猪不同组织和不同品种肌肉组织基因组DNA甲基化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
DNA甲基化在真核生物中是一种重要的表观遗传学修饰方法,也是基因表达调控重要影响因素之一。大量研究结果表明,胞嘧啶DNA甲基化在功能基因表达、细胞分化、X染色体失活、胚胎分化、疾病和癌症发生中都起到非常重要的作用。很多研究表明,不同的甲基化水平可能与组织特异性转录有关,并且对正常的分化和发育至关重要。
     本研究以猪为研究对象,利用F-MSAP的方法对莱芜猪肌肉、心脏、肝脏、脾脏、肺脏、肾脏和胃七个组织进行全基因组DNA甲基化分析,以及对具有不同肉质性状一肌间脂肪含量的我国地方品种莱芜猪和东北民猪,育成品种鲁莱猪、松辽黑猪和军牧一号以及外来品种大白猪的肌肉组织进行全基因组DNA甲基化分析。结果显示,莱芜猪肌肉、心脏、肝脏、脾脏、肺脏、肾脏和胃七个组织全基因组DNA甲基化程度分别为53.9%,51.2%,50.1%,53.3%,51.9%,51.1%和53.3%;大白猪、莱芜猪、鲁莱猪、军牧一号、松辽黑猪、东北民猪六个品种肌肉组织的甲基化程度分别为47.97%,51.75%,53.21%,50.46%,54.88%,56.98%;采用卡方检验分析不同品种肌肉组织的甲基化程度,结果表明各个品种间的甲基化程度差异显著(P<0.05)。通过数据分析,发现各品种肌肉组织DNA甲基化程度与各品种肌间脂肪含量间不具有相关性。
     本研究希望通过对猪不同组织和不同品种肌肉组织DNA甲基化的分析,了解猪不同组织和不同品种肌肉的全基因组DNA甲基化水平和组织间DNA甲基化模式差异。为今后猪DNA甲基化的研究积累数据,希望发现和了解甲基化在组织分化过程中的作用,以及通过对具有差异性不同肌间脂肪含量的不同品种肌肉组织全基因组DNA甲基化的测定,揭示是否不同品种肌肉组织全基因组DNA甲基化和肌肉肌间脂肪含量具有相关性,期望发现与肉质性状相关的功能基因,为更好的研究畜禽提供新的思路并奠定基础。
DNA methylation is one of the main epigenetic modification mechanisms in eukaryotic organisms, playing a crucial role in the regulation of gene expression. It entails the transfer of methyl groups from S-adenosine-L-methionine to cytosines and adenines by DNA methyltransferases following DNA duplication. In living cells this process has been reported as one of the most common covalent modifications. Many studies have shown that DNA methylation, especially methylation of cytosine, has been implicated in gene expression, genomic imprinting, X chromosome inactivation, determination of chromatin structure, disease and cancer development.
     Methylation of CpG dinucleotides in the 5'regulatory regions of genes often results in transcriptional inactivation, and some studies have shown that actively transcribed sequences are often methylated less than promoters and certain coding regions of silent genes. Significant differences in the levels or pattern of cytosine methylation have been observed in various tissues or under different functional states in the same tissue. Several studies suggested that various levels of DNA methylation may regulate tissue-specific transcription and be important for normal development or differentiation and trait. But how methylation regulates gene expression is still unclear. Therefore, the detection and analysis of levels and patterns of genome-wide methylation in various tissues or in same tissue of the different varieties, is essential for understanding associations between tissue-specific or variety-specific methylation or and tissue-specific or variety-specific gene expression.
     The fluorescence-labeled methylation-sensitive amplification polymorphism (F-MSAP) technique is a relatively new modification of the amplification fragment length polymorphism (AFLP) technique. The F-MSAP technique utilizes the restriction isoschizomer pair HpaⅡand MspⅠinstead of MseⅠin the AFLP, in which selective amplification is performed with fluorescently labeled primers instead of radiolabeled primers. The F-MSAP system consists of four major parts:digestion and ligation reactions, preamplification, selective amplification reactions and detection reactions. In F-MSAP, these enzymes recognize the same restriction site (CCGG) but have different sensitivities to certain methylation states of cytosines. HpaⅡis inactive if one or both cytosines are fully methylated (both strands are methylated) but cleaves the hemimethylated sequence (only one DNA strand is methylated), whereas MspI is inactive if the external cytosine is fully or-hemimethylated (only one DNA strand is methylated). Thus, for a given DNA sample, the full methylation of the internal cytosines and hemimethylation of the external cytosines at the assayed CCGG sites can be unequivocally distinguished using these two restriction enzymes. So, In F-MSAP the bands revealing methylation patterns of HpaⅡ-EcoRl and Mspl-EcoRI digested genomic DNA could be divided into three types of methylation status as follows:type I presents bands of the same length in both lanes, which indicates inner methylation of single-stranded DNA or no methylation; type II is present for Hpall but absent for MspI, which indicates outer methylation of single-stranded DNA and hemi-methylation at the outer cytosine nucleotide in the CCGG sequence; and typeⅢis present for MspI but absent for Hpall, which indicates inner methylation of double-stranded DNA and full methylation of the CCGG sequence.
     In this study, we used 16 pairs of selective primers, obtained from eight EcoRI primers in combination with two fluorescently labeled Hpall/MspI primers, to analyze DNA methylation at CCGG sites of muscle, heart, liver, spleen, lung, kidney and stomach from Laiwu pigs and the muscle from Large white, Laiwu, Lulai, Junmul, Songliaohei and Dongbei min by the F-MSAP method.
     In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu and the muscles from Large white, Laiwu, Lulai, Junmul, Songliaohei and Dongbei min. The main results are as follow:
     1 In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle, heart, liver, spleen, lung, kidney and stomach from the swine strain Laiwu, and we also examined specific methylation patterns in the seven tissues. In total,96,371 fragments, each representing a recognition site cleaved by either or both EcoRI+HpaⅡand EcoRI+MspⅠ,the HpaⅡand MspⅠare isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 50,094 sites were found to be methylated at cytosines in seven tissues. The incidence of DNA methylation was approximately 53.99% in muscle,51.24% in the heart, 50.18% in the liver,53.31% in the spleen,51.97% in the lung,51.15% in the kidney and 53.39% in the stomach, as revealed by the incidence of differential digestion. Additionally, differences in DNA methylation levels imply that such variations may be related to specific gene expression during tissue differentiation, growth and development. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 46,277,24,801 and 25,293, respectively.
     2 In this study, we found that among 35 sites of TDMs, the sequence ranged from 88 to 278 bp. Sixteen are located within introns while four are located in the 5' upstream regions, and two are located in the 3'downstream regions of genes. Moreover because the pig genome is not complete, there are 13 sites that we cannot locate in genes, but can only locate at the chromosome level. Because the number of tissues is large, we rarely found a band present only in one tissue, but we often found bands present in two or three tissues or bands present in different patterns in different tissues.
     3 In this study, we used the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) method to assess the extent and pattern of cytosine methylation in muscle tissues from Large white, Laiwu, Lulai, Junmul, Songliaohei and Dongbei min. In total,5378 fragments, each representing a recognition site cleaved by either or both EcoRI+HpaⅡand EcoRI+Mspl, the HpaⅡand MspI are isoschizomeric enzymes, were amplified using 16 pairs of selective primers. A total of 2828 sites were found to be methylated at cytosines in muscle tissues from Large white, Laiwu.Lulai, Junmul, Songliaohei and Dongbei min. The incidence of DNA methylation was approximately 47.97% in Large white,51.75% in the Laiwu,53.21% in the Lulai,50.46% in the Junmul,54.88% in the Songliaohei, and 56.98% in the Dongbeimin. Three types of bands were generated in the F-MSAP profile, the total numbers of these three types of bands in the seven tissues were 2550,1393 and 1435 respectively. The result shown that various varieties of muscle tissues DNA methylation and the intramuscular fat content of muscle does not have correlaton.
     4 In this study, we found that among 22 sites of TDMs, the sequence ranged from 82 to 214bp. Thirteen are located within introns while three are located in the 5' upstream regions, and three are located in the 3'downstream regions of genes. Moreover because the pig genome is not complete, there are three sites that we cannot locate in genes, but can only locate at the chromosome level. Because the number of tissues is large, we rarely found a band present only in one tissue, but we often found bands present in two or three tissues or bands present in different patterns in different tissues.
     5 In this study we use the F-MSAP method to compare the levels of DNA cytosine methylation of pigs for the first time, The results show that there are different methylation levels and patterns in various tissues and muscle of different variety. The results clearly demonstrated that F-MSAP is highly efficient for large-scale detection of cytosine methylation and can be further extended to research on genome of other animals and plants that have complex genome and are rich in methylation polymorphism.
引文
[1]S.J. Clark, J. Harrison, M. Frommer, CpNpG methylation in mammalian cells. Nat Genet 10 (1995) 20-27.
    [2]M.F. Robert, S. Morin, N. Beaulieu, F. Gauthier, I.C. Chute, A. Barsalou, A.R. MacLeod, DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells. Nat Genet 33 (2003) 61-65.
    [3]R.L. Zinn, K. Pruitt, S. Eguchi, S.B. Baylin, J.G. Herman, hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Research 67 (2007) 194-201.
    [4]M.L. Gonzalgo, G. Liang, Methylation-sensitive single-nucleotide primer extension (Ms-SNuPE) for quantitative measurement of DNA methylation. Nature Protocols 2 (2007) 1931-1936.
    [5]J. Benhattar, G. Clement, Methylation-sensitive single-strand conformation analysis:a rapid method to screen for and analyze DNA methylation. Methods Mol Biol 287 (2004) 181-193.
    [6]Y. Ando, Y. Hayashizaki, Restriction landmark genomic scanning. Nat Protoc 1 (2006) 2774-2783.
    [7]M.G. Goll, T.H. Bestor, Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74 (2005) 481-514.
    [8]R.J. Klose, A.P. Bird, Genomic DNA methylation:the mark and its mediators. Trends Biochem Sci 31 (2006) 89-97.
    [9]T.H. Bestor, Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. Embo J 11 (1992) 2611-2617.
    [10]R. Hirasawa, H. Chiba, M. Kaneda, S. Tajima, E. Li, R. Jaenisch, H. Sasaki, Maternal and zygotic Dnmtl are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development. Genes Dev 22 (2008) 1607-1616.
    [11]C.B. Schaefer, S.K. Ooi, T.H. Bestor, D. Bourc'his, Epigenetic decisions in mammalian germ cells. Science 316 (2007) 398-399.
    [12]X. Cheng, R.M. Blumenthal, Mammalian DNA methyltransferases:a structural perspective. Structure 16 (2008) 341-350.
    [13]C. Qiu, K. Sawada, X. Zhang, X. Cheng, The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9 (2002) 217-224.
    [14]S.K. Ooi, C. Qiu, E. Bernstein, K. Li, D. Jia, Z. Yang, H. Erdjument-Bromage, P. Tempst, S.P. Lin, C.D. Allis, X. Cheng, T.H. Bestor, DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448 (2007) 714-717.
    [15]D. Jia, R.Z. Jurkowska, X. Zhang, A. Jeltsch, X. Cheng, Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449 (2007)248-251.
    [16]H. Cedar, G.L. Verdine, Gene expression. The amazing demethylase. Nature 397 (1999) 568-569.
    [17]H.D. Morgan, W. Dean, H.A. Coker, W. Reik, S.K. Petersen-Mahrt, Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues:implications for epigenetic reprogramming. J Biol Chem 279 (2004) 52353-52360.
    [18]C.D. Allis, S.L. Berger, J. Cote, S. Dent, T. Jenuwien, T. Kouzarides, L. Pillus, D. Reinberg, Y. Shi, R. Shiekhattar, A. Shilatifard, J. Workman, Y. Zhang, New nomenclature for chromatin-modifying enzymes. Cell 131 (2007) 633-636.
    [19]Y. Shi, J.R. Whetstine, Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 25 (2007) 1-14.
    [20]S.R. Bhaumik, E. Smith, A. Shilatifard, Covalent modifications of histones during development and disease pathogenesis. Nat Struct Mol Biol 14 (2007) 1008-1016.
    [21]A. Saha, J. Wittmeyer, B.R. Cairns, Chromatin remodelling:the industrial revolution of DNA around histones. Nat Rev Mol Cell Biol 7 (2006) 437-447.
    [22]C.S. Kwon, D. Wagner, Unwinding chromatin for development and growth:a few genes at a time. Trends Genet 23 (2007) 403-412.
    [23]T. Kouzarides, Chromatin modifications and their function. Cell 128 (2007) 693-705.
    [24]A.J. Ruthenburg, H. Li, D.J. Patel, C.D. Allis, Multivalent engagement of chromatin modifications by linked binding modules. NATURE REVIEWS MOLECULAR CELL BIOLOGY 8 (2007) 983-994.
    [25]S.A. Jacobs, S. Khorasanizadeh, Structure of HP1 chromodomain bound to a lysine 9-methylated histone H3 tail. Science 295 (2002) 2080-2083.
    [26]A. Smallwood,P.O. Esteve, S. Pradhan, M. Carey, Functional cooperation between HP1 and DNMT1 mediates gene silencing. Gene Dev 21 (2007) 1169-1178.
    [27]F. Fuks, P.J. Hurd, R. Deplus, T. Kouzarides, The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 31 (2003)2305-2312.
    [28]M.G. Goll, T.H. Bestor, Eukaryotic cytosine methyltransferases. Annual Review of Biochemistry 74 (2005) 481-514.
    [29]R.A. Drewell, C.J. Goddard, J.O. Thomas, M.A. Surani, Methylation-dependent silencing at the H19 imprinting control region by MeCP2. Nucleic Acids Res 30 (2002) 1139-1144.
    [30]E. Kondo, Z.D. Gu, A. Horii, S. Fukushige, The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated pl6(INK4a) and hMLHl genes. Mol Cell Biol 25 (2005) 4388-4396.
    [31]M. Bostick, J.K. Kim, P.O. Esteve, A. Clark, S. Pradhan, S.E. Jacobsen, UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317 (2007) 1760-1764.
    [32]J. Sharif, M. Muto, S. Takebayashi, I. Suetake, A. Iwamatsu, T.A. Endo,J. Shinga, Y. Mizutani-Koseki, T. Toyoda, K. Okamura, S. Tajima, K. Mitsuya, M. Okano. H. Koseki, The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmtl to methylated DNA. Nature 450 (2007) 908-912.
    [33]G.N. Filippova, Genetics and epigenetics of the multifunctional protein CTCF. Curr Top Dev Biol 80 (2008) 337-360.
    [34]J.A. Wallace, G. Felsenfeld, We gather together:insulators and genome organization. Curr Opin Genet Dev 17 (2007) 400-407.
    [35]A. Bird, DNA methylation patterns and epigenetic memory. Gene Dev 16 (2002) 6-21.
    [36]K.D. Robertson, S. Ait-Si-Ali, T. Yokochi, P.A. Wade, P.L. Jones, A.P. Wolffe, DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25 (2000) 338-342.
    [37]M.R. Rountree, K.E. Bachman, S.B. Baylin, DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat Genet 25 (2000) 269-277.
    [38]R. Muromoto, K. Sugiyama, A. Takachi, S. Imoto, N. Sato, T. Yamamoto, K. Oritani, K. Shimoda, T. Matsuda, Physical and functional interactions between Daxx and DNA methyltransferase 1-associated protein, DMAP1. Journal of Immunology 172 (2004) 2985-2993.
    [39]P.O. Esteve, H.G. Chin, S. Pradhan, Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. P Natl Acad Sci USA 102 (2005) 1000-1005.
    [40]Q. Zhang, H.Y. Wang, M. Marzec, P.N. Raghunath, T. Nagasawa, M.A. Wasik, STAT3-and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. P Natl Acad Sci USA 102 (2005) 6948-6953.
    [41]E. Vire, C. Brenner, R. Deplus, L. Blanchon, M. Fraga, C. Didelot, L. Morey, A. Van Eynde, D. Bernard, J.M. Vanderwinden, M. Bollen, M. Esteller, L. Di Croce, Y. de Launoit, F. Fuks, The Polycomb group protein EZH2 directly controls DNA methylation (vol 439, pg 871.2006). Nature 446 (2007) 824-824.
    [42]E. Li, T.H. Bestor, R. Jaenisch, Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69 (1992) 915-926.
    [43]M. Okano, D.W. Bell, D.A. Haber, E. Li, DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(1999)247-257.
    [44]M. Kaneda, M. Okano, K. Hata, T. Sado, N. Tsujimoto, E. Li, H. Sasaki, Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429 (2004) 900-903.
    [45]F. Chedin, M.R. Lieber, C.L. Hsieh, The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99(2002) 16916-16921.
    [46]D. Bourc'his, G.L. Xu, C.S. Lin, B. Bollman, T.H. Bestor, Dnmt3L and the establishment of maternal genomic imprints. Science 294 (2001) 2536-2539.
    [47]W. Mayer, A. Niveleau, J. Walter, R. Fundele, T. Haaf, Demethylation of the zygotic paternal genome. Nature 403 (2000) 501-502.
    [48]J. Oswald, S. Engemann, N. Lane, W. Mayer, A. Olek, R. Fundele, W. Dean, W. Reik, J. Walter, Active demethylation of the paternal genome in the mouse zygote. Curr Biol 10 (2000) 475-478.
    [49]P. Hajkova, S. Erhardt, N. Lane, T. Haaf, O. El-Maarri, W. Reik, J. Walter, M.A. Surani, Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117(2002)15-23.
    [50]S. Sato, T. Yoshimizu, E. Sato, Y. Matsui, Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol Reprod Dev 65 (2003)41-50.
    [51]H.H. Ng, Y. Zhang, B. Hendrich, C.A. Johnson, B.M. Turner, H. Erdjument-Bromage, P. Tempst, D. Reinberg, A. Bird, MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. Nat Genet 23 (1999)58-61.
    [52]N. Detich, J. Theberge, M. Szyf, Promoter-specific activation and demethylation by MBD2/demethylase. J Biol Chem 277 (2002) 35791-35794.
    [53]P.H. Tate, A.P. Bird, Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev 3 (1993) 226-231.
    [54]J. Boyes, A. Bird, DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64 (1991) 1123-1134.
    [55]X. Nan, R.R. Meehan, A. Bird, Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res 21 (1993) 4886-4892.
    [56]A.C. Bell, G. Felsenfeld, Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405 (2000) 482-485.
    [57]M. Okano, S. Takebayashi, K. Okumura, E. Li, Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2-A3 and 2H1 by in situ hybridization. Cytogenetics and Cell Genetics 86 (1999) 333-334.
    [58]F. Santos, B. Hendrich, W. Reik, W. Dean, Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241 (2002) 172-182.
    [59]F. Gaudet, W.M. Rideout, A. Meissner, J. Dausman, H. Leonhardt, R. Jaenisch, Dnmtl expression in pre-and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol 24 (2004) 1640-1648.
    [60]P.W. Grandjean, S.F. Crouse, J.J. Rohack, Influence of cholesterol status on blood lipid and lipoprotein enzyme responses to aerobic exercise. J Appl Physiol 89 (2000) 472-480.
    [61]P. Gringras, W. Chen, Mechanisms for differences in monozygous twins. Early Hum Dev 64 (2001) 105-117.
    [62]M.F. Fraga, E. Ballestar, M.F. Paz, S. Ropero, F. Setien, M.L. Ballestar, D. Heine-Suner, J.C. Cigudosa, M. Urioste, J. Benitez, M. Boix-Chornet, A. Sanchez-Aguilera, C. Ling, E. Carlsson, P. Poulsen, A. Vaag, Z. Stephan, T.D. Spector, Y.Z. Wu, C. Plass, M. Esteller, Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci U S A 102 (2005) 10604-10609.
    [63]G.L. Cantoni, The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Prog Clin Biol Res 198 (1985) 47-65.
    [64]P. Yi, S. Melnyk, M. Pogribna, I.P. Pogribny, R.J. Hine, S.J. James, Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275(2000)29318-29323.
    [65]E. Wainfan, L.A. Poirier, Methyl groups in carcinogenesis:effects on DNA methylation and gene expression. Cancer Res 52 (1992) 2071s-2077s.
    [66]I.P. Pogribny, S.J. James, S. Jernigan, M. Pogribna, Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat Res-Fund Mol M 548 (2004) 53-59.
    [67]D. Barlow, M.S. Bartolomei, (Eds.) Genomic imprining in mammals, Cold Spring Harbor Laboratory Press,2007.
    [68]C.A. Edwards, A.C. Ferguson-Smith, Mechanisms regulating imprinted genes in clusters. Curr Opin Cell Biol 19 (2007) 281-289.
    [69]R. Lyle, D. Watanabe, D.T. Vruchte,W. Lerchner, O.W. Smrzka, A. Wutz, J. Schageman, L. Hahner, C. Davies, D.P. Barlow, The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Masl. Nat Genet 25 (2000) 19-21.
    [70]R. Zwart, F. Sleutels, A. Wutz, A.H. Schinkel, D.P. Barlow, Bidirectional action of the Igf2r imprint control element on upstream and downstream imprinted genes. Genes Dev 15 (2001) 2361-2366.
    [71]L. Spahn, D.P. Barlow, An ICE pattern crystallizes. Nat Genet 35 (2003) 11-12.
    [72]D. Bourc'his, T.H. Bestor, Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431 (2004) 96-99.
    [73]E. Li, C. Beard, R. Jaenisch, Role for DNA methylation in genomic imprinting. Nature 366 (1993) 362-365.
    [74]C.Y. Howell, T.H. Bestor, F. Ding, K.E. Latham, C. Mertineit, J.M. Trasler, J.R. Chaillet, Genomic imprinting disrupted by a maternal effect mutation in the Dnmtl gene. Cell 104 (2001) 829-838.
    [75]J. Mager, N.D. Montgomery, F.P. de Villena, T. Magnuson, Genome imprinting regulated by the mouse Polycomb group protein Eed. Nat Genet 33 (2003) 502-507.
    [76]A. Wagschal, H.G. Sutherland, K. Woodfine, A. Henckel, K. Chebli, R. Schulz, R.J. Oakey, W.A. Bickmore, R. Feil, G9a histone methyltransferase contributes to imprinting in the mouse placenta. Mol Cell Biol 28 (2008) 1104-1113.
    [77]F.M. Pauler, M.V. Koerner, D.P. Barlow, Silencing by imprinted noncoding RNAs: is transcription the answer? Trends in Genetics 23 (2007) 284-292.
    [78]A.C. Bell, G. Felsenfeld, Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405 (2000) 482-485.
    [79]N. Engel, J.L. Thorvaldsen, M.S. Bartolomei, CTCF binding sites promote transcription initiation and prevent DNA methylation on the maternal allele at the imprinted H19/Igf2 locus. Hum Mol Genet 15 (2006) 2945-2954.
    [80]E. Heard, C.M. Disteche, Dosage compensation in mammals:fine-tuning the expression of the X chromosome. Gene Dev 20 (2006) 1848-1867.
    [81]A. Wutz, J. Gribnau, X inactivation Xplained. Curr Opin Genet Dev 17 (2007) 387-393.
    [82]S. Augui, G.J. Filion, S. Huart, E. Nora, M. Guggiari, M. Maresca, A.F. Stewart, E. Heard, Sensing X chromosome pairs before X inactivation via a novel X-pairing region of the Xic. Science 318 (2007) 1632-1636.
    [83]K. Monkhorst, I. Jonkers, E. Rentmeester, F. Grosveld, J. Gribnau, X inactivation counting and choice is a stochastic process:Evidence for involvement of an X-linked activator. Cell 132 (2008) 410-421.
    [84]J.T. Lee, L.S. Davidow, D. Warshawsky, Tsix, a gene antisense to Xist at the X-inactivation centre. Nat Genet 21 (1999) 400-404.
    [85]A.M. Keohane, P. O'Neill L, N.D. Belyaev, J.S. Lavender, B.M. Turner, X-Inactivation and histone H4 acetylation in embryonic stem cells. Dev Biol 180 (1996)618-630.
    [86]E. Heard, C. Rougeulle, D. Arnaud, P. Avner, C.D. Allis, D.L. Spector, Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 107 (2001) 727-738.
    [87]K. Plath, J. Fang, S.K. Mlynarczyk-Evans, R. Cao, K.A. Worringer, H.B. Wang, C.C. de la Cruz, A.P. Otte, B. Panning, Y. Zhang, Role of histone H3 lysine 27 methylation in X inactivation. Science 300 (2003) 131-135.
    [88]A. Kohlmaier, F. Savarese, M. Lachner, J. Martens, T. Jenuwein, A. Wutz, A chromosomal memory triggered by Xist regulates histone methylation in X inactivation. Plos Biology 2 (2004) 991-1003.
    [89]M. de Napoles, J.E. Mermoud, R. Wakao, Y.A. Tang, M. Endoh, R. Appanah, T.B. Nesterova, J. Silva, A.P. Otte, M. Vidal, H. Koseki, N. Brockdorff, Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 7 (2004) 663-676.
    [90]C. Costanzi, P. Stein, D.M. Worrad, R.M. Schultz, J.R. Pehrson, Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos. Development 127 (2000) 2283-2289.
    [91]A. Hellman, A. Chess, Gene body-specific methylation on the active X chromosome. Science 315 (2007) 1141-1143.
    [92]T. Sado, M.H. Fenner, S.S. Tan, P. Tam, T. Shioda, E. Li, X inactivation in the mouse embryo deficient for Dnmtl:distinct effect of hypomethylation on imprinted and random X inactivation. Dev Biol 225 (2000) 294-303.
    [93]N. Takagi, O. Sugawara, M. Sasaki, Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85 (1982) 275-286.
    [94]J. Chaumeil, P. Le Baccon, A. Wutz, E. Heard, A novel role for Xist RNA in the formation of a repressive nuclear compartment into which genes are recruited when silenced. Gene Dev 20 (2006) 2223-2237.
    [95]J.G. Herman, F. Latif, Y. Weng, M.I. Lerman, B. Zbar, S. Liu, D. Samid, D.S. Duan, J.R. Gnarra, W.M. Linehan, et al., Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc Natl Acad Sci U S A 91 (1994) 9700-9704.
    [96]P.A. Jones, S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet 3 (2002) 415-428.
    [97]M. Esteller, Cancer epigenetics:DNA methylation and chromatin alterations in human cancer. Adv Exp Med Biol 532 (2003) 39-49.
    [98]P.A. Jones, S.M. Taylor, Cellular differentiation, cytidine analogs and DNA methylation. Cell 20 (1980) 85-93.
    [99]J. Goffin, E. Eisenhauer, DNA methyltransferase inhibitors-state of the art. Ann Oncol 13(2002) 1699-1716.
    [100]K. Ghoshal, J. Datta, S. Majumder, S. Bai, H. Kutay, T. Motiwala, S.T. Jacob, 5-Aza-deoxycytidine induces selective degradation of DNA methyltransferase 1 by a proteasomal pathway that requires the KEN box, bromo-adjacent homology domain, and nuclear localization signal. Mol Cell Biol 25 (2005) 4727-4741.
    [101]B. Richardson, Impact of aging on DNA methylation. Ageing Res Rev 2 (2003) 245-261.
    [102]J.P. Issa, Aging, DNA methylation and cancer. Crit Rev Oncol Hematol 32 (1999) 31-43.
    [103]J.P. Issa, N. Ahuja, M. Toyota, M.P. Bronner, T.A. Brentnall, Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61 (2001) 3573-3577.
    [104]S.A. Belinsky, Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4 (2004) 707-717.
    [105]D. Sidransky, Emerging molecular markers of cancer. Nat Rev Cancer 2 (2002) 210-219.
    [106]E.J. Oakeley, F. Schmitt, J.P. Jost, Quantification of 5-methylcytosine in DNA by the chloroacetaldehyde reaction. Biotechniques 27 (1999) 744-+.
    [107]J.G. Reilly, C.A. Thomas, Jr., A. Sen, DNA methylation in mouse cells in culture as measured by restriction enzymes. Biochim Biophys Acta 697 (1982) 53-59.
    [108]T.O. Akama, Y. Okazaki, M. Ito, H. Okuizumi, H. Konno, M. Muramatsu, C. Plass, W.A. Held, Y. Hayashizaki, Restriction landmark genomic scanning (RLGS-M)-based genome-wide scanning of mouse liver tumors for alterations in DNA methylation status. Cancer Res 57 (1997) 3294-3299.
    [109]T.H. Huang, M.R. Perry, D.E. Laux, Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet 8 (1999) 459-470.
    [110]B. Khulan, R.F. Thompson, K. Ye, M.J. Fazzari, M. Suzuki, E. Stasiek, M.E. Figueroa, J.L. Glass, Q. Chen, C. Montagna, E. Hatchwell, R.R. Selzer, T.A. Richmond, R.D. Green, A. Melnick, J.M. Greally, Comparative isoschizomer profiling of cytosine methylation:the HELP assay. Genome Res 16 (2006) 1046-1055.
    [111]I. Hatada, Y. Hayashizaki, S. Hirotsune, H. Komatsubara, T. Mukai, A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci U S A 88 (1991) 9523-9527.
    [112]T. Motiwala, K. Ghoshal, A. Das, S. Majumder, D. Weichenhan, Y.Z. Wu, K. Holman, S.J. James, S.T. Jacob, C. Plass, Suppression of the protein tyrosine phosphatase receptor type O gene (PTPRO) by methylation in hepatocellular carcinomas. Oncogene 22 (2003) 6319-6331.
    [113]F. Song, J.F. Smith, M.T. Kimura, A.D. Morrow, T. Matsuyama, H. Nagase, W.A. Held, Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci U S A 102 (2005) 3336-3341.
    [114]S.S. Wang, D.J. Smiraglia, Y.Z. Wu, S. Ghosh, J.S. Rader, K.R. Cho, T.A. Bonfiglio, R. Nayar, C. Plass, M.E. Sherman, Identification of novel methylation markers in cervical cancer using restriction landmark genomic scanning. Cancer Research 68 (2008) 2489-2497.
    [115]S.R. Morey, D.J. Smiraglia, S.R. James, J.H. Yu, M.T. Moser, B.A. Foster, A.R. Karpf, DNA methylation pathway alterations in an autochthonous murine model of prostate cancer. Cancer Research 66 (2006) 11659-11667.
    [116]J.F. Smith, S. Mahmood, F. Song, A. Morrow, D. Smiraglia, X. Zhang, A. Rajput, M.J. Higgins, A. Krumm, N.J. Petrelli, J.F. Costello, H. Nagase, C. Plass, W.A. Held, Identification of DNA methylation in 3'genomic regions that are associated with upregulation of gene expression in colorectal cancer. Epigenetics 2(2007) 161-172.
    [117]K. Koike, T. Matsuyama, T. Ebisuzaki, Epigenetics:application of virtual image restriction landmark genomic scanning (Vi-RLGS). FEBS Journal 275 (2008) 1608-1616.
    [118]D.J. Smiraglia, R. Kazhiyur-Mannar, C.C. Oakes, Y.Z. Wu, P. Liang, T. Ansari, J. Su, L.J. Rush, L.T. Smith, L. Yu, C.H. Liu, Z.Y. Dai, S.S. Chen, S.H. Wang, J. Costello, I. Ioshikhes, D.W. Dawson, J.S. Hong, M.A. Teitell, A. Szafranek, M. Camoriano, F. Song, R. Elliott, W. Held, J.M. Trasler, C. Plass, R. Wenger, Restriction Landmark Genomic Scanning (RLGS) spot identification by second generation virtual RLGS in multiple genomes with multiple enzyme combinations. BMC Genomics 8 (2007)-
    [119]A. Schumacher, P. Kapranov, Z. Kaminsky, J. Flanagan, A. Assadzadeh, P. Yau, C. Virtanen, N. Winegarden, J. Cheng, T. Gingeras, A. Petronis, Microarray-based DNA methylation profiling:technology and applications. Nucleic Acids Res 34 (2006) 528-542.
    [120]K.D. Robertson, DNA methylation and human disease. Nat Rev Genet 6 (2005) 597-610.
    [121]E.J. Finnegan, R.I. Brettell, E.S. Dennis, The role of DNA methylation in the regulation of plant gene expression. EXS 64 (1993) 218-261.
    [122]A. Bird, DNA methylation patterns and epigenetic memory. Genes Dev 16 (2002) 6-21.
    [123]B.F. Vanyushin, Enzymatic DNA methylation is an epigenetic control for genetic functions of the cell. Biochemistry-Moscow+70 (2005) 488-499.
    [124]T. Eggermann, Silver-Russell and Beckwith-Wiedemann Syndromes:Opposite (Epi)Mutations in 11p15 Result in Opposite Clinical Pictures. Hormone Research 71 (2009)30-35.
    [125]A.A. Pai, J.T. Bell, J.C. Marioni, J.K. Pritchard, Y. Gilad, A Genome-Wide Study of DNA Methylation Patterns and Gene Expression Levels in Multiple Human and Chimpanzee Tissues. Plos Genet 7 (2011)-.
    [126]Z. Xiong, P.W. Laird, COBRA:a sensitive and quantitative DNA methylation assay. Nucleic Acids Res 25 (1997) 2532-2534.
    [127]M.L. Gonzalgo, P.A. Jones, Quantitative methylation analysis using methylation-sensitive single-nucleotide primer extension (Ms-SNuPE). Methods 27(2002) 128-133.
    [128]C. Jeronimo, H. Usadel, R. Henrique, J. Oliveira, C. Lopes, W.G. Nelson, D. Sidransky, Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Ⅰ 93 (2001) 1747-1752.
    [129]M.J. Solomon, P.L. Larsen, A. Varshavsky, Mapping protein-DNA interactions in vivo with formaldehyde:evidence that histone H4 is retained on a highly transcribed gene. Cell 53 (1988) 937-947.
    [130]B. Ren, B.D. Dynlacht, Use of chromatin immunoprecipitation assays in genome-wide location analysis of mammalian transcription factors. Chromatin and Chromatin Remodeling Enzymes, Pt B 376 (2004) 304-+.
    [131]J.C. Wang, Finding primary targets of transcriptional regulators. Cell Cycle 4 (2005) 356-358.
    [132]T. Neff, S.A. Armstrong, Chromatin maps, histone modifications and leukemia. Leukemia 23 (2009) 1243-1251.
    [133]B.A.T. Rodriguez, T.H.M. Huang, Tilling the chromatin landscape:emerging methods for the discovery and profiling of protein-DNA interactions. Biochem Cell Biol 83 (2005) 525-534.
    [134]J.J. Wu, L.T. Smith, C. Plass, T.H.M. Huang, ChIP-chip comes of age for genome-wide functional analysis. Cancer Research 66 (2006) 6899-6902.
    [135]C.Z. Jiang, B.F. Pugh, Nucleosome positioning and gene regulation:advances through genomics. Nat Rev Genet 10 (2009) 161-172.
    [136]D.J. Smiraglia, C. Plass, The study of aberrant methylation in cancer via restriction landmark genomic scanning. Oncogene 21 (2002) 5414-5426.
    [137]M. Weber, J.J. Davies, D. Wittig, E.J. Oakeley, M. Haase, W.L. Lam, D. Schubeler, Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37 (2005)853-862.
    [138]I. Keshet, Y. Schlesinger, S. Farkash, E. Rand, M. Hecht, E. Segal, E. Pikarski, R.A. Young, A. Niveleau, H. Cedar, I. Simon, Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38 (2006) 149-153.
    [139]F. Mohn, M. Weber, D. Schubeler, T.C. Roloff, Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 507 (2009) 55-64.
    [140]A.L. Sorensen, P. Collas, Immunoprecipitation of methylated DNA. Methods Mol Biol 567 (2009) 249-262.
    [141]K.L. Thu, E.A. Vucic, J.Y. Kennett, C. Heryet, C.J. Brown, W.L. Lam, I.M. Wilson, Methylated DNA immunoprecipitation. J Vis Exp (2009).
    [142]M. Weber, J.J. Davies, D. Wittig, E.J. Oakeley, M. Haase, W.L. Lam, D. Schubeler, Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(2005)853-862.
    [143]M. Weber, I. Hellmann, M.B. Stadler, L. Ramos, S. Paabo, M. Rebhan, D. Schubeler, Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 39 (2007) 457-466.
    [144]A. Barski, K. Zhao, Genomic Location Analysis by ChIP-Seq. Journal of Cellular Biochemistry 107(2009) 11-18.
    [145]B.G. Hoffman, S.J.M. Jones, Genome-wide identification of DNA-protein interactions using chromatin immunoprecipitation coupled with flow cell sequencing. J Endocrinol 201 (2009) 1-13.
    [146]E. Pettersson, J. Lundeberg, A. Ahmadian, Generations of sequencing technologies. Genomics 93 (2009) 105-111.
    [147]Y. Kaneko, M. Shibuya, T. Nakayama, N. Hayashida, G. Toda, Y. Endo, H. Oka, T. Oda, Hypomethylation of c-myc and epidermal growth factor receptor genes in human hepatocellular carcinoma and fetal liver. Jpn J Cancer Res 76 (1985) 1136-1140.
    [148]S. Nambu, K. Inoue, H. Saski, Site-specific hypomethylation of the c-myc oncogene in human hepatocellular carcinoma. Jpn J Cancer Res 78 (1987) 695-704.
    [149]N. Tsukamoto, K. Morita, M. Karasawa, M. Omine, Methylation status of c-myc oncogene in leukemic cells:hypomethylation in acute leukemia derived from myelodysplastic syndromes. Exp Hematol 20 (1992) 1061-1064.
    [150]J.Y. Fang, S.S. Zhu, S.D. Xiao, S.J. Jiang, Y. Shi, X.Y. Chen, X.M. Zhou, L.F. Qian, Studies on the hypomethylation of c-myc, c-Ha-ras oncogenes and histopathological changes in human gastric carcinoma. J Gastroenterol Hepatol 11 (1996) 1079-1082.
    [151]L. Del Senno, I. Maestri, R. Piva, S. Hanau, A. Reggiani, A. Romano, G. Russo, Differential hypomethylation of the c-myc protooncogene in bladder cancers at different stages and grades. J Urol 142 (1989) 146-149.
    [152]R.M. Sharrard, J.A. Royds, S. Rogers, A.J. Shorthouse, Patterns of methylation of the c-myc gene in human colorectal cancer progression. Br J Cancer 65 (1992) 667-672.
    [153]K.H. Kim, J.S. Choi, I.J. Kim, J.L. Ku, J.G. Park, Promoter hypomethylation and reactivation of MAGE-A1 and MAGE-A3 genes in colorectal cancer cell lines and cancer tissues. World J Gastroenterol 12 (2006) 5651-5657.
    [154]A. Milicic, L.A. Harrison, R.A. Goodlad, R.G. Hardy, A.M. Nicholson, M. Presz, O. Sieber, S. Santander, J.H. Pringle, N. Mandir, P. East, J. Obszynska, S. Sanders, E. Piazuelo, J. Shaw, R. Harrison, I.P. Tomlinson, S.A. McDonald, N.A. Wright, J.A. Jankowski, Ectopic expression of P-cadherin correlates with promoter hypomethylation early in colorectal carcinogenesis and enhanced intestinal crypt fission in vivo. Cancer Res 68 (2008) 7760-7768.
    [155]J. Paredes, A. Albergaria, J.T. Oliveira, C. Jeronimo, F. Milanezi, F.C. Schmitt, P-cadherin overexpression is an indicator of clinical outcome in invasive breast carcinomas and is associated with CDH3 promoter hypomethylation. Clin Cancer Res 11 (2005) 5869-5877.
    [156]A. Gupta, A.K. Godwin, L. Vanderveer, A.P. Lu, J.W. Liu, Hypomethylation of the Synuclein gamma gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma. Cancer Research 63 (2003) 664-673.
    [157]J. Pattamadilok, N. Huapai, P. Rattanatanyong, A. Vasurattana, S. Triratanachat, D. Tresukosol, A. Mutirangura, LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer. International Journal of Gynecological Cancer 18 (2008) 711-717.
    [158]S. Shuangshoti, N. Hourpai, U. Pulmsuk, A. Mutirangura, Line-1 hypomethylation in multistage carcinogenesis of the uterine cervix. Asian Pac J Cancer P 8 (2007) 307-309.
    [159]I.S. Choi, M.R.H. Estecio, Y. Nagano, D.H. Kim, J.A. White, J.C. Yao, J.P.J. Issa, A. Rashid, Hypomethylation of LINE-1 and Alu in well-differentiated neuroendocrine tumors (pancreatic endocrine tumors and carcinoid tumors). Modern Pathol 20 (2007) 802-810.
    [160]N.Y. Cho, B.H. Kim, M. Choi, E.J. Yoo, K.C. Moon, Y.M. Cho, D. Kim, G.H. Kang, Hypermethylation of CpG island loci and hypomethylation of LINE-1 and Alu repeats in prostate adenocarcinoma and their relationship to clinicopathological features. J Pathol 211 (2007) 269-277.
    [161]J. Roman-Gomez, A. Jimenez-Velasco, X. Agirre, F. Cervantes, J. Sanchez, L Garate, M. Barrios, J.A. Castillejo, G. Navarro, D. Colomer, F. Prosper, A. Heiniger, A. Torres, Promoter hypomethylation of the LINE-1 retrotransposable elements activates sense/antisense transcription and marks the progression of chronic myeloid leukemia. Oncogene 24 (2005) 7213-7223.
    [162]A. Daskalos, G. Nikolaidis, G. Xinarianos,P. Savvari, A. Cassidy, R. Zakopoulou, A. Kotsinas, V. Gorgoulis, J.K. Field, T. Liloglou, Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. Int J Cancer 124 (2009) 81-87.
    [163]B. Weber, C. Stresemann, B. Brueckner, F. Lyko, Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 6 (2007) 1001-1005.
    [164]Y. Yamagata, R. Maekawa, H. Asada, T. Taketani, I. Tamura, H. Tamura, J. Ogane, N. Hattori, K. Shiota, N. Sugino, Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod 15 (2009) 259-267.
    [165]J.M. Johnson, S. Edwards, D. Shoemaker, E.E. Schadt, Dark matter in the genome:evidence of widespread transcription detected by microarray tiling experiments. Trends Genet 21 (2005) 93-102.
    [166]G. Finocchiaro, F.M. Mancuso, D. Cittaro, H. Muller, Graph-based identification of cancer signaling pathways from published gene expression signatures using PubLiME. Nucleic Acids Res 35 (2007) 2343-2355.
    [167]J. Roman-Gomez, A. Jimenez-Velasco, X. Agirre, F. Prosper, A. Heiniger, A. Torres, Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol 23 (2005) 7043-7049.
    [168]N. Konishi, M. Tao, M. Nakamura, Y. Kitahaori, Y. Hiasa, H. Nagai, Genomic alterations in human prostate carcinoma cell lines by two-dimensional gel analysis. Cell Mol Biol (Noisy-le-grand) 42 (1996) 1129-1135.
    [169]H. Nagai, Y.S. Kim, T. Yasuda, Y. Ohmachi, H. Yokouchi, M. Monden, M. Emi, N. Konishi, M. Nogami, K. Okumura, K. Matsubara, A novel sperm-specific hypomethylation sequence is a demethylation hotspot in human hepatocellular carcinomas. Gene 237 (1999) 15-20.
    [170]J.F. Smith, S. Mahmood, F. Song, A. Morrow, D. Smiraglia, X. Zhang, A. Rajput, M.J. Higgins, A. Krumm, N.J. Petrelli, J.F. Costello, H. Nagase, C. Plass, W.A. Held, Identification of DNA methylation in 3'genomic regions that are associated with upregulation of gene expression in colorectal cancer. Epigenetics 2(2007) 161-172.
    [171]K. Koike, T. Matsuyama, T. Ebisuzaki, Epigenetics:application of virtual image restriction landmark genomic scanning (Vi-RLGS). FEBS J 275 (2008) 1608-1616.
    [172]F. Sanger, S. Nicklen, A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74 (1977) 5463-5467.
    [173]J. Shendure, The beginning of the end for microarrays? Nat Methods 5 (2008) 585-587.
    [174]P. Vos, R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Homes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, et al., AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res 23 (1995) 4407-4414.
    [175]J. Huang, M. Sun, A modified AFLP with fluorescence-labelled primers and automated DNA sequencer detection for efficient fingerprinting analysis in plants. Biotechnol. Tech 13 (1999) 277-278.
    [176]S. Zhao, S.E. Mitchell, J. Meng, S. Kresovich, M.P. Doyle, R.E. Dean, A.M. Casa, J.W. Weller, Genomic typing of Escherichia coli O157:H7 by semi-automated fluorescent AFLP analysis. Microbes Infect 2 (2000) 107-113.
    [177]Z. Terefework, S. Kaijalainen, K. Lindstrom, AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91 (2001) 169-180.
    [178]Q. Xu, D. Sun, Y. Zhang, F-MSAP:A practical system to detect methylation in chicken genome. Chinese Sci Bull 18 (2005) 2039-2044.
    [179]Q. Xu, Y. Zhang, D. Sun, Y. Wang, Y. Yu, Analysis on DNA methylation of various tissues in chicken. Anim Biotechnol 18 (2007) 231-241.
    [180]E. Portis, A. Acquardo, C. Comino, Analysis of DNA methylation during germination of pepper (Capsicum annuum L) seeds using methylation-sensitive amplification polymorphism (MSAP). Plant Science 166 (2003) 169-178.
    [181]Y. Lu, T. Rong, M. Cao, Analysis of DNA methylation in different maize tissues. J Genet Genomics 35 (2008) 41-48.
    [182]R. Sharma, R.K. Mohan Singh, G. Malik, P. Deveshwar, A.K. Tyagi, S. Kapoor, M. Kapoor, Rice cytosine DNA methyltransferases-gene expression profiling during reproductive development and abiotic stress. FEBS J 276 (2009) 6301-6311.
    [183]G.E. Reyna-Lopez, J. Simpson, J. Ruiz-Herrera, Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253 (1997) 703-710.
    [184]M. McClelland, M. Nelson, E. Raschke, Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucleic Acids Res 22 (1994) 3640-3659.
    [185]M.T. Cervera, L. Ruiz-Garcia, J.M. Martinez-Zapater, Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268 (2002) 543-552.
    [186]C.P. Walsh, T.H. Bestor, Cytosine methylation and mammalian development. Genes Dev 13(1999)26-34.
    [187]C. Waalwijk, R.A. Flavell, DNA methylation at a CCGG sequence in the large intron of the rabbit beta-globin gene:tissue-specific variations. Nucleic Acids Res 5 (1978) 4631-4634.
    [188]X. Wang, V. Tryndyak, E.O. Apostolov, X. Yin, S.V. Shah, I.P. Pogribny, A.G. Basnakian, Sensitivity of human prostate cancer cells to chemotherapeutic drugs depends on EndoG expression regulated by promoter methylation. Cancer Lett 270(2008) 132-143.
    [189]P.A. Jones, D. Takai, The role of DNA methylation in mammalian epigenetics. Science 293 (2001) 1068-1070.
    [190]唐韶青,张沅,徐青,孙东晓,俞英,不同动物部分组织基因组甲基化程度的差异分析.农业生物技术学报(2006)507-510.
    [191]蒋曹德,邓昌彦,熊远著,DNA甲基化差异对猪生长性状的影响.畜牧兽医学报36 (2005)105-110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700