l-6.
    31. Cropley JE, Martin DI, Suter CM. Germline epimutation in humans. Pharmacogenomics 2008;9(12): 1861-8.
    32. Martin DI, Ward R, Suter CM. Germline epimutation: A basis for epigenetic disease in humans. Ann N Y Acad Sci 2005; 1054:68-77.
    33. Daxinger L, Whitelaw E.Transgenerational epigenetic inheritance: More questions than answers. Genome Res. 2010;20(12):1623-8
    34. Pentinat T, Ramon-Krauel M, Cebria J, Diaz R, Jimenez-Chillaron JC. Transgenerational Inheritance of Glucose Intolerance in a Mouse Model of Neonatal Overnutrition. Endocrinology 2010;151(12):5617-23.
    35. Cuzin F, Rassoulzadegan M. Non-Mendelian epigenetic heredity: gametic RNAs as epigenetic regulators and transgenerational signals. Essays Biochem 2010;48(l):101-6
    36. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, et al Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010 Dec 23;143(7):1084-96.
    
    1. Koivurova S, Hartikainen AL, Sovio U, Gissler M, Hemminki E, Jarvelin MR. Growth, psychomotor development and morbidity up to 3 years of age in children born after IVF. Hum Reprod 2003;18(11):2328-36
    2. DeBaun MR, Niemitz EL, and Feinberg, AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT 1 and HIP. American Journal of Human Genetics 2003;72(l): 156-60
    3. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCNQ1OT1 gene. American Journal of Human Genetics 2003;72(5):1338-41
    4. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). Journal of Medical Genetics 2003; 40(1):62-4.
    5. Halliday J,Oke K, Breheny S, Algar EJ, Amor D. Beckwith-Wiedemann syndrome and IVF: A case-control study. American Journal of Human Genetics 2004; 75(3):526-28.
    6. Horsthemke B, Ludwig M. Assisted reproduction: the epigenetic perspective. Hum Reprod Upd 2005;11(5);473-82
    7. Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet 2002;71(1):162-64
    8. 0rstavik KH, Eiklid K, van der Hagen CB, Spetalen S, Kierulf K, Skjeldal O, et al. Another case of imprinting defect in a girl with Angelman syndrome who was conceived by intracytoplasmic semen injection. Am J Hum Genet. 2003; 72(1): 218-19.
    9. Fleming JL, Huang TH, Toland AE. The role of parental and grandparental epigenetic alterations in familial cancer risk. Cancer Res 2008;68(22):9116-21.
    10. Extavour CG, Akam M.Mechanisms of germ cell specification across the metazoans: epigenesis and preformation. Development 2003;130(24):5869-84.
    11. Campbell JH, Perkins P. Transgenerational effects of drug and hormonal treatments in mammals:a review of observations and ideas. Prog Brain Res 1988;73:535-53
    12. Jirtle RL. IGF2 loss of imprinting:a potential heritable risk factor for colorectal cancer.Gastroenterology 2004; 126(4):1190-3.
    13. Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life:an overview. Reprod Toxicol 2005;20(3):345-52.
    14. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, et al Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. JAMA 2005;294(5):557-62.
    15. Ho SM, Tang WY, Belmonte de Frausto J, Prins GS. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 2006;66(11):5624-32.
    16. Cesani MF, Orden B, Zucchi M, Mune MC, Oyhenart EE, Pucciarelli HM. Effect of undernutrition on the cranial growth of the rat. An intergenerational study. Cells Tissues Organs 2003; 174:129-35.
    17. Turusov VS, Nikonova TV, Parfenov YuD. Increased multiplicity of lung adenomas in five generations of mice treated with benz(a)pyrene when pregnant. Cancer Lett 1990;55:227-31.
    18. Yamasaki H, Loktionov A, Tomatis L. Perinatal and multigenerational effect of carcinogens:possible contribution to determination of cancer susceptibility. Environ Health Perspect 1992;98:39-43.
    19. Cheng RY, Hockman T, Crawford E, Anderson LM, Shiao YH. Epigenetic and gene expression changes related to transgenerational carcinogenesis. Mol Carcinog 2004;40(1):1-11.
    20. Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature.2000; 405(6785):482-85.
    21. Sullivan MJ, Taniguchi T, Jhee A, Kerr N, Reeve AE. Relaxation of IGF2 imprinting in Wilms tumours associated with specific changes in IGF2 methylation. Oncogene 1999; 18(52):7527-34.
    22. DeBaun MR, Niemitz EL, and Feinberg, AP. Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and HI9. American Journal of Human Genetics 2003; 72(1):156-160
    23. Gicquel C, Gaston V, Mandelbaum J, Siffroi JP, Flahault A, Le Bouc Y. In vitro fertilization may increase the risk of Beckwith-Wiedemann syndrome related to the abnormal imprinting of the KCNQ1OT1 gene. American Journal of Human Genetics 2003; 72(5):1338-41.
    24. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). Journal of Medical Genetics 2003; 40(1):62-64.
    25. Halliday J,Oke K, Breheny S, Algar EJ, Amor D. Beckwith-Wiedemann syndrome and IVF:A case-control study. American Journal of Human Genetics 2004; 75(3): 526-28.
    26. Rivera RM, Stein P, Weaver JR, Mager J, Schultz RM, Bartolomei MS. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet 2008; 17(1):1-14.
    27. Geuns E, Hilven P, Van Steirteghem A, Liebaers I, De Rycke M. Methylation analysis of KvDMR1 in human oocytes. J Med Genet 2007; 44(2):144-47.
    28. Gomes MV, Huber J, Ferriani RA, Amaral Neto AM, Ramos ES. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod 2009; 15(8): 471-77.
    29. Chang AS, Moley KH, Wangler M, Feinberg AP, Debaun MR. Association between Beckwith-Wiedemann syndrome and assisted reproductive technology:a case series of 19 patients. Fertil Steril 2005; 83:349-54.
    30. Market-Velker BA, Zhang L, Magri LS, Bonvissuto AC, Mann MR. Dual effects of superovulation:loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 2010; 19:36-51.
    31. Tierling S, Souren NY, Gries J, Loporto C, Groth M, Lutsik P, et al. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J Med Genet 2010; 47:371-6.
    32. Turan N, Katari S, Gerson LF, Chalian R, Foster MW, Gaughan JP, et al. Inter-and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet 2010; 6(7):e1001033.
    33. Beatty L, Weksberg R, Sadowski PD. Detailed analysis of the methylation patterns of the KvDMR1 imprinting control region of human chromosome 11. Genomics 2006;87(1):46-56.
    34. Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, et al. Imprinting along the Kcnql domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet.2004; 36(12):1296-1300.
    35. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod 2003; 69:1109-17.
    36. Zander DL, Thompson JG, Lane M. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol Reprod 2006; 74:288-94
    1. Jain T, Gupta RS. Trends in the use of intracytoplasmic sperm injectionin the United States. N Engl J Med,2007,357(3):251-7.
    2. Sutcliffe AG, Ludwig M. Outcome of assisted reproduction. Lancet,2007, 370(9584):351-359.
    3. ESHRE Capri Workshop Group.Intracytoplasmic sperm injection (ICSI) in 2006: Evidences and Evolution. Hum Reprod Update.2007,13(6):515-26.
    4. Hansen M, Colvin L, Petterson B, Kurinczuk JJ, de Klerk N, Bower C. Admission to hospital of singleton children born following assisted reproductive technology (ART). Human Reproduction,2008,23 (6):1297-1305.
    5. Bofinger MK, Needham DF, Saldana LR, Sosnowski JP, Blough RI.45, X/46, X,r(Y) karyotype transmitted by father to son after intracytoplasmic sperm injection for oligospermia. A case report. J Reprod Med,1999,44(7):645-658.
    6. Staessen C, Tournaye H, Van Assche E, Michiels A, Van Landuyt L, Devroey P, et al. PGD in 47, XXY Klinefelter's syndrome patients. Hum Reprod Update,2003, 9(4):319-330.
    7. Hucklenbroich K, Gromoll J, Heinrich M, Hohoff C, Nieschlag E, Simoni M. Partial deletions in the AZFc region of the Y chromosome occur in men with impaired as well as normal spermatogenesis. Hum Reprod,2005,20(1):191-197.
    8. Komori S, Kato H, Kobayashi S, Koyama K, Isojima S. Transmission of Y chromosomal microdeletions from father to son through intracytoplasmic sperm injection. J Hum Genet,2002,47(9):465-468.
    9. Mau Kai C, Juul A, McElreavey K, Ottesen AM, Garn ID, Main KM, et al. Sons conceived by assisted reproduction techniques inherit deletions in the azoospermia factor (AZF) region of the Y chromosome and the DAZ gene copy number. Hum Reprod,2008,23(7):1669-78.
    10. Spinner NB, Saitta SC, Delaney DP, Colliton R, Zderic SA, Ruchelli E, et al. Intracytoplasmic sperm injection (ICSI) with transmission of a ring(Y) chromosome and ovotesticular disorder of sex development in offspring. Am J Med Genet A,2008,146 A (14):1828-31.
    11. Cram DS, Song B, Malachlan RI, Trounson AO. CAG trinucleotide repeats in the androgen receptor gene of infertile men exhibit stable inheritance in female offspring conceived after ICSI. Mol Hum Reprod,2000,6(9):861-866.
    12. Tse JY, Liu VW, Yeung WS, Lau EY, Ng EH, Ho PC. Molecular analysis of the androgen receptor gene in Hong Kong Chinese infertile men. J Assist Reprod Genet,2003,20(6):227-33.
    13. Josserand RN, Bey-Omar F, Rollet J, Lejeune H, Boggio D, Durand DV, et al. Cystic fibrosis phenotype evaluation and paternity outcome in 50 males with congenital bilateral absence of vas deferens. Hum Reprod,2001,16(10):2093-7.
    14.曾国华,邓春华,林正,邓文国,庄广伦,李满.首次发现国人先天性双侧输精管缺如CFTR基因突变.新医学,2000,31:17-18.
    15. Eichenlaub-Ritter U, Shen Y, Tinneberg HR. Manipulation of the oocyte:possible damage to the spindle apparatus. Reprod Biomed Online,2002,5(2):117-124.
    16. Chan AW, Luetjens CM, Dominko T, et al. Transgen ICSI reviewed:foreign DNA transmission by intracytoplasmic sperm injection in rhesus monkey. Mol Reprod Dev,2000,56[2 Suppl]:325-328.
    17. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet,2005,14(1):47-58.
    18. Wilkins-Haug L.Assisted reproductive technology, congenital malformations, and epigenetic disease.Clin Obstet Gynecol,2008,51(1):96-105.
    19. Lidegaard Φ, Pinborg A, Andersen AN. Imprinting disorders after assisted reproductive technologies. Curr Opin Obstet Gynecol,2006,18(3):293-6.
    20.Cox GF, Burger J, Lip V, Mau UA, Sperling K, Wu BL, et al. Intracytoplasmic sperm injection may increase the risk of imprinting defects. Am J Hum Genet, 2002,71(1):162-164.
    21. Maher ER, Brueton LA, Bowdin SC, Luharia A, Cooper W, Cole TR, et al. Beckwith-Wiedemann syndrome and assisted reproduction technology (ART). J Med Genet,2003,40(1):62-64.
    1. Leeanda Wilton. Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization. Hum Reprod Update,2005, 11(1):33-41
    2. Fiorentino F, Magli MC, Podini D, Ferraretti AP, Nuccitelli A, Vitale N, et al. The minisequencing method:an alternative strategy for preimplantation genetic diagnosis of single gene disorders. Mol Hum Reprod,2003,9(7):399-410
    3. Bermudez MG, Piyamongkol W,Tomaz S, Dudman E, Sherlock JK, Wells D. Single-cell sequencing and mini-sequencing for preimplantation genetic diagnosis. Prenat Diagn,2003,23(8):669-77
    4. Obradors A, Fernandez E, Oliver-Bonet M, et al. Birth of a healthy boy after a double factor PGD in a couple carrying a genetic disease and at risk for aneuploidy:Case Report. Hum Reprod,2008,1-8 [Epub ahead of print]
    5. Dean FB, Nelson JR, Giesler TL, Lasken RS. Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply primed rolling circle amplification. Genome Res,2001,11(6):1095-9
    6. Hellani A, Coskun S, Tbakhi A, Al-Hassan S. Clinical application of multiple displacement amplification in preimplantation genetic diagnosis. Reprod Biomed Online,2005,10(3):376-80
    7. Renwick PJ, Trussler J, Ostad-Saffari E, Fassihi H, Black C, Braude P, et al. Proof of principle and first cases using preimplantation genetic haplotyping—a paradigm shift for embryo diagnosis. Reprod Biomed Online,2006,13(1):110-9
    8. Burlet P, Frydman N, Gigarel N, Kerbrat V, Tachdjian G, Feyereisen E, et al. Multiple displacement amplification improves PGD for fragile X syndrome. Mol Hum Reprod,2006,12(10):647-52
    9. Harper JC, Boelaert K, Geraedts J, Harton G, Kearns WG, Moutou C, et al. ESHRE PGD Consortium data collection V:cycles from January to December 2002 with pregnancy follow-up to October 2003. Hum Reprod,2006,21(1):3-21
    10. Munne S, Sandalinas M, Escudero T.Improved implantation after preimplantation geneticdiagnosis of aneuploidy.Reprod Biomed Online,2003,7(1):91-7
    11. Munne S, Fischer J, Warner A, Chen S, Zouves C, Cohen J. et al. Preimplantation genetic diagnosis significantly reduces pregnancy loss in infertile couples:a multi-center study. Fertil Steril,2006,85(2):326-32.
    12. Colls P, Escudero T, Cekleniak N, Sadowy S, Cohen J, Munne S. Increased efficiency of preimplantation genetic diagnosis for infertility using "no result rescue". Fertil Steril,2007,88(1):53-61.
    13. Mastenbroek S, Twisk M, Van Echten-arends J, Sikkema-Raddatz B, Korevaar JC, Verhoeve HR. et al. In Vitro Fertilization with Preimplantation Genetic Screening.N Engl J Med,2007,357(1):9-17
    14. Pagidas K, Ying Y, Keefe D. Predictive value of preimplantation genetic diagnosis for aneuploidy screening in repeated IVF-ET cycles among women with recurrent implantation failure. J Assist Reprod Genet,2008,25(2-3):103-6
    15. Munne S, Chen S, Fischer J, Chen S, Zouves C, Cohen J, et al. Preimplantation genetic diagnosis reduces What next for PGS? pregnancy loss in women aged 35 years and older with a history of recurrent miscarriages. Fertil Steril,2005, 84(2):331-5
    16. Collins JA. Preimplantation genetic screening in older mothers.N Engl J Med, 2007,357(1):61-3
    17. Jansen RP, Bowman MC, de Boer KA, Leigh DA, Lieberman DB, McArthur SJ. What next for preimplantation genetic screening (PGS)? Experience with blastocyst biopsy and testing for aneuploidy. Human Reproduction,2008,23(7): 1476-8.
    18. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001,293(5532):1089-93
    19. Nekkebroeck J, Bonduelle M, Desmyttere S. Mental and psychomotor development of 2-year-old children born after preimplantation genetic diagnosis/screening. Human Reproduction,2008,23(7):1560-6
    20. Nekkebroeck J, Bonduelle M, Desmyttere S, Van den Broeck W, Ponjaert-Kristoffersen Ⅰ. Socio-emotional and language development of 2-year-old children born after PGD/PGS, and parental well-being. Hum Reprod. 2008,23(8):1849-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700