急性白血病组蛋白甲基化和DNA甲基化的相互作用及对Wnt信号通路的调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
急性白血病是一个多因素相关的疾病。研究发现,急性白血病的发生、发展、治疗疗效及预后与异常的表观遗传学有关。表观遗传学(epiginetics)是研究不涉及DNA序列变化的、可遗传的基因表达的改变。它主要通过DNA甲基化、组蛋白翻译后修饰、RNA相关沉寂和染色质重塑等多种修饰机制调控基因的表达,是肿瘤发病的重要机制之一。目前研究较多的是单一的抑癌基因DNA甲基化和组蛋白乙酰化、组蛋白甲基化等修饰形式,对于不同修饰形式之间的相互作用及对基因表达的调控机制等研究尚不明确,是近年来表观遗传领域的研究热点。Wnt信号转导通路(wingless pathway)是一条保守的信号通路,参与调节细胞的生长、迁移、分化及凋亡,是肿瘤发生过程中的关键信号通路之一。研究发现,Wnt通路的异常活化与肿瘤的形成密切相关。
     本课题以Wnt通路拮抗基因为靶基因,拟通过双向干预DNA甲基化和组蛋白甲基化模式的平衡,探讨Jurkat细胞中DNA甲基化和组蛋白H3K9甲基化的相互作用及对靶基因的表达调控机制,研究其对Jurkat细胞生物学活性和Wnt信号通路传导的影响,揭示急性白血病的表观遗传学发病机制,挖掘新的靶分子,为白血病早期诊断和基因靶向治疗提供新的思路。
     课题分为以下四部分:
     1、以Western Blot方法检测急性白血病患者及7种恶性血液病细胞系的组蛋白H3K9、H3K4总甲基化水平,分析其与急性白血病发生、发展、治疗效果及预后之间的关系。
     2、以H3K9me3组蛋白高甲基化的急性淋巴细胞白血病Jurkat细胞系为研究对象,通过染色质免疫分析联合芯片(CHIP on chip)技术筛选出与H3K9me3甲基化位点相关的Wnt信号通路拮抗基因WNT5A、DKK3、SFRP2作为靶基因,qPCR法检测靶基因表达情况;并以甲基化特异性PCR(MSP)方法检测靶基因启动子区DNA甲基化水平,分析组蛋白甲基化和DNA甲基化两种表观遗传修饰机制之间的相关性,及与Wnt信号传导通路的联系。
     3、构建针对组蛋白H3K9me3位点甲基转移酶SUV39h1基因的干扰质粒转染Jurkat细胞,沉默该基因以逆转H3K9组蛋白甲基化;同时以经典的DNA去甲基化药物5-Aza-CdR去除靶基因启动区DNA甲基化,从DNA和组蛋白甲基化双向调控机制入手,以Western Blot、MSP、ChIP-qPCR等方法研究各自甲基化平衡模式被打破后,另一方对应的DNA/组蛋白甲基转移酶、DNA/组蛋白甲基化水平和靶基因表达的改变,探讨DNA甲基化和组蛋白甲基化之间的相互作用和对靶基因的表达调控机制。
     4、以未处理组为正常对照,研究5-Aza-CdR处理组和SUV39h1基因敲除组对Jurkat细胞的生长曲线、增殖活性、克隆形成能力、细胞周期以及凋亡水平等细胞生物学活性的影响,并以Western Blot法检测Wnt通路关键效应蛋白β-catenin的表达改变,探讨DNA/组蛋白甲基化修饰对Jurkat细胞生物学活性及Wnt信号通路的影响。
     结论如下:
     1.组蛋白H3K9me3高甲基化和组蛋白H3K4低甲基化在急性白血病中广泛存在,且与白血病的分型、治疗疗效和预后相关。
     2. Jurkat细胞组蛋白H3K9me3甲基化与Wnt信号通路拮抗基因(SFRP2、DKK3、WNT5A)启动区DNA的高甲基化状态有关。
     3. DNA去甲基化可引起组蛋白H3K9甲基化水平及组蛋白甲基转移酶SUV39h1和G9a的表达下调,激活靶基因表达;在体外能够抑制Jurkat细胞增殖,阻滞细胞周期进程,并诱导凋亡,其作用机制与通过抑制Wnt/β-catenin信号途径有关。
     4.组蛋白H3K9去甲基化,可引起DNA甲基转移酶DNMT1、DNMT3A和DNMT3B的表达下调,但对DNA甲基化无明显改变,靶基因表达增加;在体外能够抑制Jurkat细胞增殖,阻滞细胞周期进程,并诱导凋亡,其作用机制与通过抑制Wnt/β-catenin信号途径有关。
     5. DNA甲基化和组蛋白H3K9甲基化的失衡,可独立或协同激活Wnt通路拮抗基因的表达,其中H3K9组蛋白甲基化是优先于DNA甲基化的第一始动因素。
Acute leukemia is a multiple factor relative disease. Some researches found that the acute leukemia occurrence, development, treatment effect and prognosis are relevant with epigenetics . Epigenetics is refered to the heritable gene expression variations without the DNA sequence changes. It is mainly through several mechanisms such as DNA methylation, histone posttranslational modifications, RNA silence and chromatin remodeling to moderate gene expression, which is also one of the important mechanism of tumour exist. Current researches mainly point on anti-oncogene DNA methylation, histone acetylation and histone methylation separately. It’s not clear to the interactions between these different modifications and the mechanisms of gene expression regulating, which in same time, are the recent focus of epigenetic research. Wnt signal pathway (wingless pathway) is a conservative signal pathway, involved in regulating cell growth, migration, differentiation and apoptosis. It is one of the most important signal pathway in tumor occurrence. The abnormal activation of Wnt pathway is closely related to the tumor formation.
     This project is planned to target the antagonist genes in Wnt pathway. By interfering up and down the balance between DNA methylation and histone methylation patterns, the results would be discussed on the interaction of Jurkat cell DNA and histone H3K9 methylation and on the regulation mechanism of target gene expression, including the research on the Jurkat cell lines biologic activities and its influence to Wnt signal pathway’s conduction, revealing the acute leukemia epigenetical pathogenesis, finding some new clues for the early leukemia diagnosis and gene targeting therapy.
     The project is combined of four parts:
     1. Adopting the Western Blot method, the total methylation levels of histone H3K9 and H3K4 were detected on acute leukemia patients and seven series of malignant leukemia cell lines, analyzing their relationships among the occurrence, development, treatment effect and the prognosis of acute leukemia.
     2. The acute lymphocytic leukemia Jurkat lines was set as the research object in which the histone H3K9me3 methylation level was high. ChIP-on-chip(chromatin immunopricipitation on chip) technic was used to screen the Wnt antagonism genes like WNT5A, DKK3 and SFRP2 as target genes. Then these target gene expressions were analyzed by qPCR method and their promoter DNA methylation levels by MSP method. The correlation between histone and DNA methylation and their relationships with Wnt were compared.
     3.Constructing interference plasmid for histone methyl transferase SUV39h1 on H3K9me3 site, silencing the SUV39h1 gene to reverse H3K9 histone methylation, at the same time, 5 - Aza– CdR as the classic DNA methylation drugs was used to wipe off the target gene promoter DNA methylation. Under the bi-regulating of DNA and histone methylation, methods including Western Blot, MSP and ChIP-qPCR were employed to detect the level changes of corresponding DNA/histone methyl transferase, DNA/histone methylation and target gene expression. The interaction between DNA and histone methylation and their regulation mechanism on target gene expression were then explored.
     4. As the non-drug group be normal control, the 5-Aza-CdR treatment group and SUV39h1 gene knockout group were cross compared in levels as its growth curves, proliferation activities, clone formation abilities, cell cycles and apoptosis. The express alteration of key effective proteinβ-catenin was detected by Western Blot. The influences of DNA/histone methylation modification on Jurkat cell’s biologic activity and Wnt signal pathway were discussed.
     Conclusions :
     1. The histone H3K9me3 high methylation and H3K4 low methylation are widely exist in acute leukemia and correlated to leukemia’s type, treatment effect and prognosis.
     2. Jurkat cell’s histone H3K9me3 methylation is correlated to promoter DNA hyper-methylation levels of Wnt signal pathway’s antagonism genes (WNT5A, DKK3 and SFRP2).
     3. The drug 5-Aza-CdR can reverse DNA methylation, down-regulate histone H3K9 methylation level, decrease histone methyl transferase SUV39h1 and G9a expression and activate the target gene expression.It also can inhibit Jurkat cell proliferation, block the cell cycle process and induce apoptosis in vitro. These effects may be due to inhibiting the Wnt/β-catenin signal pathway.
     4. SUV39h1 gene silence can reverse histone H3K9 methylation state, decrease the expression of DNA methyltransferase as DNMT1, DNMT3A and DNMT3B,increase the target gene expression, but there is no significant change of DNA methylation. It can inhibit Jurkat cell proliferation, block the cell cycle process and induce apoptosis in vitro. These effects may be due to inhibiting the Wnt/β-catenin signal pathway.
     5.The imbalance between DNA and histone H3K9 methylation can independently or collaboratively activate Wnt pathways antagonism genes expression, restrain Wnt signals. H3K9 histone methylation is a more earlier actived event than DNA methylation.
引文
[1] Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983. 301(5895): 89-92.
    [2] Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science. 1999. 286(5439): 481-6.
    [3] Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000. 403(6765): 41-5.
    [4] Zegerman P, Canas B, Pappin D, Kouzarides T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem. 2002. 277(14): 11621-4.
    [5] Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001. 97(5): 1172-9.
    [6] Smith EM, Boyd K, Davies FE. The potential role of epigenetic therapy in multiple myeloma. Br J Haematol. 2010. 148(5): 702-13.
    [7] Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007. 25(1): 1-14.
    [8] Jackson M, Krassowska A, Gilbert N, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol. 2004. 24(20): 8862-71.
    [9] Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell. 2004. 15(4): 595-605.
    [10] Ying Y, Tao Q. Epigenetic disruption of the WNT/beta-catenin signaling pathway in human cancers. Epigenetics. 2009. 4(5): 307-12.
    [11] Chim CS, Chan WW, Pang A, Kwong YL. Preferential methylation of Wnt inhibitory factor-1 in acute promyelocytic leukemia: an independent poor prognostic factor. Leukemia. 2006. 20(5): 907-9.
    [12] Roman-Gomez J, Cordeu L, Agirre X, et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood. 2007. 109(8): 3462-9.
    [13] Boggs BA, Cheung P, Heard E, Spector DL, Chinault AC, Allis CD. Differentiallymethylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nat Genet. 2002. 30(1): 73-6.
    [14] Umlauf D, Goto Y, Cao R, et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet. 2004. 36(12): 1296-300.
    [15] Zegerman P, Canas B, Pappin D, Kouzarides T. Histone H3 lysine 4 methylation disrupts binding of nucleosome remodeling and deacetylase (NuRD) repressor complex. J Biol Chem. 2002. 277(14): 11621-4.
    [16] Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007. 447(7143): 407-12.
    [17] Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004. 14(14): R546-51.
    [18] Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J. 2006. 273(14): 3121-35.
    [19] Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007. 447(7143): 407-12.
    [20]马旭东,黄轶群,肖丽云,邹勇.急性白血病组蛋白甲基化、乙酰化修饰异常的研究.中华血液学杂志. 2010. 31(8): 523-526.
    [21] Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A. 1996. 93(18): 9821-6.
    [22]傅湘辉,辛立,董文吉,梁植权.一种简便的染色质免疫沉淀法的建立.生物化学与生物物理进展. 2003. (04): 634-638.
    [23] Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005. 122(6): 947-56.
    [24] Wiencke JK, Zheng S, Morrison Z, Yeh RF. Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene. 2008. 27(17): 2412-21.
    [25]钟克力,张丽,戴勇,周汉新,王春友.采用染色质免疫沉淀联合芯片技术分析胃癌全基因组蛋白H3K27三甲基化水平.临床肿瘤学杂志. 2009. (01): 15-19.
    [26] Austin TW, Solar GP, Ziegler FC, Liem L, Matthews W. A role for the Wnt gene family in hematopoiesis: expansion of multilineage progenitor cells. Blood. 1997. 89(10): 3624-35.
    [27] Giles RH, van EJH, Clevers H. Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta. 2003. 1653(1): 1-24.
    [28] Chung EJ, Hwang SG, Nguyen P, et al. Regulation of leukemic cell adhesion, proliferation,and survival by beta-catenin. Blood. 2002. 100(3): 982-90.
    [29] Lukasova E, Koristek Z, Falk M, et al. Methylation of histones in myeloid leukemias as a potential marker of granulocyte abnormalities. J Leukoc Biol. 2005. 77(1): 100-11.
    [30] Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci. 2003. 116(Pt 13): 2627-34.
    [31] Li J, Ying J, Fan Y, et al. WNT5A antagonizes WNT/beta-catenin signaling and is frequently silenced by promoter CpG methylation in esophageal squamous cell carcinoma. Cancer Biol Ther. 2010. 10(6): 617-24.
    [32] Kawamoto K, Hirata H, Kikuno N, Tanaka Y, Nakagawa M, Dahiya R. DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines. Int J Cancer. 2008. 123(3): 535-42.
    [33] Hirata H, Hinoda Y, Nakajima K, et al. Wnt antagonist DKK1 acts as a tumor suppressor gene that induces apoptosis and inhibits proliferation in human renal cell carcinoma. Int J Cancer. 2011. 128(8): 1793-803.
    [34] Valencia A, Roman-Gomez J, Cervera J, et al. Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia. Leukemia. 2009. 23(9): 1658-66.
    [35] Chim CS, Pang R, Fung TK, Choi CL, Liang R. Epigenetic dysregulation of Wnt signaling pathway in multiple myeloma. Leukemia. 2007. 21(12): 2527-36.
    [36] Roman-Gomez J, Cordeu L, Agirre X, et al. Epigenetic regulation of Wnt-signaling pathway in acute lymphoblastic leukemia. Blood. 2007. 109(8): 3462-9.
    [37] Griffiths EA, Gore SD, Hooker C, et al. Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation. Leuk Lymphoma. 2010. 51(9): 1711-9.
    [38] Jost E, Gezer D, Wilop S, et al. Epigenetic dysregulation of secreted Frizzled-related proteins in multiple myeloma. Cancer Lett. 2009. 281(1): 24-31.
    [39] Weerkamp F, van DJJ, Staal FJ. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia. 2006. 20(7): 1197-205.
    [40] Weinberg MS, Villeneuve LM, Ehsani A, et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. RNA. 2006. 12(2): 256-62.
    [41] Vakoc CR, Mandat SA, Olenchock BA, Blobel GA. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell. 2005. 19(3): 381-91.
    [42] Le BMM, Davis EM, Patel B, Phan VT, Sohal J, Kogan SC. Recurring chromosomalabnormalities in leukemia in PML-RARA transgenic mice identify cooperating events and genetic pathways to acute promyelocytic leukemia. Blood. 2003. 102(3): 1072-4.
    [43] Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP. DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol. 2001. 82(2): 299-304.
    [44] Mizuno S, Chijiwa T, Okamura T, et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001. 97(5): 1172-9.
    [45] Smith EM, Boyd K, Davies FE. The potential role of epigenetic therapy in multiple myeloma. Br J Haematol. 2010. 148(5): 702-13.
    [46] Rozenblatt-Rosen O, Rozovskaia T, Burakov D, et al. The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/SNF complex. Proc Natl Acad Sci U S A. 1998. 95(8): 4152-7.
    [47] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007. 8(4): 307-18.
    [48] Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene. 2010. 29(4): 576-88.
    [49] Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005. 12(2): 110-2.
    [50] Peters AH, Kubicek S, Mechtler K, et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003. 12(6): 1577-89.
    [51] Leung DC, Dong KB, Maksakova IA, et al. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proc Natl Acad Sci U S A. 2011 .
    [52] Dong KB, Maksakova IA, Mohn F, et al. DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO J. 2008. 27(20): 2691-701.
    [53] Nan X, Ng HH, Johnson CA, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 1998. 393(6683): 386-9.
    [54] Loyola A, Tagami H, Bonaldi T, et al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep. 2009. 10(7): 769-75.
    [55] Rea S, Eisenhaber F, O'Carroll D, et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature. 2000. 406(6796): 593-9.
    [56] Fuks F, Hurd PJ, Deplus R, Kouzarides T. The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res. 2003. 31(9): 2305-12.
    [57] Lehnertz B, Ueda Y, Derijck AA, et al. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol. 2003. 13(14): 1192-200.
    [58] Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007. 447(7143): 407-12.
    [59] Fuks F. DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev. 2005. 15(5): 490-5.
    [60] Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007. 21(10): 1169-78.
    [61] Leonhardt H, Page AW, Weier HU, Bestor TH. A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell. 1992. 71(5): 865-73.
    [62] Esteve PO, Chin HG, Pradhan S. Human maintenance DNA (cytosine-5)-methyltransferase and p53 modulate expression of p53-repressed promoters. Proc Natl Acad Sci U S A. 2005. 102(4): 1000-5.
    [63] Okano M, Xie S, Li E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat Genet. 1998. 19(3): 219-20.
    [64] Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res. 2007. 618(1-2): 163-74.
    [65] Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet. 2008. 40(6): 741-50.
    [66] Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature. 2001. 412(6846): 561-5.
    [67] Vassen L, Fiolka K, Moroy T. Gfi1b alters histone methylation at target gene promoters and sites of gamma-satellite containing heterochromatin. EMBO J. 2006. 25(11): 2409-19.
    [68] Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell. 2003. 3(1): 89-95.
    [69] Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science. 2007. 317(5845): 1760-4.
    [70] Smallwood A, Esteve PO, Pradhan S, Carey M. Functional cooperation between HP1 and DNMT1 mediates gene silencing. Genes Dev. 2007. 21(10): 1169-78.
    [71] Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell. 2004. 15(4): 595-605.
    [72] Freitag M, Hickey PC, Khlafallah TK, Read ND, Selker EU. HP1 is essential for DNA methylation in neurospora. Mol Cell. 2004. 13(3): 427-34.
    [73] Verras M, Sun Z. Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Lett. 2006. 237(1): 22-32.
    [74] Sharma C, Pradeep A, Wong L, Rana A, Rana B. Peroxisome proliferator-activated receptor gamma activation can regulate beta-catenin levels via a proteasome-mediated and adenomatous polyposis coli-independent pathway. J Biol Chem. 2004. 279(34): 35583-94.
    [75]麦玉洁,邱录贵,李增军等.β-catenin基因在白血病患者中的表达及其临床意义.中华血液学杂志. 2007. (08): 541-544.
    [76] Watson AJ. An overview of apoptosis and the prevention of colorectal cancer. Crit Rev Oncol Hematol. 2006. 57(2): 107-21.
    [1] Shilatifard A. Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem. 2006. 75: 243-69.
    [2] Jenuwein T, Allis CD. Translating the histone code. Science. 2001. 293(5532): 1074-80.
    [3] Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000. 403(6765): 41-5.
    [4] Wang GG, Allis CD, Chi P. Chromatin remodeling and cancer, Part I: Covalent histone modifications. Trends Mol Med. 2007. 13(9): 363-72.
    [5] Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol. 2004. 14(14): R546-51.
    [6] Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J. 2006. 273(14): 3121-35.
    [7] Berger SL. The complex language of chromatin regulation during transcription. Nature. 2007. 447(7143): 407-12.
    [8] Bedford MT, Clarke SG. Protein arginine methylation in mammals: who, what, and why. Mol Cell. 2009. 33(1): 1-13.
    [9] Wysocka J, Allis CD, Coonrod S. Histone arginine methylation and its dynamic regulation. Front Biosci. 2006. 11: 344-55.
    [10] Bachand F. Protein arginine methyltransferases: from unicellular eukaryotes to humans. Eukaryot Cell. 2007. 6(6): 889-98.
    [11] Wang L, Pal S, Sif S. Protein arginine methyltransferase 5 suppresses the transcription of the RB family of tumor suppressors in leukemia and lymphoma cells. Mol Cell Biol. 2008. 28(20): 6262-77.
    [12] Cheung N, Chan LC, Thompson A, Cleary ML, So CW. Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol. 2007. 9(10): 1208-15.
    [13] Matsui T, Leung D, Miyashita H, et al. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature. 2010. 464(7290): 927-31.
    [14] Okada Y, Feng Q, Lin Y, et al. hDOT1L links histone methylation to leukemogenesis. Cell. 2005. 121(2): 167-78.
    [15] Kondo Y, Shen L, Ahmed S, et al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability incancer cells. PLoS One. 2008. 3(4): e2037.
    [16] Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature. 2001. 410(6824): 116-20.
    [17] Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005. 436(7051): 660-5.
    [18] Santos-Rosa H, Schneider R, Bannister AJ, et al. Active genes are tri-methylated at K4 of histone H3. Nature. 2002. 419(6905): 407-11.
    [19] Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell. 2003. 11(3): 709-19.
    [20] Huyen Y, Zgheib O, Ditullio RA Jr, et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature. 2004. 432(7015): 406-11.
    [21] Sanders SL, Portoso M, Mata J, Bahler J, Allshire RC, Kouzarides T. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell. 2004. 119(5): 603-14.
    [22] Carling T, Kim KC, Yang XH, Gu J, Zhang XK, Huang S. A histone methyltransferase is required for maximal response to female sex hormones. Mol Cell Biol. 2004. 24(16): 7032-42.
    [23] Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol. 2004. 6(8): 731-40.
    [24] Tsuge M, Hamamoto R, Silva FP, et al. A variable number of tandem repeats polymorphism in an E2F-1 binding element in the 5' flanking region of SMYD3 is a risk factor for human cancers. Nat Genet. 2005. 37(10): 1104-7.
    [25] Lund AH, van LM. Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol. 2004. 16(3): 239-46.
    [26] Otte AP, Kwaks TH. Gene repression by Polycomb group protein complexes: a distinct complex for every occasion. Curr Opin Genet Dev. 2003. 13(5): 448-54.
    [27] Raaphorst FM, Meijer CJ, Fieret E, et al. Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene. Neoplasia. 2003. 5(6): 481-8.
    [28] Sparmann A, van LM. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006. 6(11): 846-56.
    [29] Wang GG, Cai L, Pasillas MP, Kamps MP. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol. 2007. 9(7): 804-12.
    [30] Kurotaki N, Imaizumi K, Harada N, et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat Genet. 2002. 30(4): 365-6.
    [31] Shi X, Gozani O. The fellowships of the INGs. J Cell Biochem. 2005. 96(6): 1127-36.
    [32] Moss TJ, Wallrath LL. Connections between epigenetic gene silencing and human disease. Mutat Res. 2007. 618(1-2): 163-74.
    [33] Bannister AJ, Schneider R, Kouzarides T. Histone methylation: dynamic or static. Cell. 2002. 109(7): 801-6.
    [34] Shi Y, Lan F, Matson C, et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell. 2004. 119(7): 941-53.
    [35] Shi Y, Whetstine JR. Dynamic regulation of histone lysine methylation by demethylases. Mol Cell. 2007. 25(1): 1-14.
    [36] Klose RJ, Zhang Y. Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol. 2007. 8(4): 307-18.
    [37] Lee MG, Wynder C, Bochar DA, Hakimi MA, Cooch N, Shiekhattar R. Functional interplay between histone demethylase and deacetylase enzymes. Mol Cell Biol. 2006. 26(17): 6395-402.
    [38] Wang J, Hevi S, Kurash JK, et al. The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet. 2009. 41(1): 125-9.
    [39] Kahl P, Gullotti L, Heukamp LC, et al. Androgen receptor coactivators lysine-specific histone demethylase 1 and four and a half LIM domain protein 2 predict risk of prostate cancer recurrence. Cancer Res. 2006. 66(23): 11341-7.
    [40] Nottke A, Colaiacovo MP, Shi Y. Developmental roles of the histone lysine demethylases. Development. 2009. 136(6): 879-89.
    [41] Yamane K, Toumazou C, Tsukada Y, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006. 125(3): 483-95.
    [42] Whetstine JR, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell. 2006. 125(3): 467-81.
    [43] Klose RJ, Yamane K, Bae Y, et al. The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature. 2006. 442(7100): 312-6.
    [44] Fodor BD, Kubicek S, Yonezawa M, et al. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev. 2006. 20(12): 1557-62.
    [45] Cloos PA, Christensen J, Agger K, et al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature. 2006. 442(7100): 307-11.
    [46] Swigut T, Wysocka J. H3K27 demethylases, at long last. Cell. 2007. 131(1): 29-32.
    [47] Hong S, Cho YW, Yu LR, Yu H, Veenstra TD, Ge K. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases. Proc Natl Acad Sci U S A. 2007. 104(47): 18439-44.
    [48] Yamane K, Tateishi K, Klose RJ, et al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell. 2007. 25(6): 801-12.
    [49] Loh YH, Zhang W, Chen X, George J, Ng HH. Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007. 21(20): 2545-57.
    [50] Freitag M, Selker EU. Controlling DNA methylation: many roads to one modification. Curr Opin Genet Dev. 2005. 15(2): 191-9.
    [51] Frescas D, Guardavaccaro D, Bassermann F, Koyama-Nasu R, Pagano M. JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature. 2007. 450(7167): 309-13.
    [52] Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 2005. 37(4): 391-400.
    [53] Turner BM. Reading signals on the nucleosome with a new nomenclature for modified histones. Nat Struct Mol Biol. 2005. 12(2): 110-2.
    [54] Fischle W, Tseng BS, Dormann HL, et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature. 2005. 438(7071): 1116-22.
    [55] Hirota T, Lipp JJ, Toh BH, Peters JM. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature. 2005. 438(7071): 1176-80.
    [56] Metzger E, Yin N, Wissmann M, et al. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol. 2008. 10(1): 53-60.
    [57] Shi X, Kachirskaia I, Yamaguchi H, et al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol Cell. 2007. 27(4): 636-46.
    [58] Huang J, Perez-Burgos L, Placek BJ, et al. Repression of p53 activity by Smyd2-mediated methylation. Nature. 2006. 444(7119): 629-32.
    [59] Feldman N, Gerson A, Fang J, et al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol. 2006. 8(2): 188-94.
    [60] Takada I, Mihara M, Suzawa M, et al. A histone lysine methyltransferase activated bynon-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol. 2007. 9(11): 1273-85.
    [61] Si J, Boumber YA, Shu J, et al. Chromatin remodeling is required for gene reactivation after decitabine-mediated DNA hypomethylation. Cancer Res. 2010. 70(17): 6968-77.
    [62] Jackson M, Krassowska A, Gilbert N, et al. Severe global DNA hypomethylation blocks differentiation and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol. 2004. 24(20): 8862-71.
    [63] Sarraf SA, Stancheva I. Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell. 2004. 15(4): 595-605.
    [64] Lakshmikuttyamma A, Scott SA, DeCoteau JF, Geyer CR. Reexpression of epigenetically silenced AML tumor suppressor genes by SUV39H1 inhibition. Oncogene. 2010. 29(4): 576-88.
    [65] Kondo Y, Shen L, Issa JP. Critical role of histone methylation in tumor suppressor gene silencing in colorectal cancer. Mol Cell Biol. 2003. 23(1): 206-15.
    [66] Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature. 2004. 429(6990): 457-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700