雷公藤内酯醇调节多发性骨髓瘤表观遗传学途径的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:多发性骨髓瘤(multiple myeloma, MM)是一种起源于B淋巴细胞并能分泌大量单克隆免疫球蛋白的恶性浆细胞病,目前仍属一种难治性疾病。大量研究表明表观遗传学的失衡与多发性骨髓瘤的发生具有密切关系。本实验主要研究雷公藤内酯醇(triptolide, TPL)对多发性骨髓瘤细胞RPMI8226的细胞增殖,细胞周期阻滞,细胞凋亡,组蛋白H3、H4乙酰化,组蛋白H3K9、H3K27甲基化水平以及相应组蛋白去乙酰化酶、组蛋白甲基化酶的影响,探讨其抗肿瘤机制。
     方法:采用MTT比色法检测雷公藤内酯醇作用后多发性骨髓瘤RPMI8226细胞的增殖活性,并与外周血单个核细胞作比较,PI单染法流式细胞术检测细胞周期,Annexin V-FITC/PI双染法流式细胞术、TUNEL检测细胞凋亡,分光光度法检测Caspase-3和Caspase-9活性,Western blot免疫印迹技术检测组蛋白H3、H4乙酰化,组蛋白H3K9、H3K27甲基化水平以及HDAC8、SUV39H1和EZH2蛋白的表达,RT-PCR和Real-time RT-PCR技术分别检测hdac8和suv39h1、ezh2的基因水平,免疫荧光共聚焦观察HDAC8、SUV39H1和EZH2的亚细胞定位和表达。
     结果:雷公藤内酯醇能明显抑制RPMI8226细胞的增殖,其抑制作用呈时间、剂量依赖性,36h、48h和72h的的IC50值分别为(105.37±0.19)、(76.89±0.02)和(39.17±0.13)nmol/L;能引起RPMI8226细胞的G0/G1细胞周期阻滞;诱导RPMI8226细胞capsase-依赖性凋亡;能明显升高组蛋白H3和H4的乙酰化水平,降低组蛋白H3K9me3和H3K27me3的甲基化水平;经雷公藤内酯醇干预后,RPMI8226细胞HDAC8, SUV39H1和EZH2蛋白和mRNA水平均明显下降。
     结论:雷公藤内酯醇能够明显抑制RPMI8226的增殖,引起G0/G1细胞周期阻滞,并能诱导凋亡;通过降低RPMI8226细胞HDAC8的表达从而提高组蛋白H3和H4的乙酰化水平,通过抑制RPMI8226细胞SUV39H1和EZH2来降低组蛋白H3K9me3和H3K27me3的甲基化水平,这可能是雷公藤内酯醇抗多发性骨髓瘤作用的机制之一。
     目的:本实验主要研究雷公藤内酯醇对多发性骨髓瘤细胞U266的细胞增殖,细胞周期阻滞,细胞凋亡,组蛋白H3K4、H3K27和H3K36甲基化水平以及相应组蛋白甲基化酶的影响,探讨其抗肿瘤机制。
     方法:采用MTT比色法检测雷公藤内酯醇作用后多发性骨髓瘤U266细胞的增殖活性,PI单染法流式细胞术检测细胞周期,Annexin V-FITC/PI双染法流式细胞术,分光光度法检测Caspase-3和Caspase-9活性,Western blot免疫印迹技术检测组蛋白H3K4、H3K27和H3K36甲基化水平以及SMYD3.EZH2和NSD1蛋白的表达,RT-PCR分别检测smyd3、ezh2和nsd1的基因水平,免疫荧光共聚焦观察SMYD3、EZH2和NSD1的亚细胞定位和表达。
     结果:雷公藤内酯醇能明显抑制U266细胞的增殖,其抑制作用呈时间、剂量依赖性;能引起G2/M期细胞周期阻滞;诱导capsase-依赖性细胞凋亡;降低组蛋白H3K4me3、H3K27me3和H3K36me3的甲基化水平;经雷公藤内酯醇干预后,U266细胞SMYD3、EZH2和NSD1蛋白和mRNA水平均明显下降。
     结论:雷公藤内酯醇能够明显抑制U266细胞的增殖,引起G2/M期细胞周期阻滞并能诱导凋亡;通过降低U266细胞组蛋白甲基化酶SMYD3、EZH2和NSD1的表达从而降低组蛋白H3K9me3和H3K27me3的甲基化水平,这可能是雷公藤内酯醇抗多发性骨髓瘤作用的机制之一。
     目的:本实验主要研究雷公藤内酯醇对多发性骨髓瘤U266细胞的细胞凋亡及其通过调控RIZ1对组蛋白H3K9mel甲基化水平的影响,探讨其抗肿瘤机制。
     方法:Hoechst 33258染色法检测U266细胞凋亡,RT-PCR检测Caspase-3 mRNA表达,Western blot及流式细胞术检测RIZ1的蛋白表达,RT-PCR检测rizl的基因水平,Western blot检测组蛋白H3K9mel的蛋白表达,免疫荧光共聚焦观察H3K9mel的亚细胞定位及表达。
     结果:Hoechst 33258染色显示雷公藤内酯醇作用于U266细胞,可见典型的凋亡形态学改变如染色质浓缩、边缘化分割成块状,核膜裂解,出现凋亡小体。随着药物浓度的增加,凋亡细胞也随之数量增多;能上调U266细胞中RIZ1的蛋白和mRNA表达,并且具有明确的时效和量效关系;另外,RIZ1定位于U266细胞核内,雷公藤内酯醇作用后荧光强度显著升高。从而推测雷公藤内酯醇可能通过上调U266细胞RIZ1的表达,从而抑制U266细胞增殖和诱导凋亡。
     结论:雷公藤内酯醇抑制多发性骨髓瘤U266细胞增殖,诱导细胞发生caspase-依赖的凋亡。在U266细胞系中,RIZ1低表达,同时雷公藤内酯醇能够通过诱导RIZ1的表达上调组蛋白H3K9mel甲基化水平,这为探讨雷公藤内酯醇抗肿瘤机制提供一个新的视角。
Objective:Multiple myeloma is a kind of malignant plasma disease that originated from B lymphocyte and secrete great amount of monoclonal immunoglobulin. It is still one of the refractory diseases at present. Numerous studies show that there is an intensive relationship between the disequilibrium of epigenetics and the occurance of multiple myeloma. Here we investigated the effects of triptolide on cell proliferation, cell cycle arrest, apoptosis, histone H3 and H4 acetylation, histone H3K9 and H3K27 trimethylation, and expression of the corresponding histone deacetylase and histone methyltransferases in vitro, trying to explore the anti-myeloma mechanism.
     Methods:The effect of triptolide on the growth of RPMI8226 was studied by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium (MTT) assay and compared with PBMC. Effects of triptolide on the cell cycle distribution of RPMI8226 cells were studied by propidium iodide method. Apoptosis was detected by TUNEL and Annexin V-FITC/PI double-labeled cytometry and Caspase-3 and Caspase-9 activities were measured by spectrophotometry. The protein expression of acetyl-histone H3 and H4, histone H3K9me3, H3K27me3 and H3K36me3, HDAC8, SUV39H1 and EZH2 were determined by Western blot. The mRNA expression of hdac8 was assessed by RT-PCR, while the mRNA expression of suv39hl and ezh2 were measured by Real-time RT-PCR. Confocal microscopy was used to evaluate the subcellular disposition and expression of HDAC8, SUV39H1 and EZH2.
     Results:Triptolide inhibited the proliferation of RPMI8226 dose-and time-dependently, IC50for24h,48hand72h was 105.37±0.19,76.89±0.02 and39.17±0.13 nmol/L, respectively. Triptolide caused G0/G1 arrest and induced apoptosis in a time-and dose-dependent manner. Triptolide remarkably increased the acetylation of histone H3 and H4 by decreasing the expression of HDAC8 while declined histone H3K9me3 and H3K27me3 via inhibiting the expression of SUV39H1 and EZH2 respectively.
     Conclusion:Triptolide can inhibit cell proliferation, cause G0/G1 arrest and induce caspase dependent-apoptosis of RPMI8226 cells significantly. Triptolide remarkably increased the acetylation of histone H3 and H4 by decreasing the expression of HDAC8 while declined histone H3K9me3 and H3K27me3 via inhibiting the expression of SUV39H1 and EZH2 respectively, which is possibly the anti-myeloma mechanism of triptolide.
     Objective:To investigated the effect of triptolide on cell proliferation, cell cycle arrest, apoptosis, histone H3K4, H3K27 and H3K36 trimethylation, and the expression of corresponding histone methyltransferases in vitro, trying to explore the anti-myeloma mechanism.
     Methods:The effect of triptolide on the growth of U266 was studied by 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium(MTT) assay and compared with PBMC. Effects of triptolide on the cell cycle distribution of U266 cells were studied by propidium iodide method. Apoptosis was detected by Annexin V-FITC/PI double-labeled cytometry and Caspase-3 and Caspase-9 activities were measured by spectrophotometry. The protein expression of histone H3K4me3, H3K27me3 and H3K36me3, SMYD3, EZH2 and NSD1 were determined by Western blot. The mRNA expression of smyd3, ezh2 and nsdl were assessed by RT-PCR. Confocal microscopy was used to evaluate the subcellular disposition and expression of SMYD3, EZH2 and NSD1.
     Results:Triptolide inhibited the proliferation of U266 cells significantly with the IC50 of 157.19±0.38,57.19±0.38 and 41.20±0.13 nmol/L for 24 h,48 h and 72 h respectively. Triptolide caused G2/M cell cycle arrest and caspase-dependent apoptosis. In U266 cells triptolide reduced histone H3K4me3, H3K27me3 and H3K36me3 along with the decline of the mRNA and protein expression of SMYD3,EZH2 and NSD1.
     Conclusion:Triptolide presented potent effects on growth inhibition, G2/M cell cycle arrest and induction of caspase-dependent apoptosis in U266 cells in vitro. The study provides the first evidence that triptolide induces epigenetic alterations by regulating histone lysine methylation, offering a novel view of anti-myeloma mechanism of triptolide.
     Objective:To investigate the effects of triptolide on the apoptosis in human multiple myeloma cell line U266 in vitro, and the regulation of histone H3K9 monomethylation (H3K9me1) via RIZ1 by triptolide.
     Methods:The effect of triptolide on cell apoptosis was detected through Hoechst 33258 staining and the mRNA expresson of caspase-3 was measured by RT-PCR. Western blot, flow cytometry and RT-PCR were applied to assess the expression of RIZ1, while the location and expression of H3K9mel regulated by RIZ1 were detected by confocal microscope and Western blot.
     Results:It was shown that triptolide could induce typical apoptotic morphological changes and concentration-dependent apoptosis that was caspase-3 dependent. Compared with PBMC from healthy donors, the protein expression of RIZ1 in U266 cells was relatively low, while the mRNA and protein expression of RIZ1 were strikingly increased by triptolide in a concentration-dependent manner. The protein expression of histone H3K9me1 regulated via RIZ1 was detected significantly elevated by triptolide.
     Conclusion:Triptolide exerted caspase-dependent apoptosis-inducing potency in U266 cells. The expression of RIZ1 in U266 cells was relatively low while it appeared remarkably upregulatd when treated with triptolide.
引文
[1]Korolev N, Vorontsova OV, Nordenskiold L. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol.2007,95(1-3):23-49
    [2]Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell,1993,72(1):73-84
    [3]Wolffe AP, Guschin D. Chromatin structural features and targets that regulate transcription. J Struct Biol.2000,129(2-3):102-122
    [4]Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol.2001,13(6):477-483
    [5]Bannister AJ, Schneider R, Kouzarides T. Histone methylation:dynamic or static? Cell, 2002,109(7):801-806
    [6]Schneider R, Bannister AJ, Kouzarides T, et al. Unsafe SETs:histone lysine methyltransferases and cancer. Trends Biochem Sci,2002,27(8):396-402
    [7]Nielsen SJ, Schneider R, Bauer UM, et al. Rb targets histone H3 methylation and HP1 to promoters. Nature,2001,412(6846):561-565
    [8]Hamamoto R, Silva FP, Tsuge M, et al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells. Cancer Sci,2006,97(2):113-118
    [9]Croonquist PA, Van Ness B. The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype. Oncogene,2005,24(41):6269-6280
    [10]Keats JJ, Maxwell CA, Taylor BJ, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood,2005,105(10):4060-4069
    [11]Garcia JF, Roncador G, Garcia JF, et al. PRDM1/BLIMP-1 expression in multiple B and T-cell lymphoma. Haematologica,2006,91(4):467-474
    [12]Kuehl WM, Bergsagel PL. Multiple myeloma:evolving genetic events and host interactions. Nat Rev Cancer,2002,2(3):175-187
    [13]Alexanian R, Barlogie B, Tucker S.VAD-based regimens as primary treatment for multiple myeloma. Am J Hematol,1990,33(2):86-189
    [14]Mitsiades CS, Mitsiades NS, Richardson PG, et al. Multiple myeloma:a prototypic disease model for the characterization and therapeutic targeting of interactions between tumor cells and their local microenvironment. J Cell Biochem,2007,101(4):950-968
    [15]Kiviharju TM, Lecane PS, Sellers RG, et al. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res.2002,8(8):2666-2674
    [16]Xiang M, Zhang CL. Advances in studies on immunosuppression of Tripterygium wilfordii. Chinese Traditional and Herbal Drugs,2005,36(3):458-461 [17] Yang S, Chen J, Guo Z, et al. Triptolide inhibits the growth and metastasis of solid tumors.Mol Cancer Ther,2003(2):65-72
    [18]Carter BZ, Mak DH, Schober WD, et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood, 2008,111(7):3742-3750
    [19]Zhang C, Cui GH, Liu F, et al. Inhibitory effect of triptolide on lymph node metastasis in patients with non-Hodgkin lymphoma by regulating SDF-1/CXCR4 axis in vitro. Acta Pharmacol Sin.2006,27(11):1438-1446
    [20]Carter BZ, Mak DH, Schober WD, et al. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood,2006,108(2):630-637
    [21]Yang M, Huang J, Pan HZ, et al. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-KB pathways in human multiple myeloma cells. Int J Mol Med,2008,22(4):489-496
    [22]Yang M, Shen JK, Huang J, et al Interleukin-6-independent expression of glucocorticoid receptor is upregulated by triptolide in multiple myeloma. Leukemia and Lymphoma,2009,50(5):802-808
    [23]Cui GH, Chen WH, Xue KY, et al. Effects of triptolide and TNF-alpha on the expression of VEGF in Raji cells and on angiogenesis in ECV304 cells. Zhongguo Shi Yan Xue Ye Xue Za Zhi,2006,14(5):1008-1012
    [24]Zhang C, Cui GH, Liu F, et al. Inhibitory effect of triptolide on lymph node metastasis in patients with non-Hodgkin lymphoma by regulating SDF-1/CXCR4 axis in vitro. Acta Phamacologica Sinica,2006,27(11):1438-1446
    [1]Lavelle D, Chen YH, Hankewych M, et al. Histone deacetylase inhibitors increase p21(WAF1) and induce apoptosis of human myeloma cell lines independent of decreased IL-6 receptor expression. Am J Hematol.2001,68(3):170-178
    [2]Nian H, Delage B, Pinto JT, et al. Allyl mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the P21WAF1 promoter. Carcinogenesis.2008,29(9):1816-1824
    [3]Ficner R. Novel structural insights into class Ⅰ and Ⅱ histone deacetylases. Curr Top Med Chem.2009,9(3):235-240
    [4]Oehme I, Deubzer HE, Wegener D, et al. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res.2009,15(1):91-99
    [5]Choi YJ, Kim TG, Kim YH, et al. Immunosuppressant PG490 (triptolide) induces apoptosis through the activation of caspase-3 and down-regulation of XIAP in U937 cells. Biochem Pharmacol,2003,66(2):273-280
    [6]Balasubramanian S, Ramos J, Luo W, et al. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia,2008,22(5):1026-1034
    [7]Yinjun L, Jie J, Yungui W. Triptolide inhibits transcription factor NF-kappaB and induces apoptosis of multiple myeloma cells. Leuk Res,2005,29(1):99-105
    [8]Yang M, Huang J, Pan HZ, et al. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-KB pathways in human multiple myeloma cells. Int J Mol Med,2008,22(4):489-496
    [9]Buggy JJ, Sideris ML, Mak P, et al. Cloning and characterization of a novel human histone deacetylase,HDAC8. Biochem J,2000,350(Pt 1):199-205
    [10]Lee H, Rezai-Zadeh N, Seto E. Negative regulation of histone deacetylase 8 activity by cyclic AMP-dependent protein kinase A. Mol Cell Biol,2004,24(2):765-773
    [11]Gurard-Levin ZA, Mrksich M. The Activity of HDAC8 Depends on Local and Distal Sequences of Its Peptide Substrates. Biochemistry,2008,47(23):6242-6250
    [12]Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell,1993,72(1):73-84
    [13]Wolffe AP, Guschin D. Chromatin structural features and targets that regulate transcription. J Struct Biol.2000,129(2-3):102-122
    [14]Marks PA, Richon VM, Breslow R, et al. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol,2001,13(6):477-483
    [15]Muthukrishnan R, Skalnik DG Identification of a minimal cis-element and cognate trans-factor(s) required for induction of Rac2 gene expression during K562 cell differentiation. Gene,2009,440(1-2):63-72
    [16]Fraga MF, Ballestar E, Villar-Garea A, et al. Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet,2005,37(4):391-400
    [17]Yasui W, Oue N, Ono S, et al. Histone acetylation and gastrointestinal carcinogenesis. Ann N Y Acad Sci,2003,983:220-231
    [18]Song J, Noh JH, Lee JH, et al. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS,2005,113(4):264-268
    [19]Chiecchio L, Dagrada GP, Protheroe RK, et al. Loss of 1p and rearrangement of MYC are associated with progression of smouldering myeloma to myeloma:sequential analysis of a single case. Haematologica,2009,94(7):1024-1028
    [20]Avet-Loiseau H, Gerson F, Magrangeas F, et al. Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors. Blood, 2001,98(10):3082-3086
    [21]Shou Y, Martelli ML, Gabrea A, et al. Diverse karyotypic abnormalities of the c-myc locus associated with c-myc dysregulation and tumor progression in multiple myeloma. Proc Natl Acad Sci U S A,2000,97(1):228-233
    [22]Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet, 2007,8(4):299-309
    [23]Lin RJ, Evans RM. Acquisition of oncogenic potential by RAR chimeras in acute promyelocytic leukemia through formation of homodimers. Mol Cell,2000,5(5): 821-830
    [24]Carbone R, Botrugno OA, Ronzoni S,et al. Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein. Mol Cell Biol,2006, 26(4):1288-1296
    [25]Vakoc CR, Mandat SA, Olenchock BA, et al. Histone H3 lysine9 methylation and HP 1 gamma are associated with transcription elongation through mammalian chromatin. Mol Cell,2005,19 (3):381-391
    [26]Wiencke JK, Zheng S, Morrison Z, et al. Differentially expressed genesare marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene,2008,27 (17):2412-2421
    [27]Dellino GI, Schwartz YB, Farkas G, et al. Polycomb silencing blocks transcription initiation. Mol Cell,2004,13(6):887-893
    [28]Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet.2008,40 (6): 741-750
    [29]Brady G, Whiteman HJ, Spender, LC, et al. Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for Epstein-Barr virus-driven B-cell proliferation. J Virol,83 (13):6909-6916
    [30]Guo WH, Weng LQ, Ito K, et al. Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene,2002,21(54):8351-8355
    [1]Pigneux A, Mahon FX, Uhalde M, et al. Triptolide cooperates with chemotherapy to induce apoptosis in acute myeloid leukemia cells. Exp Hematol.2008,36(12): 1648-1659
    [2]Carter BZ, Mak DH, Schober WD, et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood,2008,111(7):3742-3750
    [3]Carter BZ, Mak DH, Schober WD, et al. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood,2006, 108(2):630-637
    [4]Lou YJ, Jin J. Triptolide down-regulates bcr-abl expression and induces apoptosis in chronic myelogenous leukemia cells. Leuk Lymphoma,2004,45(2):373-376
    [5]Zhang C, Cui GH, Liu F, et al. Inhibitory effect of triptolide on lymph node metastasis in patients with non-Hodgkin lymphoma by regulating SDF-1/CXCR4 axis in vitro. Acta Pharmacol Sin,2006,27(11):1438-1446
    [6]Yang M, Huang J, Pan HZ, et al. Triptolide overcomes dexamethasone resistance and enhanced PS-341-induced apoptosis via PI3k/Akt/NF-κB pathways in human multiple myeloma cells. Int J Mol Med,2008,22(4):489-496
    [7]Yang M, Shen JK, Huang J, et al. Interleukin-6-independent expression of glucocorticoid receptor is upregulated by triptolide in multiple myeloma. Leukemia and Lymphoma,2009,50(5):802-808
    [8]Santos-Rosa H, Schneider R, Bernstein BE, et al. Methylation of histone H3K4 mediates association of the Iswlp ATPase with chromatin. Mol Cell,2003,12(5), 1325-1332
    [9]Shi X, Hong T, Walter KL, et al. ING2 PHD domain links histone H3 lysine 4 methylation to active gene repression. Nature,2006,442(7098):96-99.
    [10]Guccione E, Martinato F, Finocchiaro G, et al. Myc-binding-site recognition in the human genome is determined by chromatin context. Nat Cell Biol,2006,8(7): 764-770
    [11]Grandori C, Cowley SM, James LP, et al. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu Rev Cell Dev Biol,2000,16: 653-699
    [12]Chiecchio L, Dagrada GP, White HE, et al. Frequent upregulation of MYC in plasma cell leukemia. Genes Chromosomes Cancer,2009,48(7):624-636
    [13]Krejci J, Harnicarova A, Streitova D, et al. Epigenetics of multiple myeloma after treatment with cytostatics and gamma radiation. Leuk Res,2009,33(11):1490-1498
    [14]Hamamoto R, Furukawa Y, Morita M, et al. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol,2004,6(8):731-740
    [15]Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet, 2008,40(6):741-750
    [16]Brady G, Whiteman HJ, Spender LC, et al. Downregulation of RUNX1 by RUNX3 requires the RUNX3 VWRPY sequence and is essential for Epstein-Barr virus-driven B-cell proliferation. J Virol,2009,83(13):6909-6916
    [17]Guo WH, Weng LQ, Ito K, et al. Inhibition of growth of mouse gastric cancer cells by Runx3, a novel tumor suppressor. Oncogene,2002,21(54),8351-8355
    [18]Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA,2003,100(20):11606-11611
    [19]Gal-Yam EN, Egger G, Iniguez L, et al. Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci USA,2008,105(35):12979-12984
    [20]Kondo Y, Shen L, Cheng AS, et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nat Genet, 2008,40(6):741-750
    [21]Rosati R, La Starza R, Veronese A, et al. NUP98 is fused to the NSD3 gene in acute myeloid leukemia associated with t(8;11)(p11.2;pl5). Blood,2002,99(10), 3857-3860.
    [22]Tatton-Brown K, Douglas J, Coleman K, et al. Genotype-phenotype associations in Sotos syndrome:an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet,2005,77(2),193-204
    [23]Keats JJ, Maxwell CA, Taylor BJ, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(pl6;q32)-positive multiple myeloma patients. Blood,2005,105(10),4060-4069
    [24]Tonon G, Wong KK, Maulik G, et al. High-resolution genomic profiles of human lung cancer. Proc Natl Acad Sci USA,2005,102(27),9625-9630
    [25]Rice KL, Hormaeche I, Licht JD. Epigenetic regulation of normal and malignant hematopoiesis. Oncogene,2007,26(47):6697-6714
    [26]Cerveira N, Correia C, Doria S, et al. Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia,2003,17(11),2244-2247
    [27]Wang GG, Cai L, Pasillas MP, et al. NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis. Nat Cell Biol,2007,9(7):804-812
    [28]Cauwelier B, Cave H, Gervais C, et al. Clinical, cytogenetic and molecular characteristics of 14 T-ALL patients carrying the TCRbeta-HOXA rearrangement: a study of the Groupe Francophone de Cytogenetique Hematologique. Leukemia, 2007;21(1):121-128
    [29]Bansal D, Scholl C, Frohling S, et al. Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meisla in a murine model. Proc Natl Acad Sci USA,2006,103(45):16924-16929
    [30]Hudlebusch HR, Lodahl M, Johnsen HE, et al. Expression of HOXA genes in patients with multiple myeloma. Leuk Lymphoma,2004,45(6):1215-1217
    [1]Kiviharju TM, Lecane PS, Sellers RG, et al. Antiproliferative and proapoptotic activities of triptolide (PG490), a natural product entering clinical trials, on primary cultures of human prostatic epithelial cells. Clin Cancer Res,2002,8(8):2666-2674
    [2]Xiang M, Zhang CL. Advances in studies on immunosuppression of Tripterygium wilfordii. Chinese Traditional and Herbal Drugs,2005,36(3):458-461
    [3]Yang S, Chen J, Guo Z, et al. Triptolide inhibits the growth and metastasis of solid tumors. Mol Cancer Ther,2003,2(1):65-72
    [4]Carter BZ, Mak DH, Schober WD, et al. Triptolide sensitizes AML cells to TRAIL-induced apoptosis via decrease of XIAP and p53-mediated increase of DR5. Blood,2008,111(7):3742-3750
    [5]Zhang C, Cui GH, Liu F, et al. Inhibitory effect of triptolide on lymph node metastasis in patients with non-Hodgkin lymphoma by regulating SDF-1/CXCR4 axis in vitro. Acta Pharmacol Sin,2006,27(11):1438-1446
    [6]Carter BZ, Mak DH, Schober WD, et al. Triptolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood,2006,108(2): 630-637
    [7]Sun W, Geyer CR, Yang J. Cloning, Expression, Purification and Crystallization of the PR Domain of Human Retinoblastoma Protein-Binding Zinc Finger Protein 1 (RIZ1). Int J Mol Sci,2008,9(6):943-950
    [8]Carling T, Kim KC, Yang XH, et al. A histone methyltransferase is required for maximal response to female sex hormones. Mol Cell Biol,2004,24(16):7032-7042
    [9]Steele-Perkins G, Fang W, Yang XH, et al. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev,2001,15(17):2250-2262
    [10]Piao GH, Piao WH, He Y, et al. Hyper-methylation of RIZ1 tumor suppressor gene is involved in the early tumorigenesis of hepatocellular carcinoma. Histol Histopathol. 2008,23(10):1171-1175
    [11]Zhou W, Alonso S, Takai D, et al. Requirement of RIZ1 for cancer prevention by methyl-balanced diet. PLoS One,2008,3:e3390
    [12]Kim KC, Geng L, Huang S. Inactivation of a histone methyltransferase by mutations in human cancers. Cancer Res.2003;63(22):7619-7623
    [13]Wang H, Cao R, Xia L, et al. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell,2001;8(6):1207-1217
    [14]Woessmann W, Zwanzger D, Borkhardt A. ERK signaling pathway is differentially involved in erythroid differentiation of K562cells depending on time and the inducing agent. Cell Biol Int,2004,28(5):403-410
    [15]Woessmann W, Mivechi NF. Role of ERK activation in growth and erythroid differentiation of K562cells. Exp Cell Res,2001,264(2):193-200
    [16]Kang CD, Do I, Kim K, et al. Role of Ras/ERK-dependent pathway in the erythroid differentiation of K562cells. Exp Mol Med,1999,31(2):76-82
    [17]Gazzerro P, Abbondanza C, D'Arcangelo A, et al. Modulation of RIZ gene expression is associated to estradiol control of MCF-7 breast cancer cell proliferation. Exp Cell Res,2006,312(3):340-349
    [1]Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci,2003,116(Pt 11):2117-2124
    [2]Korolev N, Vorontsova OV, Nordenskiold L. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol.2007,95(1-3):23-49
    [3]Bannister AJ, Schneider R, Kouzarides T. Histone methylation:dynamic or static? Cell,2002,109(7):801-806
    [4]Zhang Y, Reniberg D. Transcription regulation by histone methylation:interplay between different covalent modifications.Genes Dev,2001,15(18):2343-2360
    [5]Pahlich S, Zakaryan RP, Gehring H. Protein arginine methylation:cellular functions and methods of analysis. Biochim Biophys Acta,2006,1764(12):1890-1903
    [6]Tan CP, Nakielny S. Control of the DNA methylation system component MBD2 by protein arginine methylation. Mol Cell Biol,2006,26(19):7224-7235
    [7]Taylor WR, Xiao B, Gamblin SJ, et al. A knot or not a knot? SETting the record 'straight' on proteins. Comput Biol Chem,2003,27(1):11-15
    [8]Xiao B, Jing C, Wilson JR, et al. Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature,2003,421(6923):652-656
    [9]Kourmouli N, Jeppesen P, Mahadevhaiah S, et al. Heterochromatin and tri-methylated lysine 20 of histone. H4 in animals. J Cell Sci,2004,117(Pt 12): 2491-2501
    [10]Ebert A, Schotta G, Lein S, et al. Su(var) genes regulate the balance between euchromatin and heterochromatin in Drosophila. Genes Dev,2004,18(23):2973-2983
    [11]Volpe TA, Kidner C, Hall IM, et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science,2002,297(5588):1833-1837
    [12]Hall IM, Shankaranarayana GD, Noma K, et al. Establishment and maintenance of aheterochromatin domain. Science,2002,297(5590):2232-2237
    [13]Motamedi MR, Verdel A, Colmenares SU, et al. Two RNAi complexes, RITS and RDRC, physically interact and localize to noncoding centromeric RNAs. Cell, 2004,119(6),789-802
    [14]Noma K, Sugiyama T, Cam H, et al. RITS acts in cis to promote RNA interference-mediated transcriptional and post-transcriptional silencing. Nat Genet, 2004,36(11):1174-1180
    [15]Ng HH, Robert F, Young RA, et al. Targeted recruitment of Setl histone methylase by elongating Pol Ⅱ provides a localized mark and memory of recent transcriptional activity. Mol Cell,2003,11(3):709-719
    [16]Daniel JA, Torok MS, Sun ZW, et al. Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem,2004,279(3):1867-1871
    [17]Xiao T, Kao CF, Krogan NJ, et al. Histone H2B ubiquitylation is associated with elongating RNA polymerase II. Mol Cell Biol,2005,25(2):637-651
    [18]Dou Y, Milne TA, AJ Tackett, et al. Physical association and coordinate function of the H3K4 methyltransferase MLL1 and the H4K16 acetyltransferase MOF. Cell, 2005,121(6):873-885
    [19]Shi Y, Lan F, Matson C, et al. Histone Demethylation Mediated by the Nuclear Amine Oxidase Homolog LSD1. Cell,2004,119(7):941-953
    [20]Cuthbert GL, Daujat S, Snowden AW, et al. Histone Deimination Antagonizes Arginine Methylation. Cell,2004,118(5):545-553
    [21]Wang Y, Wysocka J, Sayegh J, et al. Human PAD4 Regulates Histone Arginine Methylation Levels via Demethylimination. Science,2004,306(5694):279-283
    [22]Kubicek S, Jenuwein T. A Crack in Histone Lysine Methylation. Cell,2004,119(7): 903-906
    [23]Yamane K, Toumazou C, Tsukada Y, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by the androgen receptor. Cell, 2006,125(3):483-495
    [24]Whetstine JR, Nottke A, Lan F, et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell,2006,125(3):467-481
    [25]Chen Z, Zang J, Whetstine J, et al. Structural Insights into Histone Demethylation by JMJD2 Family Members. Cell,2006,125(4):691-702
    [26]Shin S, Janknecht R. Diversity within the JMJD2 histone demethylase family. Biochem Biophys Res Commun,2007,353(4):973-977
    [27]Lund AH, Lohuizen, M. Epigenetics and cancer. Genes Dev,2004,18(19): 2315-2335
    [28]Schneider R, Bannister AJ, Kouzarides T.Unsafe SETs:histone lysine methyltran-sferases and cancer. Trends Biochem Sci,2002,27(8):396-402
    [29]Bedford M.T,Richard S. Arginine methylation an emerging regulator of protein function. Mol Cell,2005,18(3):263-272
    [30]Cheung N, Chan LC, Thompson A,et al.Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol,2007,9(10):1208-1215
    [31]Tatton-Brown K, Douglas J, Coleman K, et al. Genotype-phenotype associations in Sotos syndrome:an analysis of 266 individuals with NSD1 aberrations. Am J Hum Genet,2005,77(2),:193-204
    [32]Keats JJ, Maxwell CA, Taylor BJ, et al. Overexpression of transcripts originating from the MMSET locus characterizes all t(4;14)(p16;q32)-positive multiple myeloma patients. Blood,2005,105(10):4060-4069
    [33]Cerveira N, Correia C, Doria S, et al. Frequency of NUP98-NSD1 fusion transcript in childhood acute myeloid leukaemia. Leukemia,2003,17(11),:2244-2247
    [34]Potter GB, Beaudoin GM 3rd, DeRenzo CL, et al. The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor, Genes Dev. 2001,15(20):2687-2701
    [35]Daser A, Rabbitts TH. Extending the repertoire of the mixed-lineage leukemia gene MLLin leukemogenesis. Genes Dev,2004,18(9):965-974
    [36]Ayton PM, Cleary ML. Molecular mechanisms of leukemogenesis mediated by MLL fusion proteins. Oncogene,2001,20(40):5695-5707
    [37]Okada Y, Feng Q, Lin Y, et al. hDOTIL Links Histone Methylation to Leukemogenesis. Cell,2005,121 (2):167-178
    [38]La Starza R, Gorello P, Rosati R, et al. Cryptic insertion producing two NUP98/NSD1 chimeric transcriptsin adult refractory anemia with an excess of blasts. Genes Chromosomes Cancer,2004,41(1):395-399

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700