叶籽银杏EFRO发育过程中DNA甲基化修饰机理及系统学意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏(Ginkgo biloba L)有许多原始和进化特征。银杏属实际上可能是现存的种子植物中最古老的一个属。国内外大量研究表明银杏是比较形态学、解剖学、胚胎发育及系统发育研究的最理想的试材之一。
     叶籽银杏(Ginkgo biloba var. epiphylla Mak.)作为银杏家族中的一个特异种质,具有重要的理论和观赏价值。其最大特点在于叶生雌性生殖器官(epiphyllous female reproductive organ,EFRO)的个体发生和结构。它们对银杏的系统发育、起源、演化及亲缘关系的研究具有重要意义。本研究通过对叶籽银杏叶生雌性生殖器官(EFRO)发育与再生过程中DNA甲基化分子机制的研究,以期揭示叶籽银杏雌性生殖器官的形态学本质及其系统学意义。其实验结果和主要结论如下:
     本研究采用甲基化敏感扩增多态性技术(MSAP),以叶籽银杏、银杏及攀枝花苏铁、铁线蕨两个外类群为材料,从54对MSAP选扩增引物中,选出扩增清晰、可辨且可重复的16-24对MSAP引物组合,扩增获得这四个物种的DNA胞嘧啶甲基化修饰水平及MSAP扩增图谱,结果表明叶籽银杏基因组中至少有48.7%(全甲基化34%、半甲基化14.7%)、银杏44.0%(全甲基化32.8%、半甲基化11.2%)、苏铁39.6%(全甲基化29.2%、半甲基化9.8%)、铁线蕨44.6%(全甲基化29.4%、半甲基化15.2%)的CCGG/GGCC位点发生胞嘧啶甲基化。与相关物种比较,这四个物种的DNA胞嘧啶甲基化水平整体较高。植物基因组DNA胞嘧啶甲基化修饰检出率不同,反映了在基因组水平上的物种的差异性。
     本研究通过对叶籽银杏、银杏在萌动期和展叶期的CCGG/GGCC位点胞嘧啶甲基化进行的总体分析,结果发现萌动期叶籽银杏甲基化水平47.6%、银杏42.4%,展叶期叶籽银杏着生叶生胚珠的叶籽银杏(YZ)甲基化水平48.3%、没有着生叶生胚珠的叶籽银杏(YC)40.5%、银杏(CK)41.5%,体现为叶籽银杏的甲基化高于YC及CK;同时叶籽银杏、银杏在甲基化模式上存在着丰富的差异,萌动期叶籽银杏相对于银杏去甲基化比例为13.2%,超甲基化比例为14.6%,超甲基化的比例略高于去甲基化;展叶期YZ相对于YC去甲基化比例为8.2%,超甲基化比例为16.0%,YZ相对于CK去甲基化比例为4.8%,超甲基化比例为28%,总体表现为展叶期的YZ相对于YC及CK的超甲基化水平高于萌动期的超甲基化水平。显示萌动期与展叶期叶籽银杏甲基化修饰的水平不同。说明叶籽银杏EFRO发育过程中胞嘧啶甲基化具有时空特异性。
     本研究对叶籽银杏不同组织DNA胞嘧啶甲基化的水平、模式及模式上的差异类型进行分析,结果发现叶籽银杏不同组织DNA胞嘧啶甲基化的水平不同,其发端期47.7%、雌配子发育前期(前期)46.0%、雌配子发育中期(中期)45.2%、雌配子发育后期(后期)41.8%、叶籽银杏正常胚珠胚乳初期(CK)35.3%。不同组织在甲基化模式上也存在着广泛的差异,表现为发端期相应于前期去甲基化比例为19.7%、超甲基化比例为14.6%,中期去甲基化比例20.0%、超甲基化比例为13.30%,后期去甲基化比例为20.3%、超甲基化比例为14.6%,CK去甲基化比例为20.3%,超甲基化比例为18.8%。不同组织甲基化模式上的差异体现为发端期组织相对于雌配子发育的三个时期的组织(前期、中期、后期)及叶籽银杏正常胚珠胚乳初期组织(CK)的去甲基化水平高于超甲基化水平,发生了去甲基化,这个时期有更多的基因表达,是叶籽银杏EFRO形成的关键时期。叶籽银杏在不同时期、不同组织这种去甲基化/超甲基化的变化式样,对揭示叶籽银杏EFRO形成的可能机制及系统学意义奠定了基础。
     本研究从54对MSAP选扩引物中,选出16对MSAP选扩引物组合,扩增产生叶籽银杏不同单株清晰可辨的MSAP扩增图谱,检测其甲基化水平,发现不同单株甲基化水平不同,其中,沂源油坊(I油坊)为47.2%、沂源织女洞南(I织南) 44.09%、沂源织女洞北(I织北) 43.8%、沂源白裕(I白裕) 43.3%、沂源中河(I中河) 43.5%、泰安老君堂正常银杏(CK)39.7%。不同单株在甲基化模式上也存在着广泛的差异, I油坊相对于I织南、I织北、CK的去甲基化比例分别为8.7%、13.3%和8.42%,超甲基化比例分别为27.1%、11.22%、13.68%。在同一时期,I油坊较之其他几株表现为较高的超甲基化水平,或许与I油坊树龄大(树龄为1300年,其余在700年左右)有关。即植物形态的构成与年龄有一定的关联。
     本研究采用分子生物学技术,对部分叶籽银杏、银杏修饰位点及叶籽银杏多态性位点进行克隆和序列分析,通过匹配的同源序列功能注释,发现叶籽银杏、银杏基因组中包括大量的重复序列、转座子序列、转录调控因子、反转录转座子序列、F-box蛋白、叶绿体通道蛋白、钠离子通道蛋白、泛素蛋白、假设蛋白及乙酸脱氢酶在内的多种类型DNA序列中均存在DNA甲基化修饰现象。这些基因在叶籽银杏和银杏中的甲基化状态被修饰的程度不同,表明它们可能有助于叶籽银杏和银杏间的表型差异的形成,对于解读叶籽银杏的形成机制具有一定的意义。
Ginkgo biloba L. had many original and evolutional features. In fact, ginkgo genera maybe was the oldest genera. Numerous researches at home and abroad showed that ginkgo was one of the ideal materials for comparative morphology, anatomy, embryonic development, and phylogenies.
     As a peculiar germplasm of ginkgo, Ginkgo biloba var. epiphylla Mak, had important value in theory and view. Its distinguishing feature was the ontogeny and structure of epiphyllous female reproductive organ (EFRO), which had important significance in phylogenies, origin, development and research on genetic relationship of ginkgo. Studies on DNA methylation mechanism in EFRO development of Ginkgo biloba var. epiphylla Mak had important significance in revealing morphology essence and systematics. The results and main conclusions as follows:
     MSAP was applied on ginkgo biloba L., ginkgo biloba var. epiphylla Mak., Cycas, and Adiantum edgeworthii Hook. 16-24 pairs of clear and reproducible selective primers were selected from 54 pairs of MSAP. Cytosine methylation modified level and MSAP amplification patterns of this four species obtained from amplification. The results showed that: about 48.7% (34% full methylation, and 14.7% half- methylation) of the CCGG sites in epiphylla ginkgo genome were methylated, 44.0% (32.8% methylation, and 11.2% half- methylation) in ginkgo, 39.6% (29.2% methylation, and 9.8% half- methylation) in Cycas, and 44.6% (29.4% methylation, and 15.2% half-methylation) in Adiantum edgeworthii. Compared with related species, the methylate level of these species was high. The difference of DNA methylate modified detection rate can reflect the differences in genome species.
     Cytosine methylation of the CCGG sites at budding stage and leaf-expansion stage of ginkgo and epiphylla ginkgo was general analysis. The results obtained were: at budding stage, methylate level was 47.6% of epiphylla ginkgo, and 42.4% of ginkgo; at leaf-expansion stage, methylate level was 48.3% of malformation-leaf (YZ), 40.5% of normal leaf (YC) of epiphylla ginkgo, and 41.5% of ginkgo leaf (CK), which showed that methylate level of YZ was higher than YC and CK. At the same time, Epiphylla ginkgo and ginkgo had rich variation in methylate model. The ratio of demethylate epiphylla ginkgo to ginkgo at budding sta ge was 13.2%, supermethylation rate was 14.6%, which was little higher than demethylate. The ratio of demethylate YZ to YC at leaf-expansion stage was 8.2%, supermethylation rate was 28%. On the whole,it was obvious that YZ showed supermethylation was highest at leaf-expansion stage,meanwhile, which was also higher than budding stage. Methylate modified level was different at budding stage and leaf-expansion stage of epiphylla ginkgo. It was showed that Cytosine methylation of EFRO of epiphylla ginkgo had specificity with time and space.
     The cytosine methylate level, mode, and variation type of DNA in different tissue of epiphylla ginkgo was analyzed. It showed that cytosine methylate level DNA in different tissue was different, which was 47.7% at budding stage, at early, middle, late stage of female gametophyte development was 46.0%, 45.2%, and 41.8%, respectively, 35.3% at endosperm stage of CK. Methylate mode was different in different tissue, which showed that demethylate ratio was 19.7%, supermethylation ratio was 14.6% at previous stage, demethylate ratio was 20.0%, supermethylation ratio was 13.3% at middle stage, and demethylate ratio was 20.3%, supermethylation ratio was 14.6% at later stage. The demethylate ratio of CK was 20.3%, and supermethylation ratio was 18.8%. The methylate model difference among different tissue showed that demethylate level was higher than supermethylation level of tissue at budding stage to tissue of three stage of gametophyte development (previous stage, middle stage, and later stage), and early tissue of endosperm of CK. Much gene express at this stage, which was the critical stage of epiphylla ovule formation. This demethylate/supermethylation mode of different stage and different tissue of epiphylla ginkgo laid a foundation for EFRO formation mechanism of epiphylla ginkgo and its phylogenies.
     16 pairs of selective primers were selected from 54 pairs of MSAP. MSAP amplification pattern produced from different individual of epiphylla ginkgo. Methylate level was different in different individual: youfang (I youfang) was 47.2%, south of zhinv cave (I zhinan) was 44.09%, north of zhinv cave (I zhibei) was 43.8%, baiyu(biayu) was 43.3%, zhonghe (I zhonghe) 43.5%, normal ginkgo of laojuntang (CK) was 39.7%. The methylate mode was also different in individual. Demethylate ratio of I youfang to I zhinan, I zhibei, and CK was 8.7%, 13.3%, and 8.42%, supermethylation ratio of which was 27.1%, 11.22%, and 13.68%, respectively. I youfang appeared higher supermethylation level than other individual contemporaneity, perhaps, which was related with old age (I youfang was 1300a, and others were about 700a). There was relationship between plant morphosis and age.
     Mode sites of epiphylla ginkgo and ginkgo, and polymorphic site of epiphylla ginkgo were cloned and sequence analyzed by protocols in molecular biology. DNA methylate modified was existed many DNA sequence types, such as: repetitive sequence, transposon sequence, transcription regulator, retrotransposons sequence, F-box protein, channel protein of chloroplast, channel protein of Na+, ubiquitin-protein, hypothetical protein and ethyl-dehydrogenase in epiphylla ginkgo and ginkgo genome by matching homologous sequence. The different in methylate modified level of such genes in epiphylla ginkgo and ginkgo showed that it was helpful to epiphylla ginkgo and ginkgo phenotypic differences formation, and had significance in understanding epiphylla ginkgo formation.
引文
蔡兆伟,赵晓枫等. DNA甲基化及其在动物遗传育种上的应用研究[J].上海畜牧兽医通讯, 2008, 1: 56-57
    陈罡,钟鸣,徐正进等.一种水稻幼苗单株的快速提取银染改良法[J].生物技术通讯, 2006, 17(2): 213-215
    陈亮明,张冬林,李志辉等. PAGE银染和条带回收方法的改进[J].中南林业科技大学学报, 2007, 27(6): 163-165
    陈小强,王春国,李秀兰,宋文芹,陈瑞阳.大花蕙兰子房授粉前后基因组DNA胞嘧啶甲基化状态的MSAP分析[J].云南植物研究, 2008, 30(4): 464-470
    戴艳.小麦组蛋白修饰酶基因及DNA甲基转移酶基因的分离及鉴定[D].中国农业大学博士论文, 2005
    董雷雷,邢世岩,李际红,王京梅.叶籽银杏trnS-trnG序列测定与分析[J].中国农学通报, 2008, 24 (12): 168-172
    董玉玮,侯进慧,朱必才,李培青,庞永红.表观遗传学的相关概念和研究进展[J].生物学杂志, 2005, 22(1): 1-3
    杜传印,王玉军,李斯深等.烟草AFLP银染分析体系的建立[J].山东农业科学, 2007, 5: 38-44
    方卫国,韦宇拓,裴炎.一种新的DNA银染方法[J].遗传, 2000, 22(3):167-168
    傅德志,杨亲二.银杏雌性生殖器官的形态学本质及其发生意义[J].植物分类学报, 1993, 31(3): 309-317
    傅占江,刘宝文,刘体全等. DNA聚丙烯酰胺凝胶电泳三种银染方法比较[J].临床军医杂志, 2002, 30(4): 71-73
    葛永奇,邱英雄,丁炳扬,傅承新.孑遗植物银杏群体遗传多样性的ISSR分析[J].生物多样性, 2003, 11(4): 276-287
    关海涛,徐世昌,郭玉华.两种聚丙烯酰胺凝胶银染方法的比较[J].沈阳农业大学学报, 2006, 37(1): 86-87
    桂仁意.银杏主要栽培品种指纹图谱构建及遗传图谱构建研究[D].南京:南京林业大学. 2004
    郭鹏.植物DNA甲基化研究进展[J].宜宾学院学报, 2003, 6(6): 104-106
    洪柳,邓秀新.应用MSAP技术对脐橙品种进行DNA甲基化分析[J].中国农业科学, 2005, 38(11): 2301-2307
    洪舟,施季森,郑仁华,杨立伟,陈孝丑,翁玉榛,黄金华.杉木亲本自交系及其杂交种DNA甲基化和表观遗传变异[J].分子植物育种, 2009, 7(3): 591-598
    侯雷平,李梅兰. DNA甲基化与植物生长发育[J].植物生理学通讯, 2001, 37(6): 584-588
    黄桂华,高丽丽,仲崇禄等.木麻黄AFLP分析体系的建立及引物筛选[J].分子植物育种, 2007, 27(2): 20-24
    黄建安,李家贤,黄意欢等.茶树品种资源遗传多样性的AFLP研究[J].园艺学报, 2006, 33(2): 317-322
    黄荣峰,郭培懿,黄大昉.植物DNA甲基化[J].生物技术通报, 2001, 5: 1-3, 40 乐晓萍,杜鹏,张钦宪等.聚丙烯酰胺凝胶银染技术改良[J].河南医科大学学报, 2001, 36(4): 395-396
    雷娜,李景富,李烨等.番茄AFLP技术体系的优化与建立[J].东北农业大学学报, 2008, 39(3): 29-33
    黎明,翟晓巧,范国强,张变莉,刘飞.土霉素对豫杂一号泡桐丛枝病幼苗形态和DNA甲基化水平的影响[J].林业科学, 2008, 44(9): 152-156
    李保进,邢世岩.叶籽银杏叶的解剖结构及气孔特性[J].林业科学, 2007, 43(10): 34-39
    李丽琴,付春华,赵春芳,吴文娟,余龙江.红豆杉脱分化过程中的遗传和表观遗传变异[J].植物生理学通讯, 2009, 45(6): 544-548
    李梅兰. DNA甲基化与白菜的生长转变[D].杭州:浙江大学, 2001
    李其松,王金玉,沈华,焦彩兰等. DNA聚丙烯酰胺凝胶电泳及银染方法的探讨[J].黑龙江畜牧兽医, 2006, 10: 79-81
    李士美,李保进,邢世岩,王芳.叶籽银杏拟胚珠的形态发育及变异特性[J].园艺学报, 2007a, 34(1): 1-6
    李士美,邢世岩,李保进,王利.叶籽银杏的发生及其个体与系统发育研究述评[J].林业科学, 2007b, 43(5): 90-98
    李旭刚,朱祯,冯德江等. DNA甲基化对转基因表达的影响[J].科学通报, 2001, 46(4): 322-326
    李雪林,林忠旭,聂以春,郭小平,张献龙.盐胁迫下棉花基因组DNA表观遗传变化的MSAP分析[J].作物学报, 2009, 35(4): 588-596
    李正理.最近十年(1949-1959)关于银杏的形态解剖及细胞学上的研究[J].植物学报, 1959, 8(4): 270-282
    梁宏伟,王长忠,李忠等.聚丙烯酰胺凝胶快速、高效银染方法的建立[J].遗传, 2008, 30(10): 1379-1382
    刘秀菊,任俊云,宗绪晓等.蚕豆AFLP技术体系的建立与优化[J].植物遗传资源学报, 2007, 8(2): 153-158
    刘永华,李国景,吴晓花等.长豇豆AFLP技术体系的构建与优化[J].浙江农业学报, 2007, 19(3): 156-159
    鲁凤娟,张玉星.影响梨AFLP技术体系关键因素研究[J].安徽农业科学, 2008, 36(30): 13059-13070
    陆光远,伍晓明,陈碧云,高桂珍,许鲲,李响枝.油菜种子萌发过程中DNA甲基化的MSAP分析[J].科学通报, 2005, 50(24): 2750-2756
    孟海军.柑橘胚胎发生过程中DNA甲基化/去甲基化研究[D].武汉:华中农业大学, 2006
    聂丽娟,王子成. DNA甲基化抑制剂作用机理及其在植物发育生物学研究中的应用[J]. 核农学报, 2007, 21(4): 362-365
    潘雅姣,傅彬英,王迪,朱苓华,黎志康.水稻干旱胁迫诱导DNA甲基化时空变化特征分析[J].中国农业科学, 2009, 42(9): 3009-3018
    沈永宝,施季森,赵洪亮.利用ISSR DNA标记鉴定主要银杏栽培品种[J].林业科学, 2005, 41(1): 202-204
    施季森.表观基因组学—数量遗传学的一个新视野[C].中国林学会林木遗传育种分会第八次学术研讨会论文集. 2008,杭州
    石丽雪,沙广利,王斌,孙仲序.苹果性状标记AFLP技术体系的建立和优化[J].山东农业科学, 2006, 2: 15-20
    宋蓓.枣cDNA-AFLP技术体系优化及其在抗枣疯病相关基因片段筛选中的应用[D].2007
    唐韶青,张沅等.不同动物部分组织基因组甲基化程度的差异分析[J].农业生物技术学报, 2006, 14(4): 507-510
    汪炳良.萝卜春化作用及其与DNA甲基化的关系[D].杭州:浙江大学, 2004.
    王从彦,胡颖,郭二辉,胡小丽,田朝阳.分子标记在裸子植物应用中的研究进展[J].分子植物育种, 2008, 6(5): 971-980
    王京梅,李际红,邢世岩,姚林梅,王邑刚.叶籽银杏GbMADS5基因的克隆与序列分析[J].分子植物育种, 2009, 7(5): 1015-1020
    王利,邢世岩,杨克强,王正华,郭彦彦,束怀瑞.银杏观赏品种遗传关系的AFLP分析[J]. 遗传学报, 2006, 33(11): 1020-1026
    王林,李荣,牛建新等.核桃AFLP银染技术体系的建立[J].西北农业学报, 2007, 16(2): 116-119
    王晓梅,宋文芹,刘松,李秀兰,陈瑞阳.利用AFLP技术筛选与银杏性别相关的分子标记[J].南开大学学报(自然科学版), 2001, 34(1): 5-9
    魏华丽,杨文华,韩素英,齐力旺.表观遗传学在木本植物中的研究策略及应用[J].中国农业科技导报, 2009, 11(2): 10-16
    武立鹏,朱卫国. DNA甲基化的生物学应用急检测方法进展[J].中华检验医学杂志, 2004, 27(7): 468-474
    肖理慧,高武军,张小莉等.葎草DNA的提取及AFLP标记反应体系的建立[J].分子植物育种, 2008, 6(2): 393-398
    谢渊,张小蕾,李毅等.天麻AFLP分析技术体系的建立[J].生物技术, 2007, 17(1): 46-48
    邢世岩,高进红,姜岳忠,李士美,王利,李保进.银杏特异种质核型进化趋势研究[J].林业科学, 2007b, 43(1): 21-27
    邢世岩,郭彦彦,王利,高进红.银杏种质遗传多样性研究评述[J].经济林研究, 2004, 22(4): 65-70
    邢世岩,李际红,王京梅,姚林梅,韩晨静,张芳.植物表观遗传变异[J].分子植物育种, 2009, 7(5): 996-1003
    邢世岩,李士美,李保进,王芳,韩克杰,王利.银杏叶生小孢子囊比较形态学及系统意义[J].园艺学报, 2007a, 34(4): 805-812
    邢世岩,徐连科,李保进,李士美.中国首次发现叶籽银杏子代无性系叶生胚珠表达----兼论其遗传稳定性[J].山东林业科技, 2006, 166(5): 1-4
    熊立仲.基因表达水平上水稻杂种优势的分子生物学基础研究[D].武汉:华中农业大学, 1999
    徐文玲,王淑芬,牟晋华等. AFLP分子标记技术的改进—内切酶EcoRⅠ/TruⅠ组合与EcoRⅠ/MseⅠ组合的比较[J].山东农业科学, 2008, 9: 4-9
    杨金兰,柳李旺,龚义勤,黄丹琼,王峰,何玲莉.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析[J].植物生理与分子生物学学报, 2007, 33(3): 219-226
    杨金兰,柳李旺,龚义勤等.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析[J].植物生理与分子生物学学报, 2007, 33(3): 219-226
    杨友才,周清明,尹晗琪.烟草AFLP分析体系的建立与优化[J] .中国烟草学报, 2005, 11(3): 23-28
    仪治本,孙毅,牛天堂,梁小红,刘龙龙,赵威军,李炳林.高粱基因组DNA胞嘧啶甲基化在杂交种和亲本间差异研究[J].作物学报, 2005, 31(9):1138-1143
    张美善.高梁叶片和胚乳DNA甲基化水平和模式的遗传和变异的研究[D].东北师范大学, 2007
    张勇,邓科君,张韬,彭金华,周建平,任正隆.黑麦基因组DNA甲基化修饰位点的MSAP分析[J].麦类作物学报, 2009, 29(4): 559-564
    赵冰,张启翔.蜡梅AFLP分子标记技术体系的建立[J].武汉植物学研究, 2007, 25(1): 93-97
    赵成日,曹后男,朴钟云等.桃AFLP技术反应体系的优化[J].吉林农业大学学报2007, 29(4): 394-397
    赵翾,赵树进.白木香基因组DNA的提取及AFLP银染体系的建立[J].药物生物技术, 2007, 14(1): 14-17
    赵云雷.棉花杂交种与亲本间DNA胞嘧啶甲基化及其基因差异表达分析[D].武汉:华中农业大学, 2007
    郑鑫,马晓岗,迟德钊,卢新雄.高活力水稻种子萌发过程中DNA甲基化变化的MSAP分析[J].青海大学学报, 2009, 27(2): 53-56
    周国权,巫光宏,黄翠颜等.聚丙烯酰胺凝胶电泳的快速脱色方法[J].植物生理学通讯, 2006, 42(1): 95-97
    周志炎.中生代银杏类植物系统发育、分类和演化趋向[J].云南植物研究, 2003, 25(4): 277-396
    朱新产,王宝维,王世成.双梯度超薄胶PAGE分离DNA及其银染与回收[J].生物技术, 2001, 11(4): 45-47
    Noceda C., Salaj T., Pe′rez M., Viejo M., et al.. Rodriguez R. DNA demethylation and decrease on free polyamines is associated with the embryogenic capacity of Pinus nigra
    Arn. cell culture[J]. Trees. 2009, DOI 10. 1007/s00468-009-0370-8 Adams K. L, Wendel J. F.. PolyPloidy and genome evolution in plants[J]. Curr Opin Plant Biol, 2005, 8(2): 135-141
    Akey D. T., Akey J. M., Zhang K., Jin L.. Assaying DNA methylation based on high-throughput melting curve approaches[J]. Genomics. 2002, 80: 376–384
    Andreas M., Ricardo W., M, Brian W., et al.. Remodeling ofDNAmeth-ylation and phenotypic and transcriptional changes in syntheticarabi-dopsisallotetraploids[J]. Plant Physiology, 2002, 129: 733-746
    Arnold C. A.. An introduction to paleobotany[J]. McGrawHill, New York , 1947 Ashikawa1. Surveying CPG methylationats 5-CCGG in the genomes of rice cultivars[J]. Plant Mol Biol, 2001, 45:31-9
    Attwood J. T., Yung, R. L., Richardson B. C.. DNA methylation and there gulation of gene transcription[J]. Cell Mol Life Sci, 2002, 59: 241-257
    Aufsatz W., Mette M. F., Matzke A. J., et al.. The role of MET1 in RNA-directed de novo and maintenance methylation of CG dinueleotides[J]. Plant Mol Biol, 2004, 54(6): 793-804 Bardini M., Labra M., Winfield M., Sala F.. Antibiotic-induced DNA methylation changes in calluses of Arabidopsis thaliana[J]. Plant Cell, Tissue and Organ Culture, 2003, 72: 157-162
    Baumer A., Wiedemann U., Hergersberg M., et al.. A novel MSP/DHPLC method for the Investigation of the methylation status of in Printed genes enables the molecular detection of low cell mosaieisms[J]. Hum Mutat, 2001, 17: 423-30
    Baurens F. C, Nicolleau J., Legavre T., Verdeil J. L., Monteuuis O.. Genomic DNA methylation of juvenile and mature Acacia mangium micropropagated in vitro with reference to leaf morphology as a phase change marker[J]. Tree Physiol, 2004, 24: 401-407
    Baurens F. C., Bonnot F., Bienvenu D., Causse S. and Legavre T.. Using SD-AFLP and MSAP to Assess CCGG Methylation in the Banana Genome[J]. Plant Molecular BiologyReporter. 2003, 21: 339-348
    Bender J.. DNA methylation and epigeneties[J]. Annu Rev Plant Biol, 2004, 55(l): 41-48
    Bird A. P., Wolffe A. P.. Methylation-induced Repression-Belts, Brace, and chromatin[J]. Cell, 1999, 99: 451-454
    Bird A. P.. The essentials of DNA methylation[J]. Cell, 1992: 70: 5-8
    Bittsanszky A., Gyulai G., Malone R. P., Gullner G., Kiss J., Czako M., Marton L., Heszky L., Komives T.. Triggering of a plant molecular defense mechanism: increase in gene expression levels of transgene gshI and poplar gene gsh1(Populus x canescens)by response to the DNA demethylating drug DHAC-an qRT-PCR analysis[J]. Acta Phytopathologica et Entomologica Hungarica. 2007, 42(2): 235-243
    Brenner E. D., Stevenson D. W. and Twigg R. W.. Cycads: evolutionary innovations and the role of plant-denved neurotoxins[J]. Trends in plant Sci. 2003, 8(9): 446-452
    Burn J. E., smyth D. R., Peacock W. J., et al.. Gene conferring glate flowering in Arabibopsis thaliana[J]. Gentics, 1993b, 90: 147-155
    Cervera M. T., Ruiz-Garcia L., Martinez-Zapater J. M.. Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers[J]. Molecular and General Genomics, 2002, 268(4): 543-552
    Chan S. W, Zilberman D., Xie Z., et al.. RNA sileneing genes control denovo DNA methylation[J]. 2004, Science, 303(5662): 1336
    Chan S. W., Henderson I. R., Jacobsen S. E.. Gardening the genome: DNA methylation Arabidopsis thaliana[J]. Nature Reviews Genetics, 2005, 6: 351-360
    Chen Xiaoqiang, Ma Yi, Chen Fang, Song Wenqin, Zhang Lei. Analysis of DNA methylation patterns of PLBs derived from Cymbidium hybridium based on MSAP[J]. Plant Cell Tiss Organ Cult. 2009, 98: 67-77
    Cheng C., Daigen M., Hirochika H.. Epigenetic regulation of the rice retrotransposon Tos17. Mol GENET[J]. Genomics, 2006, 273(4): 378-390
    Cubas P., Vincent C., Coen E.. An epigenetic mutation responsible for natural variation in floral symmetry[J]. Nature, 1999, 401(6749): 157-161
    Curradi M., Lzzo A., Badaraceo G., et al.. Molecular mechanisms of gene silencing mediated by DNA methylation[J]. Mol Cell Biol, 2002, 22(9): 3157-3173
    Dahl C., Guldber P.. DNA methylation analysis techniques[J]. Biogerontolog, 2003, 4: 233-250
    Douglas A. W., Stevenson D. W., and Little D. P.. Ovule development in ginkgo biloba L, with emphasis on the collar and nucellus[J]. Int. J. Plant Sci. 2007, 168(9): 1207-1236
    Eames A. J.. Relationships of the ephedrales[J]. Phytomorphology, 1952, 2: 79-100 Finnegan E. J., Genger R. K., Kovac K., et al.. DNA methylation and the Promotion offlowering by vernalization[J]. Proce. Natl. Acad. Sci. USA, 1998a, 95: 5824-5829
    Finnegan E. J., Genger R. K., Peacock W. J., et al.. DNA methylatio in Plants[J]. Ann Rev plant Physiol plant Mol Biol, 1998b, 49:223-247
    Finnegan E. J., Kovae K. A., Jaligot E., et al.. The down regulation of FLUWERING LOCUS(FUC) expression in plants with low levels of DNA methylation and by vernalization occurs by distinct mechanisms[J]. Plant J, 2005, 44: 420-432
    Finnegan E. J., Kovae K. A.. Plant DNA methyltransferases[J]. plant Mol Biol, 2000a, 43: 189-201
    Finnegan E. J., Peacock W.J., Dennis E. S.. DNA methylation, a key regulator of plant development and other processes[J]. Current Opinion in Genetics and Development, 2000, 10: 217-223
    Finnegan E. J., Peaeoek W. J., Dennis E.. DNA methylation, a key regulation of Plant development and Other Proeesses[J]. Cur Pion in Genet and Develop, 2000b, 10: 217-223
    Fraga M. F., Canal M. J., Rodriguez R.. Phase change related epigenetic and physiological changes in Pinus radiata D.Don[J]. Planta, 2002a, 215(4): 672-678
    Fraga M. F., Uriol E., Diego L. B., Berdasco M., Esteller M., Canal M. J., Rodriguez R.. High-performance capillary electrophoretic method for the quantification of 5-methyl 2'-deoxycytidine in genomic DNA: Application to plant, animal and human cancer tissues[J]. Electrophoresis, 2002b, 23: 1677–1681
    Fujimoto R., sasaki T., Nishio T.. Charaeterization of DNA methyltrans ferasegenes in Brassiea rapa[J]. Genes Genet Syst, 2006, 81(4): 235-242
    Ge Yong-qi, Qiu Ying- xing, Ding Bin-yang, Fu Cheng-xin. An ISSR analysis on population genetic diversity of the relict plant Ginkgo Biloba[J]. Chinese Biodiversity, 2003, 11(4): 276-287(in Chinese)
    Genger R. K., Peaeock W. J., Dennis E. S., et al. Opposing effeets of redueed DNA Methylation on flowering time in Arabidpsis thaliana[J]. Planta, 2003, 216: 461-466
    Greenwood M. S., Hopper C. A., Hutchinson K. W.. Maturation in larch. I. Effect of age on shoot growth, foliar characteristics, and DNA methylation[J]. Plant Physiol, 1989, 90: 406–412
    Greenwood M. S., Hopper C. A., Hutchinson K. W.. Maturation in larch. I. Effect of age on shoot growth, foliar characteristics, and DNA methylation[J]. Plant Physiol. 1989, 90: 406-412
    Grigg G., Clark S.. Genesandgenomes: Sequencing 5-methyleytosine residues in genomic DNA[J]. Bioessays, 1994, 16(6): 431-436
    Guggisberg A., Mansion G., Kelso S.. Evolution of biogeographic patterns, ploidy levels, And breeding systems in a diploid- polyploid species complex of Primula[J]. New Phytol, 2006, 171(3): 617-632
    Gui Ren-yi. The construction of fingerprints and linkage map of main cultivated Ginkgo biloba[D]. Nanjing : Nanjing Forestry University. 2004(in Chinese)
    Hasbu′n R., Valledor L., Berdasco M., Santamaria E., et al.. MJ, Rodriguez R, Rios D, Sa′nchez M. In vitro proliferation and genome DNA methylation in adult chestnuts[J]. Acta Hortic(Ishs), 2005, 693: 333–340
    Hasbu′n R., Valledor L., Rodriguez J. L., et al.. HPCE quantification of 5-methyl-2′-deoxycytidine in genomicDNA: methodological optimization for chestnut and other woody species[J]. Plant Physiol Biochem. 2008, 46(8-9): 815-822
    Hily J. M., Scorza R., Malinowski T., et al.. Accumulation of the long class of siRNA is associated with resistance to Plum pox virus in a transgenic woody perennial plum tree. Mol Plant Microbe[J]. Interact. 2005, 18(8): 794-799
    Holliday R.. The inheritance of eplgenetic defeets[J]. Science, 1987, 238(4824): 163-70
    Hong Liou, Deng Xiu-xin. Analysis of DNA Methylation in Navel Oranges Based on MSAP Marker[J]. Scientia Agricultura Sinica, 2005, 38(11): 2301-2307.( in Chinese)
    Hong Zhou, Shi Ji-seng, Zheng Ren-hua, Yang Li-wei, Chen Xiao-chou, Weng Yu-zeng, Huang Jin-hua. Epigenetic Inheritance and Variation of DNA Methylation in Chinese Fir(Cunninghamia lanceolata)Intraspecific Hybrids[J]. Molecular Plant Breeding, 2009, 7(3): 591-598.( in Chinese)
    Hou L. P., Li M. L.. DNA methylation and plant growth and development[J]. Plant physiol Commun, 2001, 37(6): 584-588
    Huang J J, Wang H H, Xie X.J, Zhang D, Liu Y ,Guo G.Q. Roles of DNA methyltransferases in Arabidopsis development[J]. African Journal of Biotechnology, 2010, 9(50): 8506-8514.
    Jacobsen S. E., Sakai H., FIImegan E. J., et al.. Ectopic Hypermethylation of flower-specific genes in Arabidopsis[J]. Current Biology, 2000, 10: 179-186
    Jacobsen S. E., Sakai H., Finnegan E. J., et al. Ectopic hypermethylation of flower specific genes in Arabidopsis[J]. Curr Biol, 2000, 10(4): 179-186
    Jin Huajun, Hu Wei, Wei Zhe, Wan Linglin, Li Gang, Guangxuan Tan, Lili Zhu, Guangcun He. Alterations in cytosine methylation and species-specific transcription induced by interspecific hybridization between Oryza sativa and O. officinalis[J]. Theor. Appl. Genet. 2008, 117: 1271-1279
    Johnson T. B., Coghill R. D.. Research on Pyrimidines.C111.The discovery of 5-methylcytosine In tubereulinic acid, the nucleicaeid of the tubercle baeillus[J]. Am Chem Soc, 1925,47: 2838-2844
    Johnston J. W., Harding K., Bremner D. H., et al.. HPLC analysis of Plant DNA methylation: a study of initial methodological factors[J]. Plant Physiol Bioehem, 2005, 438: 844-853
    Kato M., Miura A., Bender J., et al.. Role of CG and Non- CG Methylation in Immobilizationof Transposons in Arabidpsis[J]. Curr Biol, 2003, 13(5): 421-426
    Keyte A. L., Percifield R., Liu B., et al.. Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutumL.)[J]. Heredity, 2006, 97(5): 444-450
    Klimaszewska K., Noceda C., Pelletier G., Label P., Rodriguez R., Lelu-Walter M. A.. Biological characterization of young and aged embryogenic cultures of Pinus pinaster(Ait.)[J]. In Vitro Cellular & Developmental Biology-Plant. 2009, 45: 20-33
    Kovalchuk O., Burke P., Arkhipov A., et al.. Genome hypermethylation in Pinus silvestris of Chernobyl-a mechanism for radiation adaptation[J]. Mutat. Res. 2003, 529(1-2): 13-20
    Kubis S. E., Castilho A. M., Vershinin A. V., et al.. Retroelements, transposons and methylation status in the genome of oil palm(Elaeis guineensis)and the relationship to somaclonal variation[J]. Plant Mol Biol, 2003, 52(1): 69-79
    LEE C. L.. Fertilization in Ginkgo biloba[J]. Botanical Gazette, 1955, 117: 79-100
    Lguan Guang-yuan, Wu Xiao-ming, Chen Bi-yun, Gao Gui-zheng, Xu Kun, Li Xiang-zhi. Analysis on Genomic DNA Methylation Modification of Seed germination Brassica by
    Methylation-sensitive Amplification Polymorphism[J]. Science Bulletin, 2005, 50: 2750-2756.( in Chinese)
    Li Li-qin, Fu Chun-hua H, Zhao Chun-fang, Wu Wen-juan, Yu Long-jiang. Genetic and Epigenetic Variations of Taxus media L.cv.Hicksii during Process of Dedifferentiation[J]. Plant Physiology Communications, 2009, 45(6): 544-548.( in Chinese)
    Li Yidian, Shan Xiaohui, Liu Xiaoming, Hu Lanjuan, Guo Wanly, Liu Bao. Utility of the methylation-sensitive amplified polymorphism(MSAP)marker for detection of DNA methylation polymorphism and epigenetic population structure in a wild barley species(Hordeum brevisubulatum)[J].Ecol. Res. 2008, 23: 927-930
    Liu, B., C.L.Brubakef, et al. Polyploid formation in cotton is not acompanied rapid genomic changes[J]. Genome, 2001, 44: 321-330
    Lu G Y, Wu XM, Chen BY, et al. Detection of DNAmethylation changes during seed germination in rapeseed (Brassica napus)[J]. Chinese SciBull, 2006, 51 (2): 182-190.
    Matthes M., Singh R., Cheah S. C., Karp A.. Variation in oil palm(Elaeis guineensis Jacq.)tissue culture-derived regenerants revealed by AFLPs with methylation-sensitive enzymes[J]. Theor Appl Genet, 2001, 102: 971-979
    Messeguer R., Ganal M. W., Steffens J. C., et al.. Characterization of the level target sites and inheritance of cytosine methylation in tomato nuclear DNA[J]. Plant Mol Biol, 1991(16): 753-770
    Michelmore R. W., Paran R. V., Kesseli I.. Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proc Natl Acad Sci USA,1991, 88: 9828-9833
    Monk M., Maurizio Z.. Methylation of the mouse Xist gene in sperm and eggs correlates with imprinted Xist expression and paternal X?inactivation[J]. Nature Gnetics, 1995, 9: 316-320
    Montero L. M., Fili Pski J., GilP, et al.. The distribution of 5- methlcytosine in the nuclear genome of Plants[J]. Nucl Acids Res, 1992, 20(12): 3207-3210
    Monteuuis O., Doulbeau S., Verdeil J. L.. DNA methylation in different origin clonal offspring from a mature Sequoiadendron giganteum genotype[J]. Trees, 2008, 22: 779-784
    Noyer J. L., Causse S., Tomekpe K., et al.. Anew image of plantain diversity assessed by SSR, AFLP and MSAP markers[J]. Genetica, 2005, 124(1): 61-69
    Oh Y. J., Chung H., Yu J. G., Park Y. D.. Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene[J]. Plant Biotechnol Rep. 2009, 3: 139–145
    Okuwaki M., Verreault A.. Maintenance DNA Methylation of nueleosome Core partieles[J]. Biol Chem, 2004, 279: 2904-2912
    Park S. Y., Murthy H. N., Chakrabarthy D., PaeK K. Y.. Detection of epigenetic variation in tissue-culture-derived plants of Doritaenopsis by methylation-sensitive amplification
    polymorphism(MSAP)analysis[J]. In Vitro Cellular & Developmental Biology -Plant. 2009, 45(1): 1054-5476
    Peraza-Echeverria S., Herrera-Valencia V. A., James-Kay A.. Detection of DNA methylation changes in micropropagated banana plants using methylation-sensitive amplification polymorphism (MSAP)[J]. Plant Sci, 2001, 161: 359-367
    Portis E., Acquadro A., Comino C., Lanteri S.. Analysis of DNA methylation during germination of pepper (Capsicum annuum L.) seeds using methylation-sensitive amplification polymorphism (MSAP)[J]. Plant Science, 2004, 166: 169-178
    Rabinowiez P. D., Palmer L. E., May B. P., et al. Genes and transposons are differentially methylated in plants, but not in mammals[J]. Genome Res, 2003, 13: 2658-2664
    Reik W.. Stability and flexibility of epigenetic gene regulation in mammalian development[J]. Nature. 2007, 447(7143): 425-432
    Reyna-Lopez G. E., Simpson J., Ruiz-Herrera J.. Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphism[J]. Molecular Genetics and Genomics, 1997, 253: 703-710
    Ribeiro T., Viegas W., Morais-Cec?′lio L.. Epigenetic marks in the mature pollen of Quercus suber L.(Fagaceae)[J]. Sex Plant Reprod. 2009, 22: 1-7
    Ros F., Kunze R.. Regulation of Aetivator/Dissoeiation Transposition by Replication and DNA Methylation[J]. Geneties, 2001, 157: 1723-1733
    Ruiz-Careia L., Cervera M. T., Martinez, Zapater J. M.. DNA methylationi nereases throughout Arabidpsis development[J]. Planta, 2005, 222: 301-306
    Sakisaka M.. On the seed-bearing leaves of Ginkgo[J]. J. Jap. Bot, 1929, 4: 219-235 Salmon A., Ainouche M. L., Wendel J. F.. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae)[J]. Molecular Ecology, 2005, 14: 1163-1175
    Santamar?′a M. E., Hasbu′n R., Valera M. J., et al.. Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa[J]. Journal of Plant Physiology, 2009, 166: 1360-1369
    Saze H., Shiraishi A., Miura A., et al.. Control of genic DNA methylation by a jmjC domain-containing protein in Arabidopsis thaliana[J]. Science, 2008, 319: 462-465
    Selker EU, TountasNA, Cross SH, Margolin BS, Murphy J Q, et al. The methylated component of the neurospora crassa genome[J]. Nature, 2003, 422: 893-897
    Sharma S. K., Bryan G. J., Winfield M. O., et al.. Stability of potato(Solanum tuberosum L.)plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment[J]. Planta, 2007, 226: 1449-1458
    Shen Yong-bao, Shi Ji-seng, Zhao Hong-liang. Identification on the main cultivated varieties of Ginkgo Biloba using ISSR DNA Marker[J]. Scientia Silvae Sinicae, 2005, 41(1): 202-204.( in Chinese)
    Sherman J. D., Talbert L. E.. Vernalization- induced changes of the DNA methylation pattern in Winter wheat[J]. Genome, 2002, 45: 253-260
    Singh A., Zubko E., Meyer P.. CooPerativactivit of DNA methyltransferases form aintenanee of Symmetrical and non-symmetrical cytosine methylation in Arabidpsis 5thaliana[J]. plant J, 2008, 56(5):814-823
    Teyssier E., Bernaeehia G., Maury S., et al.. Tissue dependent variations of DNA methylation and endoreduplication levels during to matofruit Development and ripening[J]. Planta, 2008, 228(3): 391-399
    Tralau H.. The phytogeographic evolution of the genus Ginkgo L. [J]. Bot. Notis, 1967, 120: 409-422
    Vanyushin B. F.. DNA methylation in plants[J]. Curr Top Mierobiol Immunol, 2006, 301: 67-122
    Vaughn M. W., Tanurd I. C. M., Lippman Z., et al.. Epigenetic natural variation in Arabidopsis thaliana[J]. PLoS Biology, 2007, 5: 174
    Vos P., Hogers R., Bleeker M., et al.. AFLP: a new technique for DNA fingerprinting[J]. NuclAcidsRes, 1995, 23(21): 4407-4414
    Wachira F. N., Junichi T. A., Yoshiyuki T. E.. Genetic variation and differentiation in tea(Camellia sinensis)germplasm revealed by RAPD and AFLP variation[J]. Journal of Horticultural Science& Biotechnology, 2001, 76(5): 557-563
    Wada Y., Miyamoto K., Kusano T., et al. Assoeiation between up-regulation of Stress-responsive genes and hypomethylation of genomic DNA in tobacco plants[J]. Mol Genet Genomies, 2004, 271:658-66
    Wang Cong-yan, Hu Ying, Guo Er-hui, Hu Xiao-li, Tian Chao-yang. Progresses of Molecular Markers Application on Gymnospermae[J]. Molecular Plant Breeding, 2008, 6(5): 971-980.( in Chinese)
    Wang Li, Xing Shiyan, Yang Ke-qiang, Wang Zhenghua, Guo Yanyan, Shu Huairui. An analysis on genetic diversity of Ginkgo biloba ornamental cultivars by AFLP techniques[J]. Acta Genetica Sinica. 2006, 33(11): 1020-1026
    Wang Xiao-mei, Song Wen-qin, Liu Song, Li Xiu-lian, Chen Rui-yang. AFLP markers related to sex in a dioecious plant Ginkgo biloba[J]. Journal of Nankai University(Natural Sciences Edition), 2001, 34(1): 5-9.( in Chinese)
    Wang Y M, Lin X Y, Dong B, et al.. DNA methylaition polymorphism in a set of elite rice cultivars and its possible contribution to inter-cultivar differential gene expression[J]. Cell Mol Biol Lett, 2004, 9(3): 543-556
    Wanger I. and CaPesius I.. Determination of 5- methlcytosine from Plant DNA by high performance liquide chromatography[J]. Biochmica and Biophysica Acta, 1981, 654: 52-56
    Wenyan X., Kendra D. C., et al.. DNA methylation is Critical for Arabidopsis embryogenesis and seed viability[J]. The Plant Cell. 2006, 18(4): 805-814
    Wolffe A. P., Matzke M. A.. Epigenetics: regulation through repression[J]. Science, 1999, 286(5439): 481-486
    Wu C., Morris J. R.. Genes, Geneties, and Epigenetics: A Correspondence[J]. Science, 2001, 293: 103-1105
    Xing Shi-yan, Guo Yan-yan, Wang Li, Gao Jin-hong. Review on Germplasm and Genetic Diversity Research in Ginkgo biloba[J]. Nonwood Forest Research, 2004, 22(4): 65-70.(in Chinese)
    Xing Shi-yan, Li Ji-hong, Wang Jin-mei, Yiao Lin-mei, Han Chen-jin, Zhang Fang. Summary of Epigenetic Variation in Plants[J]. Molecular Plant Breeding, 2009, 7(5): 996-1003. (in Chinese)
    Xiong L. Z., Xu C. G., M A. S., Maroof S., Zhang O.. Patterns of cytosine methylation in an elicite hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique[J]. Mol Gen Genet, 1999, 26(3): 439-446
    Xu M., LI X., Korban S. S.. AFLP- based detection of DNA methylation[J]. Plant Mol Biol ReP, 2000, 18: 361-368
    Yoder J. A., Walsh C. P., Bestor T. H.. Cytosine methylation and the ecology of intragenomic Parasites[J]. Trends Genet, 1997,13: 335-340
    Yun Jung Oh, Hee Chung, Jae Gyeong Yu and Young Doo Park. Park Newly developed MSAP analysis reveals the different polymorphism patterns in transgenic tobacco plants with the dsRNA MET1 gene[J]. Plant Biotechnol Rep, 2009, 3: 139–145
    Zhang M. S., Yan H. Y., Zhao N., et al.. Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L. )inter-strain hybrids[J]. Theoretical and Applied Genetics, 2007, 115: 195-207
    Zhang X Y, Yazaki J, Sundaresan A, Cokus S, Chan S W L, Chan H M, Henderson L R, Shinn P, Pellegrini M, Jacobsen S E, Ecker J R. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis[J]. Cell, 2006, 12: 1189-1201
    Zhang Yong, Deng Ke-jun, Zhang Tao, Peng Jin-hua, Zhou Jian-pin, Ren Zhen-long. Analysis on Genomic DNA Methylation Modification of Rye by Methylation-sensitive Amplification Polymorphism[J]. Journal of Triticeae Crops, 2009, 29(4): 559-564.(in Chinese)
    Zhao X., Chai Y., Liu B.. Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids[J]. Plant Sci, 2007, 172: 930-938
    Zilberman D., Gehring M., Tran R. K, et al. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription[J]. Nat Genet, 2007, 39(1): 61-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700