有丝分裂细胞周期中核小体的解离模式与组蛋白甲基化的动态维持
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组蛋白八聚体与DNA包装形成的核小体结构是真核生物染色质的基本结构单元(Kornberg and Thomas,1974).成年动物由200多种不同类型的细胞构成,每种细胞具有各自独特的形态特征及生理功能(Allis et al.,2006)。除极少数例外,单个生物体内的所有细胞具有相同的遗传信息——DNA。多细胞生物使用各类染色质修饰将单一的基因组编辑成为数百种不同细胞特有的表观基因组。保证染色质状态在细胞世代之间以合适的方式传递,对生物个体发育以及成体的稳态具有重要意义,染色质状态继承的混乱可能导致多种发育紊乱或者疾病。由此表观遗传信息继承的分子机理受到研究者的普遍关注。除此之外,与遗传信息的高度稳定性不同,表观遗传信息具有一定程度的可变性和可逆性。表观遗传信息的继承或许无需如DNA复制一样具有精确性。
     DNA与组蛋白的修饰是表观遗传信息的重要组成部分。新合成的DNA链以类似半保留复制的方式重建DNA甲基化模式(Klose and Bird,2006)。然而组蛋白修饰是如何在有丝分裂细胞周期中传递给子代细胞的尚不清楚。为了解决这个问题,DNA复制偶联的核小体解离与重组模式必须首先被澄清。我们借助诱导表达体系,选择性地纯化含旧有FLAG-H3或者新生FLAG-H3的单核小体.利用基于稳定同位素标记的质谱定量技术,我们以高分辨率的模式检测了这些纯化到的单核小体中每种的组蛋白的新、旧构成。令人惊讶的是,尽管绝大多数(H3.1-H4)2四聚体在细胞周期中保持完整,有相当比例的(H3.3-H4)2四聚体发生解离。(H3.3-H4)2四聚体解离可以通过阻断DNA复制偶联的核小体组装得到抑制,这证明1.DNA复制不相关的H3.3组装途径主要通过同时装配两个H3.3-H4二聚体完成。2.尽管一定程度的(H3.3-H4)2四聚体解离不依赖DNA复制而发生,多数解离事件是DNA复制依赖的。
     组蛋白赖氨酸甲基化修饰在转录激活、基因沉默、以染色质形成以及DNA损伤修复等过程中发挥重要作用。然而对组蛋白甲基化整体水平变化的认识仍然缺乏。借助稳定同位素标记与质谱定量技术,我们对处于有丝分裂周期中组蛋白甲基化的重建以及非循环细胞中甲基化水平的保持进行了全面分析。我们的研究发现:1.组蛋白甲基化的整体水平在S期因DNA复制而打破,并在此后的整个细胞周期
     中逐步重建;2.尽管整体水平在细胞进入下一个S期前恢复,新、旧组蛋白上甲基
     化修饰的丰度具有明显差异;3.在非循环细胞中,各种甲基化水平会最终进入平台
     期;4.甲基转移酶活性的限制和甲基基团的动态置换均对非循环细胞中组蛋白甲基
     化整体水平的保持做出贡献。综上所述,我们的提出表观遗传修饰的保持具有一定
     的灵活性,而无需在特定位点精确重现。
In eukaryotic cells, histones are packaged into octameric core particles with DNA wrapping around to form nucleosomes, the basic units of chromatin (Kornberg and Thomas,1974). An adult animal contains over 200 different cell types, each of them has specialized structure and distinct physiological function (Allis et al.,2006). With a few exceptions, all of these cells carry the same genetic information encoded by DNA. Multicellular organisms utilise chromatin marks to translate one single genome into hundreds of epigenomes for their corresponding cell types. During development and adult homeostasis, it is important to appropriately maintain the cromatin state after each cell division, as unscheduled compromise might lead to developmental disorder or disease. Thus, the molecular mechanism underlying epigenetic inheritance is highly interesting. Furthermore, unlike genetic information, which is a means of highly stable, epigenetic information stands for a certain level of plasticity and reversibility. The inheritance of epigenetic state may not be as faithful as that of genetic information.
     Histone and DNA modifications provide key epigenetic information. Newly synthesized DNA strand acquires DNA methylation pattern by copying the pre-existing DNA methylation signature from the template strand (Klose and Bird,2006). However, the mechanism by which patterns of histone modifications are passed on to daughter cells through mitotic divisions remains enigmatic. To understand this, the DNA replication-dependent nucleosome partition pattern must be unveiled first. Mono-nucleosomes containing either existing Flag-H3 from parental cells or newly deposited Flag-H3 were selectively purified. Stable isotope labeling-based quantitative mass spectrometry generated high-resolution, quantitative profiles for all co-purified individual native core histones. Surprisingly, significant amounts of H3.3/H4 tetramers split in vivo, while a vast majority of the H3.1/H4 tetramers remained intact. Inhibiting DNA replication-dependent deposition significantly reduced the level of splitting events, which suggest:1. the replication-independent H3.3 deposition pathway proceeds largely by cooperatively incorporating two new H3.3-H4 dimers; 2. detectable amounts of splitting events were seen during replication-independent deposition, but the majority of splitting events occurred during replication-dependent deposition.
     Histone lysine methylation has been implicated in transcription activation, gene silencing, heterochromatin formation and DNA repair. However, a thorough understanding of the dynamics of global methylation levels remains to be established. Using stable isotope labeling and quantitative mass spectrometry, we analyzed re-establishment of histone lysine methylation in dividing cells, and maintenance of methylation pattern in non-cycling cells experiencing an extended G1/S. Here, we report that:1) histone methylation levels are disturbed during S phase, and become gradually re-established at subsequent cell cycle stages; 2) despite the recovery of overall methylation levels before the next S phase, the methylation levels on parental and newly incorporated histones differ significantly; 3) in non-cycling cells, histone methylation levels eventually reach a plateau stage; 4) both restriction of methyltransferase activity and active turn over of methyl groups contribute to long-term equilibrium of methylation level in non-cycling cells arrested at G1/S. Taken together, we propose that the levels of epigenetic modifications are maintained in a flexible way, rather than in a local, precise manner.
引文
Aagaard L, Laible G, Selenko P, Schmid M, Dorn R, Schotta G, Kuhfittig S, Wolf A, Lebersorger A, Singh PB, Reuter G, Jenuwein T. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J.1999 Apr 1;18(7):1923-38.
    Allfrey, V.G., Mirsky, A.E. (1964). Structural modifications of histones and their possible role in the regulation of RNA synthesis. Science 144,559.
    Ahmad K, Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol Cell.2002 Jun;9(6):1191-200.
    Amor DJ, Kalitsis P, Sumer H, Choo KH. Building the centromere:from foundation proteins to 3D organization. Trends Cell Biol.2004 Jul;14(7):359-68.
    Annunziato, A.T., Seale, R.L. (1984). Presence of nucleosomes within irregularly cleaved fragments of newly replicated chromatin. Nucleic Acids Res 12,6179-6196.
    Annunziato, A.T. (2005). Split decision:what happens to nucleosomes during DNA replication? J Biol Chem.280,12065-8.
    Aoto T, Saitoh N, Sakamoto Y, Watanabe S, Nakao M (2008) Polycomb group protein-associated chromatin is reproduced in post-mitotic G1 phase and is required for S phase progression. J Biol Chem 283:18905-18915
    Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature.2001 Mar 1;410(6824):120-4
    Barman, H.K., Takami, Y., Ono, T., Nishijima, H., Sanematsu, F., Shibahara, K., Nakayama, T. (2006). Histone acetyltransferase 1 is dispensable for replication-coupled chromatin assembly but contributes to recover DNA damages created following replication blockage in vertebrate cells. Biochem Biophys Res Commun 345,1547-1557.
    Bar-Joseph Z, Siegfried Z, Brandeis M, Brors B, Lu Y, Eils R, Dynlacht BD, Simon I (2008) Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc Natl Acad Sci U S A 105: 955-960
    Belotserkovskaya, R., Oh, S., Bondarenko, V.A., Orphanides, G., Studitsky, V.M., Reinberg, D. (2003). FACT facilitates transcription-dependent nucleosome alteration. Science 301,1090-3.
    Benson, L.J., Gu, Y., Yakovleva, T., Tong, K., Barrows, C., Strack, C.L., Cook, R.G., Mizzen, C.A., Annunziato, A.T. (2006). Modifications of H3 and H4 during chromatin replication, nucleosome assembly, and histone exchange. J Biol Chem 281,9287-9296
    Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A.2002 Jun 25;99(13):8695-700.
    Bonne-Andrea, C., Wong, M.L., Alberts, B.M. (1990). In vitro replication through nucleosomes without histone displacement. Nature 343,719-726.
    Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J (2007) Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics 6:1917-1932
    Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA, Lee TI, Levine SS, Wernig M, Tajonar A, Ray MK, Bell GW, Otte AP, Vidal M, Gifford DK, Young RA, Jaenisch R (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349-353
    Braunstein M, Rose AB, Holmes SG, Allis CD, Broach JR. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev.1993 Apr;7(4):592-604
    Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. Histone H3 lysine 4 methylation is mediated by Setl and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev.2001 Dec 15;15(24):3286-95.
    Brownell, J.E., Zhou, J.. Ranalli. T,, Kobayashi, R., Edmondson, D.G., Roth, S.Y., Allis, C.D. (1996). Tetrahymena histone acetyltransferase A:a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84,843-851
    Byvoet P, Shepherd GR, Hardin JM, Noland BJ (1972) The distribution and turnover of labeled methyl groups in histone fractions of cultured mammalian cells. Arch Biochem Biophys 148:558-567
    Campos El, Reinberg D (2009) Histones:annotating chromatin. Annu Rev Genet 43: 559-599
    Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science.2002 Nov1;298(5595):1039-43
    Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, Lee KK, Shia WJ, Anderson S, Yates J, Washburn MP, Workman JL. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell.2005 Nov 18;123(4):581-92.
    Chen X, Xiong J, Xu M, Chen S, Zhu B (2011) Symmetrical modification within a nucleosome is not required globally for histone lysine methylation. EMBO Rep 12: 244-251
    Chuang, L.S., Ian, H.I., Koh, T.W., Ng, HH, Xu, G., Li, B.F. (1997). Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277,1996-2000
    Collins, N., Poot, R.A., Kukimoto, I., Garcia-Jimenez, C., Dellaire, G., Varga-Weisz, P.D. (2002). An ACF1-ISWI chromatin-remodeling complex is required for DNA replication through heterochromatin. Nat Genet 32,627-632.
    Cremisi, C., Chestier, A., Yaniv, M. (1978). Assembly of SV40 and polyoma minichromosomes during replication. Cold Spring Harb Symp Quant Biol 42,409-416.
    Cusick, M.E., Herman, T.M., DePamphilis, M.L., Wassarman, P.M. (1981). Structure of chromatin at deoxyribonucleic acid replication forks:prenucleosomal deoxyribonucleic acid is rapidly excised from replicating simian virus 40 chromosomes by micrococcal nuclease. Biochemistry 20,6648-6658.
    Cusick, M.E., DePamphilis, M.L., Wassarman, P.M. (1984). Dispersive segregation of nucleosomes during replication of simian virus 40 chromosomes. J Mol Biol 178, 249-271
    Czermin B, Melfi R, McCabe D, Seitz V, Imhof A, Pirrotta V. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell.2002 Oct 18;111(2):185-96.
    Das, C., Lucia, M.S., Hansen, K.C., Tyler, J.K. (2009). CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459,113-117.
    de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M, Koseki H, Brockdorff N. Polycomb group proteins RinglA/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell.2004 Nov;7(5):663-76.
    Dehe PM, Pamblanco M, Luciano P, Lebrun R, Moinier D, Sendra R, Verreault A, Tordera V, Geli V. Histone H3 lysine 4 mono-methylation does not require ubiquitination of histone H2B. J Mol Biol.2005 Oct 28;353(3):477-84.
    Drane P, Ouararhni K, Depaux A, Shuaib M, Hamiche A. The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev.2010 Jun 15;24(12):1253-65.
    Duncan EM, Muratore-Schroeder TL, Cook RG, Garcia BA, Shabanowitz J, Hunt DF, Allis CD. Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell.2008 Oct 17;135(2):284-94.
    Eissenberg, J.C., James, T.C., Foster-Hartnett, D.M., Hartnett, T., Ngan, V., Elgin, S.C, (1990). Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci 87,9923-9927.
    Eissenberg, J.C. (2006). Divided loyalties:transdetermination and the genetics of tissue regeneration. Bioessays 28,574-577.
    English, C.M., Maluf, N.K., Tripet, B., Churchill, M.E., Tyler, J.K. (2005). ASF1 binds to a heterodimer of histones H3 and H4:a two-step mechanism for the assembly of the H3-H4 heterotetramer on DNA. Biochemistry 44,13673-13682.
    English, C.M., Adkins, M.W., Carson, J.J., Churchill, M.E., Tyler, J.K. (2006). Structural basis for the histone chaperone activity of Asfl. Cell 127,495-508.
    Enomoto, S., McCune-Zierath, P.D., Gerami-Nejad, M., Sanders, M.A., Berman, J. (1997). RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 11,358-370.
    Enomoto, S., Berman, J. (1998). Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12,219-32.
    Espada, J., Ballestar, E., Fraga, M.F., Villar-Garea, A., Juarranz, A., Stockert, J.C., Robertson, K.D., Fuks, F., Esteller, M. (2004) Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279, 37175-37184.
    Esteve, P.O., Chin, H.G., Smallwood, A., Feehery, G.R., Gangisetty, O., Karpf, A.R., Carey, M.F., Pradhan, S. (2006). Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev 20,3089-3103.
    Feng Q, Wang H, Ng HH, Erdjument-Bromage H, Tempst P, Struhl K, Zhang Y (2002) Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain. Curr Biol 12:1052-1058
    Fernandez-Capetillo O, Mahadevaiah SK, Celeste A, Romanienko PJ, Camerini-Otero RD, Bonner WM, Manova K, Burgoyne P, Nussenzweig A. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev Cell.2003 Apr;4(4):497-508.
    Fotedar, R., Roberts, J.M. (1989). Multistep pathway for replication-dependent nucleosome assembly. Proc Natl Acad Sci U S A 86,6459-6463.
    Fowler, E., Farb, R., El-Saidy, S. (1982) Distribution of the core histones H2A. H2B. H3 and H4 during cell replication. Nucleic Acids Res 10,735-748
    Franco, A.A., Lam, W.M., Burgers, P.M., Kaufman, P.D. (2005). Histone deposition protein Asfl maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19,1365-1375.
    Gambus, A., Jones, R.C., Sanchez-Diaz, A., Kanemaki, M., van Deursen, F., Edmondson, R.D., Labib, K. (2006). GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nat Cell Biol 8,358-366.
    Garcia BA, Mollah S, Ueberheide BM, Busby SA, Muratore TL, Shabanowitz J, Hunt DF. Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat Protoc.2007;2(4):933-8.
    Gasser, R., Koller, T., Sogo, J.M. (1996). The stability of nucleosomes at the replication fork. J Mol Biol 258,224-239.
    Gerber M, Shilatifard A. Transcriptional elongation by RNA polymerase Ⅱ and histone methylation. J Biol Chem.2003 Jul 18;278(29):26303-6.
    Goldberg AD, Banaszynski LA, Noh KM, Lewis PW, Elsaesser SJ, Stadler S, Dewell S, Law M, Guo X, Li X, Wen D, Chapgier A, DeKelver RC, Miller JC, Lee YL, Boydston EA, Holmes MC, Gregory PD, Greally JM, Rafii S, Yang C, Scambler PJ, Garrick D, Gibbons RJ, Higgs DR, Cristea IM, Urnov FD, Zheng D, Allis CD. Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell.2010 Mar 5;140(5):678-91.
    Groth, A., Rocha, W., Verreaul,t A., Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128,721-733.
    Groth, A., Corpet, A., Cook, A.J., Roche, D., Bartek, J., Lukas, J., Almouzni, G. (2007). Regulation of replication fork progression through histone supply and demand. Science 318,1928-31.
    Hadorn, E. (1968) Transdetermination in cells. Sci Am 219,110-4
    Hake, S.B., Allism C.D. (2006) Histone H3 variants and their potential role in indexing mammalian genomes:the "H3 barcode hypothesis". Proc Natl Acad Sci 103,6428-6435.
    Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A. Grewal SI. Establishment and maintenance of a heterochromatin domain. Science.2002 Sep 27;297(5590):2232-7.
    Hamakubo T, Shinkai Y. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 2005 Apr 1;19(7):815-26.
    Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R.M,, Zhang, Z. (2007). Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315,653-655.
    Hansen, K.H., Bracken, A.P., Pasini, D., Dietrich, N., Gehani, S.S., Monrad, A., Rappsilber, J., Lerdrup, M., Helin, K. (2008). A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10,1291-1300.
    Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C. Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain. EMBO J.1994 Apr 15; 13(8):1823-30.
    Henderson, D.S., Banga, S.S., Grigliatti, T.A., Boyd, J.B. (1994). Mutagen sensitivity and suppression of position-effect variegation result from mutations in mus209, the Drosophila gene encoding PCNA. EMBO J 15,1450-1459.
    Henikoff, S., Ahmad, K. (2005). Assembly of variant histones into chromatin. Annu Rev Cell Dev Biol 21,133-153.
    Henikoff, S., Furuyama, T., Ahmad, K. (2004). Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20,320-326.
    Hertel, L., De Andrea, M., Bellomo, G, Santoro, P., Landolfo, S., Gariglio, M. (1999). The HMG protein T160 colocalizes with DNA replication foci and is down-regulated during cell differentiation. Exp Cell Re 250,313-328.
    Hoek, M., Stillman, B. (2003). Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci U S A 100, 12183-12188.
    Huen, M.S., Sy, S.M., van Deursen, J.M., Chen, J. (2008). Direct interaction between SET8 and proliferating cell nuclear antigen couples H4-K20 methylation with DNA replication. J Biol Chem 283,11073-11077.
    Huyen Y, Zgheib O, Ditullio RA Jr, Gorgoulis VG, Zacharatos P, Petty TJ, Sheston EA, Mellert HS, Stavridi ES, Halazonetis TD. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature.2004 Nov 18;432(7015):406-11.
    Jackson, V., Chalkley, R. (1985). Histone segregation on replicating chromatin. Biochemistry 24,6930-6938.
    Jackson, V. (1987). Deposition of newly synthesized histones:new histones H2A and H2B do not deposit in the same nucleosome with new histones H3 and H4. Biochemistry 26,2315-2325.
    Jackson, V. (1990) In vivo studies on the dynamics of histone-DNA interaction:evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29,719-731.
    Jasencakova, Z., Scharf, A.N., Ask, K., Corpet, A,. Imhof, A., Almouzni, G.., Groth, A. (2010). Replication stress interferes with histone recycling and predeposition marking of new histones. Mol Cell 37,736-743.
    Jenuwein, T., Allis, C.D. (2001). Translating the histone code. Science 293,1074-1080.
    Jφrgensen, S., Elvers, I., Trelle, M.B., Menzel, T., Eskildsen, M., Jensen, O.N., Helleday, T., Helin, K,, Sorensen, C.S. (2007). The histone methyltransferase SET8 is required for S-phase progression. J Cell Biol 179,1337-1345.
    Joshi A.A. and Struhl K., Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation, Mol. Cell 20 (2005), pp.971-978
    Kaufman, P.D., Kobayashi, R., Kessler, N., Stillman, B. (1995). The p150 and p60 subunits of chromatin assembly factor I:a molecular link between newly synthesized histones and DNA replication. Cell 81,1105-1114.
    Kaufman, P.D., Kobayashi, R., Stillman, B. (1997). Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11,345-357.
    Kaya, H., Shibahara, K.I., Taoka, K.I., Iwabuchi, M., Stillman, B., Araki, T. (2001). FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104,131-142.
    Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, Collins SR, Schuldiner M, Chin K, Punna T, Thompson NJ, Boone C, Emili A, Weissman JS, Hughes TR, Strahl BD, Grunstein M, Greenblatt JF, Buratowski S, Krogan NJ. Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell.2005 Nov 18;123(4):593-605.
    Kim J, Guermah M, McGinty RK, Lee JS, Tang Z, Milne TA, Shilatifard A, Muir TW, Roeder RG. RAD6-Mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell.2009 May 1;137(3):459-71.
    Kornberg, R.D., Thomas, J.O. (1974). Chromatin structure:oligomers of the histones. Science 184,865-868.
    Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128:693-705
    Krogan NJ, Dover J, Wood A, Schneider J, Heidt J, Boateng MA, Dean K, Ryan OW, Golshani A, Johnston M, Greenblatt JF, Shilatifard A. The Pafl complex is required for histone H3 methylation by COMPASS and Dotlp:linking transcriptional elongation to histone methylation. Mol Cell.2003 Mar;11(3):721-9.
    Krude, T., Knippers, R. (1991). Transfer of nucleosomes from parental to replicated chromatin. Mol Cell Biol 11,6257-6267.
    Kurdistani SK, Grunstein M. Histone acetylation and deacetylation in yeast. Nat Rev Mol Cell Biol.2003 Apr;4(4):276-84.
    Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev.2002 Nov 15;16(22):2893-905.
    Lachner M, O'Carroll D, Rea S, Mechtler K, Jenuwein T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature.2001 Mar 1;410(6824):116-20.
    Lachne.r M., O'Carroll, D., Rea, S., Mechtler, K., Jenuwein, T. (2001). Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410,116-120.
    Larschan E, Alekseyenko AA, Gortchakov AA, Peng S, Li B, Yang P, Workman JL, Park PJ, Kuroda MI. MSL complex is attracted to genes marked by H3K36 trimethylation using a sequence-independent mechanism. Mol Cell.2007 Oct 12;28(1):121-33.
    Lee JS, Shukla A, Schneider J, Swanson SK, Washburn MP, Florens L, Bhaumik SR, Shilatifard A. Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS. Cell.2007 Dec 14; 131(6):1084-96.
    Lee KK, Workman JL. Histone acetyltransferase complexes:one size doesn't fit all. Nat Rev Mol Cell Biol.2007 Apr;8(4):284-95.
    LeRoy, G., Orphanides, G., Lane, W.S., Reinberg, D. (1998). Requirement of RSF and FACT for transcription of chromatin templates in vitro. Science 282,1900-1904.
    Leonhardt, H., Page, A.W., Weier, H.U., Bestor, T.H. (1992) A targeting sequence directs DNA methyltransferase to sites of DNA replication in mammalian nuclei. Cell 71, 865-873
    Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell.2007 Feb 23;128(4):707-19.
    Li, Q., Zhou, H., Wurtele, H., Davies, B., Horazdovsky, B., Verreault, A., Zhang, Z. (2008). Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134,244-255.
    Litt MD, Simpson M, Gaszner M, Allis CD, Felsenfeld G. Correlation between histone lysine methylation and developmental changes at the chicken beta-globin locus. Science. 2001 Sep28;293(5539):2453-5.
    Loyola A, Bonaldi T, Roche D, Imhof A, Almouzni G. PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell.2006 Oct 20;24(2):309-16
    Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., Richmond, T.J. (1997). Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389,251-260.
    Mansfield RE, Musselman CA, Kwan AH, Oliver SS, Garske AL, Davrazou F, Denu JM, Kutateladze TG, Mackay JP. Plant Homeodomain (PHD) Fingers of CHD4 Are Histone H3-binding Modules with Preference for Unmodified H3K4 and Methylated H3K9. J Biol Chem.2011 Apr 1;286(13):11779-91.
    Margueron, R., Justin, N., Ohno, K., Sharpe, M.L., Son, J., Drury, W.J.3rd, Voigt, P., Martin, S.R., Taylor, W.R., De Marco, V., Pirrotta, V., Reinberg, D., Gamblin, S.J. (2009). Role of the polycomb protein EED in the propagation of repressive histone marks. Nature 461,762-767.
    Margueron R, Reinberg D. Chromatin structure and the inheritance of epigenetic information. Nat Rev Genet.2010 Apr; 11(4):285-96
    Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol.2005 Nov;6(11):838-49.
    Martin, C., Zhang, Y. (2007) Mechanisms of epigenetic inheritance. Curr Opin Cell Biol 19,266-272.
    Marzluff, W.F., Wagner, E.J., Duronio, R.J. (2008) Metabolism and regulation of canonical histone mRNAs:life without a poly(A) tail. Nat Rev Genet 9,843-854.
    Masumoto, H., Hawke, D., Kobayashi, R., Verreault, A. (2005). A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436,294-298.
    McKnight, S.L., Miller, O.L. Jr. (1977). Electron microscopic analysis of chromatin replication in the cellular blastoderm Drosophila melanogaster embryo. Cell 12, 795-804.
    McKittrick E, Gafken PR, Ahmad K, Henikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc Natl Acad Sci U S A.2004 Feb 10;101(6):1525-30.
    Meijsing, S.H., Ehrenhofer-Murray, A.E. (2001) The silencing complex SAS-I links histone acetylation to the assembly of repressed chromatin by CAF-I and Asfl in Saccharomyces cerevisiae. Genes Dev 15,3169-3182
    Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A. COMPASS:a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A.2001 Nov 6;98(23):12902-7.
    Milutinovic, S., Zhuang, Q., Szyf, M. (2002). Proliferating cell nuclear antigen associates with histone deacetylase activity, integrating DNA replication and chromatin modification. J Biol Chem 277,20974-20978.
    Mizuguchi G, Shen X, Landry J, Wu WH, Sen S, Wu C. ATP-driven exchange of histone H2AZ variant catalyzed by SWR1 chromatin remodeling complex. Science.2004 Jan 16;303(5656):343-8.
    Moggs, J.G., Grandi, P., Quivy, J.P., Jonsson, Z.O., Hubsche,r U., Becker, P.B., Almouzn, G. (2000). A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol Cell Biol 20,1206-1218.
    Monson, E.K., de Bruin, D., Zakian, V.A. (1997). The yeast Cac1 protein is required for the stable inheritance of transcriptionally repressed chromatin at telomeres. Proc Natl Acad Sci 94,13081-13086.
    Morrison AJ, Shen X. DNA repair in the context of chromatin. Cell Cycle.2005 Apr;4(4):568-71.
    Mosammaparast, N., Shi, Y. (2010). Reversal of histone methylation:biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79,155-179.
    Mortensen P, Gouw JW, Olsen JV, Ong SE, Rigbolt KT, Bunkenborg J, Cox J, Foster LJ, Heck AJ, Blagoev B, Andersen JS, Mann M. MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res.2010 Jan;9(1):393-403.
    Muller J, Hart CM, Francis NJ, Vargas ML, Sengupta A, Wild B, Miller EL, O'Connor MB, Kingston RE, Simon JA. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell.2002 Oct 18;111(2):197-208.
    Nabatiyan, A., Krude, T. (2004). Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol Cell Biol 24,2853-2862.
    Nagy PL, Griesenbeck J, Kornberg RD, Cleary ML. A trithorax-group complex purified from Saccharomyces cerevisiae is required for methylation of histone H3. Proc Natl Acad Sci U S A.2002 Jan 8;99(1):90-4.
    Nakatani, Y., Ray-Galle,t D., Quivy, J.P., Tagami, H., Almouzni, G. (2004). Two distinct nucleosome assembly pathways:dependent or independent of DNA synthesis promoted by histone H3.1 and H3.3 complexes. Cold Spring Harb Symp Quant Biol 69,273-280.
    Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., Grewal, S.I. (2001). Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110-113.
    Natsume, R., Eitoku, M., Akai, Y., Sano, N., Horikoshi, M., Senda, T. (2007). Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446,338-341.
    Neumann, H., Hancock, S.M., Buning, R., Routh, A., Chapman, L., Somers, J., Owen-Hughes, T., van Noort, J., Rhodes, D., Chin, J.W. (2009) A method for genetically installing site-specific acetylation in recombinant histones defines the effects of H3 K56 acetylation. Mol Cell 36,153-163.
    Ng HH, Feng Q, Wang H, Erdjument-Bromage H, Tempst P, Zhang Y, Struhl K. Lysine methylation within the globular domain of histone H3 by Dotl is important for telomeric silencing and Sir protein association. Genes Dev.2002 Jun 15;16(12):1518-27
    Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K. Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells:a potential mechanism for position-effect variegation. Proc Natl Acad Sci U S A.2003 Feb 18; 100(4):1820-5.
    Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang Y, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D. PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell.2002 Jun;9(6):1201-13.
    Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T. Rb targets histone H3 methylation and
    HP1 to promoters. Nature.2001 Aug 2;412(6846):561-5.
    Noma K, Allis CD, Grewal SI. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science.2001 Aug 10;293(5532):1150-5.
    Noma K, Sugiyama T, Cam H, Verdel A, Zofall M, Jia S, Moazed D, Grewal SI. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet.2004 Nov;36(11):1174-80.
    Olins A. L., Olins D. E., Spheroid chromatin units (v bodies). Science 183,330 (1974)
    Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics.2002 May;1(5):376-86.
    Ong SE, Mittler G, Mann M. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods.2004 Nov; 1(2):119-26.
    Orphanides, G., LeRoy, G., Chang, C.H., Luse, D.S., Reinberg, D. (1998). FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92,105-116.
    Palmer DK, O'Day K, Trong HL, Charbonneau H, Margolis RL. Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. Proc Natl Acad Sci U S A.1991 May 1;88(9):3734-8.
    Papamichos-Chronakis, M., Peterson, C.L. (2008). The Ino80 chromatin-remodeling enzyme regulates replisome function and stability. Nat Struct Mol Biol 15,338-345.
    Paul, J., Gilmour, R.S. (1968). Organ-specific restriction of transcription in mammalian chromatin. J Mol Biol 34,305-316.
    Pesavento, J.J., Yang, H., Kelleher, N.L., Mizzen, C.A. (2008). Certain and progressive methylation of histone H4 at lysine 20 during the cell cycle. Mol Cell Biol 28,468-486.
    Peters AH, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, Martens JH, Jenuwein T. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell. 2003 Dec;12(6):1577-89.
    Plath K, Fang J, Mlynarczyk-Evans SK, Cao R, Worringer KA, Wang H, de la Cruz CC, Otte AP, Panning B, Zhang Y. Role of histone H3 lysine 27 methylation in X inactivation. Science.2003 Apr 4;300(5616):131-5.
    Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, Zeitlinger J, Lewitter F, Gifford DK, Young RA. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell.2005 Aug 26; 122(4):517-27.
    Pospelov, V., Russev, G, Vassilev, L., Tsanev, R. (1982). Nucleosome segregation in chromatin replicated in the presence of cycloheximide. J Mol Biol 156,79-91.
    Poot, R.A., Bozhenok, L., van den Berg D.L., Steffensen, S., Ferreira, F., Grimaldi, M., Gilbert, N., Ferreira, J., Varga-Weisz, P.D. (2004). The Williams syndrome transcription factor interacts with PCNA to target chromatin remodelling by ISWI to replication foci. Nat Cell Biol 6,1236-1244.
    Pray-Grant MG, Daniel JA, Schieltz D, Yates JR 3rd, Grant PA. Chd1 chromodomain links histone H3 methylation with SAGA-and SLIK-dependent acetylation. Nature.2005 Jan 27;433(7024):434-8.
    Prior, C.P., Cantor, C.R., Johnson, E.M., Allfrey, V.G. (1980). Incorporation of exogenous pyrene-labeled histone into Physarum chromatin:a system for studying changes in nucleosomes assembled in vivo. Cell 20,597-608.
    Probst, A.V., Dunleavy, E., Almouzni, G. (2009). Epigenetic inheritance during the cell cycle. Nat Rev Mol Cell Biol 10,192-206.
    Randall, S.K., Kelly, T.J. (1992). The fate of parental nucleosomes during SV40 DNA replication. J Biol Chem 26,14259-14265.
    Rao, Y. Shibata, B.D. Strahl and J.D. Lieb, Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide, Mol. Cell. Biol.25 (2005), pp.9447-9459
    Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD, Jenuwein T. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature.2000 Aug 10;406(6796):593-9.
    Recht, J., Tsubota, T., Tanny, J.C., Diaz, R.L., Berger, J.M., Zhang, X., Garcia, B.A., Shabanowitz, J., Burlingame, A.L., Hunt, D.F., Kaufman, P.D., Allis, C.D. (2006). Histone chaperone Asfl is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci 103,6988-6993.
    Reese, B.E., Bachman, K.E., Baylin, S.B., Rountree, M.R. (2003). The methyl-CpG binding protein MBD1 interacts with the p150 subunit of chromatin assembly factor 1. Mol Cell Biol 23,3226-3236.
    Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell.2003 Dec;12(6):1591-8.
    Riley, D., Weintraub, H. (1979). Conservative segregation of parental histones during replication in the presence of cycloheximide. Proc Natl Acad Sci 76,328-332.
    Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem. 2001;70:81-120.
    Ruthenburg AJ, Li H, Patel DJ, Allis CD. Multivalent engagement of chromatin modifications by linked binding modules. Nat Rev Mol Cell Biol.2007 Dec;8(12):983-94
    Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T. Active genes are tri-methylated at K4 of histone H3. Nature. 2002 Sep 26;419(6905):407-11
    Sarraf, S.A., Stancheva, I. (2004). Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly. Mol Cell 15,595-605.
    Scharf, A.N., Barth, T.K., Imhof, A. (2009). Establishment of histone modifications after chromatin assembly. Nucleic Acids Res 37,5032-5040.
    Shechter D, Dormann HL, Allis CD, Hake SB. Extraction, purification and analysis of histones. Nat Protoc.2007;2(6):1445-57
    Schlichter A, Cairns BR. Histone trimethylation by Setl is coordinated by the RRM, autoinhibitory, and catalytic domains. EMBO J.2005 Mar 23;24(6):1222-31.
    Schlesinger, M.B., Formosa, T. (2000). POB3 is required for both transcription and replication in the yeast Saccharomyces cerevisiae. Genetics 155,1593-1606.
    Schotta, G., Ebert, A., Krauss, V., Fischer, A., Hoffmann, J., Rea, S., Jenuwein, T., Dorn, R., Reuter, G. (2002). Central role of Drosophila SU(VAR)3-9 in histone H3-K9 methylation and heterochromatic gene silencing. EMBO J21,1121-1131.
    Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, Reuter G, Reinberg D, Jenuwein T. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev.2004 Jun 1;18(11):1251-62.
    Schulz, L.L., Tyler, J.K. (2006). The histone chaperone ASF1 localizes to active DNA replication forks to mediate efficient DNA replication. FASEB J 20.488-490.
    Schwartz, Y.B., Pirrotta, V. (2007). Polycomb silencing mechanisms and the management of genomic programmes. Nat Rev Genet 8,9-22.
    Seale, R.L. (1976) Studies on the mode of segregation of histone nu bodies during replication in HeLa cells. Cell 9,423-429.
    Seidman, M.M., Levine, A.J., Weintraub, H. (1979) The asymmetric segregation of parental nucleosomes during chrosome replication. Cell 18,439-449.
    Shahbazian, M.D., Grunstein, M. (2007). Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76,75-100.
    Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT, Bender W, Kingston RE. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell.1999 Jul 9;98(1):37-46.
    Shibahara, K., Stillman, B. (1999). Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96,575-585.
    Shilatifard, A. (2006). Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75,243-269.
    Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell.2004 Dec 29;119(7):941-53.
    Silva J, Mak W, Zvetkova I, Appanah R, Nesterova TB, Webster Z, Peters AH, Jenuwein T, Otte AP, Brockdorff N. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev Cell.2003 Apr;4(4):481-95.
    Simon JA, Kingston RE. Mechanisms of polycomb gene silencing:knowns and unknowns. Nat Rev Mol Cell Biol.2009 Oct;10(10):697-708.
    Smith, S., Stillman, B. (1989). Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58,15-25.
    Sobel, R.E., Cook, R.G., Perry, C.A., Annunziato, A.T., Allis, C.D. (1995). Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci 92,1237-1241.
    Sogo, J.M., Stahl, H., Koller, T., Knippers, R. (1986). Structure of replicating simian virus 40 minichromosomes. The replication fork, core histone segregation and terminal structures. J Mol Biol 189,189-204.
    Sporbert, A., Gahl, A., Ankerhold, R., Leonhardt, H., Cardoso, M.C. (2002). DNA polymerase clamp shows little turnover at established replication sites but sequential de novo assembly at adjacent origin clusters. Mol Cell 10,1355-1365.
    Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev.2000 Jun;64(2):435-59.
    Stewart, M.D., Li, J., Wong, J. (2005). Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25,2525-38.
    Stuwe, T., Hothorn, M., Lejeune, E., Rybin, V., Bortfeld, M., Scheffzek, K., Ladurner, A.G. (2008). The FACT Spt16 "peptidase" domain is a histone H3-H4 binding module. Proc Natl Acad Sci 105,8884-8889.
    Sugasawa, K., Ishimi, Y., Eki, T., Hurwitz, J., Kikuchi, A., Hanaoka, F. (1992). Nonconservative segregation of parental nucleosomes during simian virus 40 chromosome replication in vitro. Proc Natl Acad Sci 89,1055-1059.
    Sugiyama T, Cam H, Verdel A, Moazed D, Grewal SI. RNA-dependent RNA polymerase is an essential component of a self-enforcing loop coupling heterochromatin assembly to siRNA production. Proc Natl Acad Sci U S A.2005 Jan 4; 102(1):152-7.
    Sweet SM, Li M, Thomas PM, Durbin KR, Kelleher NL. Kinetics of re-establishing H3K79 methylation marks in global human chromatin. J Biol Chem.2010 Oct 22;285(43):32778-86
    Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.2002 Jul 15;16(14):1779-91.
    Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev. 2005 Apr 1;19(7):815-26.
    Taddei, A., Roche, D., Sibarita, J.B., Turner, B.M., Almouzni, G. (1999). Duplication and maintenance of heterochromatin domains. J Cell Biol 147,1153-1166.
    Tagami H, Ray-Gallet D, Almouzni G, Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell.2004 Jan 9;116(1):51-61.
    Takami, Y., Ono, T., Fukagawa, T., Shibahara, K., Nakayama, T. (2007). Essential role of chromatin assembly factor-1-mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol Biol Cell 18,129-141
    Talbert PB, Henikoff S. Histone variants--ancient wrap artists of the epigenome. Nat Rev Mol Cell Biol.2010 Apr;11(4):264-75.
    Tan, B.C., Chien, C.T., Hirose, S., Lee, S.C. (2006). Functional cooperation between FACT and MCM helicase facilitates initiation of chromatin DNA replication. EMBO J 25, 3975-3985.
    Tenney K, Gerber M, Ilvarsonn A, Schneider J, Gause M, Dorsett D, Eissenberg JC, Shilatifard A. Drosophila Rtfl functions in histone methylation, gene expression, and Notch signaling. Proc Natl Acad Sci U S A.2006 Aug 8; 103(32):11970-4.
    Thomas G, Lange HW, Hempel K. Kinetics of histone methylation in vivo and its relation to the cell cycle in Ehrlich ascites tumor cells. Eur J Biochem.1975 Feb 21;51(2):609-15
    Timmers HT, Tora L. SAGA unveiled. Trends Biochem Sci.2005 Jan;30(1):7-10.
    Tsubota, T., Berndsen, C.E., Erkmann, J.A., Smith, C.L., Yang, L., Freitas, M.A., Denu, J.M., Kaufman, P.D. (2007). Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25,703-712.
    Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y. Histone demethylation by a family of JmjC domain-containing proteins. Nature.2006 Feb 16;439(7078):811-6.
    Umlauf D, Goto Y, Cao R, Cerqueira F, Wagschal A, Zhang Y, Feil R. Imprinting along the Kcnql domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet.2004 Dec;36(12):1296-300.
    VanDemark, A.P., Blanksma, M., Ferris, E., Heroux, A., Hill, C.P., Formosa, T. (2006). The structure of the yFACT Pob3-M domain, its interaction with the DNA replication factor RPA, and a potential role in nucleosome deposition. Mol Cell 22,363-374.
    van Leeuwen F, Gafken PR, Gottschling DE. Dotlp modulates silencing in yeast by methylation of the nucleosome core. Cell.2002 Jun 14;109(6):745-56.
    Verreault, A., Kaufman, P.D., Kobayashi, R., Stillman, B. (1996). Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87,95-104.
    Vincent, J.A., Kwong, T.J., Tsukiyama, T. (2008). ATP-dependent chromatin remodeling shapes the DNA replication landscape. Nat Struct Mol Biol 15,477-484.
    Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science.2002 Sep 13;297(5588):1833-7.
    Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, Jones RS, Zhang Y. Role of histone H2A ubiquitination in Polycomb silencing. Nature.2004 Oct 14;431(7010):873-8.
    Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS. Hierarchical recruitment of polycomb group silencing complexes. Mol Cell.2004 Jun 4;14(5):637-46.
    Weintraub H., Worcel A., Alberts B., A model for chromatin based upon two symmetrically paired half-nucleosomes. Cell 9,409 (1976)
    Wong LH, McGhie JD, Sim M, Anderson MA, Ahn S, Hannan RD, George AJ, Morgan KA, Mann JR, Choo KH. ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res.2010 Mar;20(3):351-60.
    Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell.2005 Jun 17;121(6):859-72.
    Wysocka J, Swigut T, Xiao H, Milne TA, Kwon SY, Landry J, Kauer M, Tackett AJ, Chait BT, Badenhorst P, Wu C, Allis CD. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling. Nature.2006 Jul 6;442(7098):86-90.
    Xie, W., Song, C., Young, N.L., Sperling, A.S., Xu, F., Sridharan, R., Conway, A.E., Garcia, B.A., Plath, K., Clark, A.T., Grunstein, M. (2009). Histone h3 lysine 56 acetylation is linked to the core transcriptional network in human embryonic stem cells. Mol Cell 33,417-427.
    Xu, M., Long, C., Chen, X., Huang, C., Chen, S., Zhu, B. (2010). Partitioning of histone H3-H4 tetramers during DNA replication-dependent chromatin assembly. Science 328, 94-98.
    Yamasu, K., Senshu, T. (1990). Conservative segregation of tetrameric units of H3 and H4 histones during nucleosome replication. J Biochem 107,15-20.
    Yang XJ, Seto E. Collaborative spirit of histone deacetylases in regulating chromatin structure and gene expression. Curr Opin Genet Dev.2003 Apr;13(2):143-53.
    Ye, X., Franco, A.A., Santos, H., Nelson, D.M., Kaufman, P.D., Adams, P.D. (2003). Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11,341-351.
    Zee, B.M., Levin, R.S., Xu, B., LeRoy, G., Wingreen, N.S., Garcia, B.A. (2010). In vivo residue-specific histone methylation dynamics. J Biol Chem 285,3341-3350.
    Zhang, Z., Shibahara, K., Stillman, B. (2000). PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408,221-225.
    Zhu B, Reinberg D. Epigenetic inheritance:uncontested? Cell Res.2011 Mar;21(3):435-41
    Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S. Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature.2008 Nov 6;456(7218):125-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700