TiO_2及其相关材料微结构调控、可见光拓展和光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源和环境问题是目前世界各国所面临的主要问题,解决当前日益严重的能源短缺和环境污染问题,是实现可持续发展、提高人民生活质量和保障国家安全的迫切需要。半导体光催化技术,为我们提供了一种理想的能源利用和治理环境污染的方法。半导体光催化材料能将低密度的太阳能转化为电能(染料敏化太阳能电池)或者化学能(光催化分解水制氢),其中氢能源具有高能量密度、环境友好及可再生等特点,是将来取代化石能源的一种理想的替代品。此外,光催化材料能利用太阳能将自然环境中的有机污染物降解成二氧化碳和水,或者将污染物转化为其它有用的工业原料,被认为是最具有应用前景的环境污染控制技术。因此,半导体光催化材料在环境治理和清洁能源转换等领域的应用研究已经成为材料领域新的研究热点。
     在过去的四十年中,半导体光催化材料受到了广泛而深入的研究,在众多的光催化材料中,二氧化钛以其无毒、化学稳定性好、耐光腐蚀、光催化活性高,价廉易得等优点成为应用最广泛的半导体光催化材料。然而,TiO2光催化材料在实际应用中存在着一些问题,如光响应范围窄、量子效率低、难以回收利用等,制约了该材料的实际应用推广。
     在本论文中,通过微结构调控(分等级结构与晶面调控)、表面负载与改性等途径拓展了TiO2光催化材料的光响应范围,促进了光生载流子分离,进而提高了其光催化活性。本论文主要包括以下两个部分:
     (一)微结构调控:合成出具有分等级结构的微球,包括一维纳米管组成的TiO2微球,以及纳米立方体组成的SrTiO3空心微球;基于晶面调控的思想合成出暴露高活性{001}面的TiO2微球,并研究了其显著增强的光催化活性;通过研究氧化亚铜在光催化过程中晶面的稳定性,提出晶面间电荷转移这一模型,随后,将晶面间电荷转移行为的研究拓展到TiO2上,得出{001}和{101}面的协同效应是决定其光催化活性的重要因素。
     (二)可见光拓展:利用贵金属纳米颗粒的表面等离子共振效应,制备出M@TiO2(M=Au, Pt, Ag)和玻璃微珠/Ag/TiO2两种表面等离子体光催化材料,利用钛酸辅助法合成了氢化的TiO2纳米线-微球,并系统研究了所制备材料的可见光催化活性。
     在第一章中,首先介绍半导体光催化的原理和研究现状,并简单介绍TiO2的晶体结构、电子结构以及目前制约该材料发展的主要问题,接着介绍目前通过微结构调控和可见光拓展来提高TiO2光催化性能的研究进展,提出了本论文的选题意义和主要研究内容。
     在第二章中,利用一种原位转变的方法合成出具有分等级结构的微球,包括由一维纳米管组成的TiO2微球,以及由规则的纳米立方体组成的SrTiO3空心微球。其中具有分等级结构的TiO2纳米管-微球,因其拥有的大比表面积、开放多孔结构以及良好的光散射特性,该样品具有较高的光催化活性,其多孔结构还拥有很高的热稳定性。基于同一合成思想制备的SrTiO3分等级空心微球,因其独特的分等级空心结构和光散射特性,该样品在紫外区域拥有更强的光吸收能力,因此对光还原Cr(Ⅵ)有着优异的光催化性能。利用高分辨投射电镜对样品的晶体学信息进行了表征。通过系统研究整个生长过程的形貌演变,以及一系列的测试表征结果,发现该分等级微球的形成机理类似溶解-再结晶的过程。
     在第三章中,采用醇热法合成出暴露83%{001}面的TiO2纳米片-微球;通过研究Cu2O不同晶面的稳定性提出一种晶面间电荷转移模型,并对TiO2晶面间电荷转移的行为进行了研究。系统的研究了反应时间、氢氟酸的加入量对所制备的TiO2纳米片-微球形貌的影响,通过降解有机染料评价了该材料的光催化性能。系统研究了Cu2O不同晶面的稳定性和光催化性能,通过甲基橙降解实验以及表面能、态密度的计算,提出了一种晶面间电荷转移模型。随后将晶面间电荷转移行为的研究拓展到TiO2上。通过改变二次水热过程中的溶剂,合成出暴露不同比例{001}面的TiO2微球,测试了不同样品光氧化产羟基自由基的反应和光还原产氢的反应。通过XPS对比了样品表面组分的差异,计算了氟在干净的表面和乙醇修饰过的表面的吸附能,推断出乙醇能有效地增强氟在二氧化钛表面的吸附;通过第一性原理方法计算了TiO2(001)和(101)面的态密度,发现{001}和{101}晶面间的协同效应是决定光催化活性的重要因素。
     在第四章中,通过Ti3+辅助原位还原法成功制备M@TiO2(M=Au, Pt, Ag)等离子体光催化材料。利用EPR光谱仪验证了光照后TiO2样品中Ti3+的存在,通过改变光照时间t可调节产生的Ti3+的量,进而可调节M@TiO2中贵金属的负载量。在可见光照射下,测试了M@TiO2在苯酚溶液中氧化苯的光催化活性,其中Au@TiO2在苯酚溶液中可见光光催化氧化苯合成苯酚,显示出高产率和高选择性。系统研究了不同Au负载量的Au@TiO2微球光催化氧化苯的活性,探讨了可见光下Au@TiO2在苯酚水溶液中光催化氧化苯的反应机理。随后通过离子交换法在玻璃微珠表面负载了Ag纳米颗粒,并以钛酸四丁酯的乙醇溶液为前驱体,在负载银的玻璃微珠表面负载了一层均匀多孔的TiO2,从而制得一种玻璃微珠/Ag/TiO2等离子体光催化材料。利用XRD、SEM和漫反射光谱对样品进行表征,以甲基橙为降解对象研究了其在可见光下的光催化性能。
     在第五章中,利用钛酸辅助法合成了表面氢化的锐钛矿TiO2(TiO2-H)纳米线-微球。该微球由直径约8nm的锐钛矿纳米线组成,基于表面分析和吸附能计算,发现TiO2-H纳米线-微球表面同时存在Ti-H键和O-H键。该样品还显示出增强的可见光吸收能力,并且在光解水产氢和降解有机物方面显示出高效的光催化活性。通过检测羟基自由基(·OH)的产生,评测了TiO2-H微球的可见光光催化活性。基于实验分析和理论计算,提出一种H-TiNT向锐钛矿TiO2-H转变的可行性机理。TiO2-H纳米线-微球高效的光催化活性归因于Ti-H键和一维纳米线结构引起的增强的光吸收和光生电子-空穴的有效分离。随后,利用锌辅助的方法合成出Ti3+自掺杂的TiO2光催化材料,该方法通过改变初始反应物的摩尔比(rZT)能够对所合成样品晶相的组成实现连续调节。此外,通过改变晶相的组成,不同样品对于光催化降解甲基橙染料以及产生羟基自由基的反应具有不同的光催化活性。
     在第六章中,首先对本论文进行总结,之后分析与讨论现有研究工作存在的问题,并提出下一步研究工作的规划与展望。
     总之,材料的微观结构和表面状态会极大影响其光催化性能,本论文通过微结构调控、表面负载与改性等途径有效解决了TiO2光催化材料光响应范围窄、量子效率低等问题,这对于改善和提高TiO2的光催化性能以及实现材料的应用推广具有非常重要的理论指导意义。
Energy shortage and environmental pollution are the main problems of the world. It is necessary to solve all these problems to realize the sustainable development, raise people's living standard and guarantee national security. Semiconductor photocatalysis supplied an ideal way of energy utilization and environmental treatment. Semiconductor photocatalyst can convert the low-density solar energy to electrical energy (dye-sensitized solar cells) or chemical energy (hydrogen energy). Hydrogen energy possesses several advantages, such as high energy density, environmental friendliness and renewability et al, and can be used as a future alternative to fossil fuels. Moreover, the organic pollutant in the natural environment can be converted into CO2and water or other useful raw materials by the photocatalyst, thus photocatalysis was considered as the most promising technology for improving environment. The application of semiconductor photocatalyst in the field of environmental treatment and clear energy conversion has become a research focus.
     In the past forty years, semiconductor photocatalyst have been studied extensively and deeply. Among the numerous photocatalysts, TiO2has become the most widely used semiconductor photocatalyst, which is due to its advantages such as non-toxic, chemical stability, photocorrosion resistance, high photocatalytic activity and low-cost et al. However, there are some problems during the practical applications of TiO2, including narrow range of photoresponse, poor quantum efficiency and recycling issue, which restrict the development of TiO2.
     In this thesis, the photoresponse range and photogenerated charge separation of TiO2was developed by means of microstructure modulation (including hierarchical structure and crystal facet regulation), surface loading and modification. There are two main parts in this thesis:
     (1) Microstructure Modulation:Hierarchical microspheres were synthesized, which include TiO2microspheres consisting of1-D nanotubes and SrTiO3hollow microspheres consisting of nanocubes. Based on the idea of crystal facet regulation, TiO2microspheres with high percentage of{001} facets were synthesized, and the highly enhanced photocatalytic efficiency was characterized. By studying the crystal facet stability of Cu2O in photocatalytic experiment, a model of charge-separation among crystal facets was proposed. Then, the study of charge-separation behavior among crystal facets was extended to TiO2, and we conclude that a synergetic effect between well-formed{001} and{101} facets is the determining factor for photoreactivity.
     (2) Visible-Light Expansion:Plasmonic photocatalyst M@TiO2(M=Au, Pt, Ag) and Glass-Microspheres/Ag/TiO2were synthesized by using the surface plasmon resonance (SPR) of noble-metal nanoparticles. Hydrogenated TiO2nanowire-microspheres were synthesized by titanate-assistant method, and the visible-light photocatalytic activity of the as-prepared material was systematically investigated.
     In chapter one, firstly we introduced the mechanism and latest progress of semiconductor photocatalysis, and we also briefly introduced the crystal structure and electronic structure of TiO2as well as the main problems restricting the practical application of TiO2. Secondly, we introduced the research progress that improving the photocatalytic performance of TiO2by means of microstructure modulation and visible-light expansion. Finally, the signification of topic selection, train of thought and outline of the thesis were summarized.
     In chapter two, we synthesized hierarchical microspheres by a simple and general method, which include TiO2microspheres consisting of1-D nanotubes and SrTiO3hollow microspheres consisting of regular nanocubes. Owing to their high surface area, open porous networks and excellent light scattering properties, the TiO2nanotube-microspheres exhibit a superior photocatalytic activity. Their porous structure has a high thermal stability. Hierarchical SrTiO3hollow microspheres, obtained by the same synthesis idea, possess a strong optical absorption capability, which is due to their unique hierarchical hollow structure and light scattering properties; thus these SrTiO3microspheres exhibit a superior photocatalytic activity in photoreduction of Cr(VI). To obtain detailed crystalline information of the sample, we carried out high-resolution TEM measurements, which show that these nanocubes are well-crystallized single crystal. On the basis of morphology-evolution observation and a series of characterization results, the formation process follows the dissolution-recrystallization mechanism.
     In chapter three, we developed a template-and surfactant-free alcohothermal method of synthesizing TiO2microspheres produced from anatase nanosheets. The crystalline information of the TiO2nanosheets were characterized by HRTEM, and the percentage of{001} facets was as high as83%. We systematically investigated the influence of reaction time and the amount of HF on the morphology of our samples. The photocatalytic property was evaluated by measuring the decomposition of organic dye. The surface stabilities and photocatalytic properties of Cu2O microcrystals were systematically investigated. On the basis of methyl orange (MO) decomposition and theoretical calculations, a novel model of charge separation among crystal faces was proposed. Then the study of charge-separation behavior among crystal facets was extended to TiO2. The percentage of{001} facets of TiO2microspheres can be tuned from82to45%by secondary hydrothermal treatment in different solutions. The photocatalytic properties were evaluated by investigating the photo-oxidation reactions for·OH radical generation and photoreduction reactions for hydrogen evolution. The XPS gives the surface composition difference of these samples. The adsorption energy of fluorine atoms over clean and EtOH-modified surfaces were calculated, which indicates that ethanol can effectively strengthen the adsorption of fluorine. We calculated the density of states (DOS) of TiO2by using first-principles DFT, and concluded that a synergetic effect between{001} and{101} facets is the determining factor for photoreactivity.
     In chapter four, the plasmonic photocatalysts M@TiO2(M=Au, Pt, Ag) were successfully fabricated by Ti3+-ion-assisted method. The presence of Ti3+in the irradiated TiO2samples is supported by EPR spectroscopy. The metal content of noble-metal@TiO2can be tuned by changing the amount of Ti3+, which in turn can be tuned by varying the irradiation time t. The photocatalytic oxidation of benzene in aqueous phenol was investigated with noble-metal@TiO2-microspheres as photocatalysts under visible light. Among the noble-metal@TiO2composites, Au@TiO2exhibits a high yield and selectivity for the catalytic oxidation of benzene to phenol in aqueous phenol under visible light. We systematically investigated the catalytic oxidation of benzene to phenol over Au@TiO2-microspheres with different loading amount, and discussed the probable mechanism for the photocatalytic oxidation of benzene under visible light in aqueous phenol over Au@TiO2, which involves the visible-light induced electron transfer from the Au NPs to the TiO2particle, the oxidation of phenoxy anions by electron-depleted Au NPs, and the oxidation of benzene to phenol by phenoxy free radicals. The sliver nanoparticles were loaded on the surface of glass-microspheres (GMS) by ion-exchange method, and TiO2was loaded on the GMS with the solution of Ti(OBu)4and ethanol as precursor, then the plasmonic photocatalyst GMS/Ag/TiO2was obtained. The samples were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV/Vis diffuse-reflectance spectra. MO was chosen to evaluate their photocatalytic activity under visible light.
     In chapter five, we synthesized surface-hydrogenated anatase TiO2(TiO2-H) nanowire-microspheres by annealing protonated titanate nanotube (H-TiNT) microspheres under hydrogen atmosphere, and these TiO2-H nanowire-microspheres consist of anatase nanowires with a tiny diameter of8nm. Based on surface analysis and absorption energy calculation, we concluded that both Ti-H and O-H bonds located at the surface of TiO2-H nanowire-microspheres. The as-prepared sample exhibits improved visible-light absorption and highly enhanced photocatalytic activity toward H2production from water and degradation of organic compounds. The visible-light photocatalytic activity of different TiO2samples was also examined by probing the formation of hydroxyl radicals (·OH). The experimental analyses and theoretical calculations lead us to propose a possible transition mechanism from H-TiNT to anatase TiO2-H. The highly enhanced photocatalytic activities of TiO2-H nanowire-microspheres are attributed to synergy of the improved optical absorption and efficient photogenerated electron-hole separation induced by the surface Ti-H bonds as well as the structure of1-D nanowires. Moreover, Ti3+seft-doped TiO2photocatalyst were synthesized by a Zn-assistant method, and the phase composition of the as-synthesized sample can be regulated by the ratio (rZT) of reactants. Furthermore, the photocatalytic activity towards decomposition of MO dye and formation of·OH can be tuned by varying the phase composition.
     In chapter six, we summarized our work and discussed the problems remained to be solved. At last, we made a plan for the future work and looked forward to the futurity.
     In summary, the photocatalytic property of materials can be greatly influenced by their microstructure and surface state. In this thesis, the constraints of TiO2photocatalyst, including narrow range of photoresponse, low quantum efficiency et al, are improved by means of microstructure modulation, surface loading and modification. And it is of great theoretical guiding significance for improving photocatalytic performance of TiO2and its practical application.
引文
[1]S. Sato, Science,2002,295,626.
    [2]A. Bauer, F. Westkamper, S. Grimme, T. Bach, Nature,2005,436,1139.
    [3]H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater.,2006,5,782.
    [4]M. Fujihira, Y. Satoh, T. Osa, Nature,1981,293,206.
    [5]G. Steinberg-Yfrach, P. A. Liddell, S.C. Hung, A. L. Moore, D. Gust, T. A. Moore, Nature,1997,385,239.
    [6]N. Satoh, T. Nakashima, K. Kamikura, K. Yamamoto, Nat. Mater.,2008,3,106.
    [7]G. A. Somorjai, H. Frei, J. Y. Park, J. Am. Chem. Soc.,2009,131,16589.
    [8]A. F. Heyduk, D. G. Nocera, Science,2001,293,1639.
    [9]A. Fujishima, K. Honda, Nature,1972,238,37.
    [10]K. E. Karakitsou, X. E. Verykios, J. Phys. Chem.,1993,97,1184.
    [11]M. Gratzel, Acc. Chem. Res.,1981,14,376.
    [12]K. Kalyanasundaram, E. Borgarello, D. Duonghong, M. Gratzel, Angew. Chem. Int. Ed.,1981,20,987.
    [13]D. Duonghong, E. Borgarello, M. Gratzel, J. Am. Chem. Soc.,1981,103,4685.
    [14]E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel, Nature,1981,289, 158.
    [15]A. Wold, Chem. Mater.,1993,5,280.
    [16]H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc.,2003,125,3082.
    [17]A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B,2000,104,571.
    [18]H. G. Kim, D. W. Hwang, S. W. Bae, J. H. Jung, J. S. Lee, Catal. Lett.,2003,91, 193.
    [19]S. Ikeda, M. Hara, J. N. Kondo, K. Domen, H. Takahashi, T. Okubo, M. Kakihana, Chem. Mater.,1998,10,72.
    [20]K. Maeda, N. Saito, D. Lu, Y. Inoue, K. Domen, J. Phys. Chem. C,2007,111, 4749.
    [21]S. Rodrigues, K. T. Ranjit, S. Uma, I. N. Martyanov, K. J. Klabunde, Adv. Mater., 2005,17,2467.
    [22]M. R. Elahifard, S. Rahimnejad, S. Haghighi, M. R. Gholami, J. Am. Chem. Soc, 2007,129,9552.
    [23]S. K. Joung, T. Amemiya, M. Murabayashi, K. Itoh, Chem. Eur. J.,2006,12, 5526.
    [24]Y. Kikuchi, K. Sunada, T. Iyoda, K. Hashimoto, A. Fujishima J. Photochem. Photobiol. A:Chem.,1997,106,51.
    [25]K. Sunada, Y. Kikuchi, K. Hashimoto, Environ. Sci. Technol.,1998,32,726.
    [26]R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature,1997,388,431.
    [27]R. J. Braham, A. T. Harris, Ind. Eng. Chem. Res.,2009,48,8890.
    [28]P. Usubharatana, D. McMartin, A. Veawab, P. Tontiwachwuthikul, Ind. Eng. Chem. Res.,2006,45,2558.
    [29]Q. Liu, Y. hou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G. Zou, J. Am. Chem. Soc.,2010,132,14385.
    [30]S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J. H. Ye, Y Zhou, Z. G. Zou, Angew. Chem. Int. Ed.2010,49,6400.
    [31]Y. Xu, M. A. A. Schoonen, Am. Mineral.,2000,85,543.
    [32]G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, D. K. Sharma, J. Am. Chem. Soc.,1985,107,8054.
    [33]R. F. Howe, M. Gratzel, J. Phy. Chem.,1987,91,3906.
    [34]Gratzel M, Heterogeneous Photochemical Electron Transfer, Boca Raton:CRC Press,1989.
    [35]W. Zhao, W. H. Ma, C. C. Chen, J. C. Zhao, Z. G Shuai, J. Am. Chem. Soc.,2004, 126,4782.
    [36]X. C. Wang, J. C. Yu, H. Y. Yip, L. Wu, P. K. Wong, S. Y. Lai, Chem. Eur. J., 2005,11,2997.
    [37]Y Xu, C. H. Langford, J. Adv. Oxid. Technol.,1997,1,408.
    [38]E. R. Carraway, A. J. Hoffman, M. R. Hoffmann, Environ. Sci. Technol.,1994, 28,786.
    [39]K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol. A,2000,134,139.
    [40]A. J. Bard, Science,1980,207,139.
    [41]N. Serpone, E. Borgarello, M. Graetzel, J. Chem. Soc. Chem. Commun.,1984, 342.
    [42]N. Serpone, A. V. Emeline, J. Phys. Chem. Lett.,2012,3,673.
    [43]N. Serpone, E. Borgarello, E. Pelizzetti, J. Electrochem. Soc.,1988,135,2760.
    [44]N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol., A 1995,85,247.
    [45]A. Hagfeldt, M. Graetzel, Chem. Rev.,1995,95,49.
    [46]U. Bach, Y. Tachibana, J.-E. Moser, S. A. Haque, J. R. Durrant, M. Graetzel, D. R. Klug, J. Am. Chem. Soc.,1999,121,7445.
    [47]P. Bonhote, J.-E. Moser, R. Humphry-Baker, N. Vlachopoulos, S. M. Zakeeruddin, L. Walder, M. Graetzel, J. Am. Chem. Soc.,1999,121,1324.
    [48]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science,2001,293,269.
    [49]H. Kato, K. Asakura, A. Kudo, J. Am. Chem. Soc.,2003,125,3082.
    [50]A. Kudo, H. Kato, S. Nakagawa, J. Phys. Chem. B,2000,104,571.
    [51]H. G. Kim, D. W. Hwang, S. W. Bae, J. H. Jung, J. S. Lee, Catal. Lett.,2003,91, 193.
    [52]S. Ikeda, M. Hara, J. N. Kondo, K. Domen, H. Takahashi, T. Okubo M., Kakihana, Chem. Mater.,1998,10,72.
    [53]K. Maeda, N. Saito, D. Lu, Y. Inoue, K. Domen, J. Phys. Chem. C,2007,111, 4749.
    [54]S. X. Ouyang, H. Tong, N. Umezawa, J. Y. Cao, P. Li, Y. P. Bi, Y. J. Zhang, J. H. Ye, J. Am. Chem.Soc.,2012,134,1974.
    [55]D. Barpuzary, Z. Khan, N. Vinothkumar, M. De, M. Qureshi, J. Phys. Chem. C, 2012,116,150.
    [56]A. Gasparotto, D. Barreca, D. Bekermann, A. Devi, R. A. Fischer, P. Fornasiero, V. Gombac, O. I. Lebedev, C. Maccato, T. Montini, G. V. Tendeloo, E. Tondello, J.Am. Chem. Soc.,2011,133,19362.
    [57]K. Maeda, M. Higashi, B. Siritanaratkul, Ryu Abe, K. Domen, J. Am. Chem. Soc., 2011,133,12334.
    [58]D. L. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature,2006,440,295.
    [59]K. Sayama, H. Arakawa, K. Domen, Catalysis Today,1996,28,175.
    [60]N-L. Wu, M.-S. Lee, Int J Hydrogen Energy,2004,29,1601.
    [61]T. Sreethawong, Y. Suzuki, S. Yoshikawa, Int J Hydrogen Energy,2005,30, 1053.
    [62]J. Bandara, Photobiol. Sci.,2005,4,857.
    [63]J. G. Yu, Y. Hai, B. Cheng, J. Phys. Chem. C,2011,115,4953.
    [64]J. G. Yu, J. R. Ran, Energy Environ. Sci.,2011,4,1364.
    [65]Q. J. Xiang, J. G. Yu, M. Jaroniec, Nanoscale,2011,3,3670.
    [66]J. Zhang, J. G. Yu, Y. M. Zhang, Q. Li, J. R. Gong, Nano Lett.,2011,11,4774.
    [67]J. G. Yu, J. Zhang, M. Jaroniec, Green Chem.,2010,12,1611.
    [68]J. R. Ran, J. G. Yu, M. Jaroniec, Green Chem.,2011,13,2708.
    [69]J. H. Carey, Bull. Environ. Contam. Tox.,1976,16,697.
    [70]J. H. Huang, K. N. Ding, X. C. Wang, X. Z. Fu, Langmuir,2009,25,8313.
    [71]J. J. Testa, Environ. Sci. Technol.,2004,38,1589.
    [72]S. J. Hug, H. U. Laubscher, Environ. Sci. Technol.,1997,31,160.
    [73]H. B. Yu, S. Chen, X. Quan, H. M. Zhao, Y. B. Zhang, Environ. Sci. Technol., 2008,42,3791.
    [74]P. Wang, B. B. Huang, Q. Q. Zhang, X. Y. Zhang, X. Y. Qin, Y. Dai, J. Zhan, J. X. Yu, H. X. Liu, Z. Z. Lou, Chem. Eur. J.,2010,16,10042.
    [75]J. J. Testa, M. A. Grela, M. I. Litter, Langmuir,2001,17,3515.
    [76]Z. Jiang, T. Xiao, V. L. Kuznetsov, P. P. Edwards, Philos. Trans. R. Soc. London, 2010,368,3343.
    [77]T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature,1979,277,637.
    [78]D. Canfield, K.W. Frese, J. Electrochem. Soc.,1983,130,1772.
    [79]B. A. Blajeni, M. Halmann, J. Manassen, Sol. Energy Mater.,1983,8,425.
    [80]B. R. Eggins, J. T. R. Irvine, E. P. Murphy, J. Grimshaw, J. Chem. Soc. Chem. Commun.,1988,1123.
    [81]H. Fujiwara, H. Hosokawa, K. Murakoshi, Y. Wada, S. Yanagida, Langmuir, 1998,14,5154.
    [82]S. Kuwabata, K. Nishida, R. Tsuda, H. Inoue, H. Yoneyama, J. Electrochem. Soc., 1994,141,1498.
    [83]O. K. Varghese, M. Paulose, T. J. La Tempa, C. A. Grimes, Nano Lett.,2009,9, 731.
    [84]P. W. Pan, Y. W. Chen, Catal. Commun.,2007,8,1546.
    [85]Y. Liu, B. Huang, Y. Dai, X. Zhang, X. Qin, M. Jiang, M. H. Whangbo, Catal. Commun.,2009,11,210.
    [86]C. Yang, R. L. Thompson, J. Baltrus, C. Matranga, J. Phys. Chem. Lett.,2010,1, 48.
    [87]M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, J. Phys. Chem. B,1997, 101,2632.
    [88]I. H. Tseng, J. C. S. Wu, H. Y. Chou, J. Catal.,2004,221,432.
    [89]S. S. Tan, L.Zou, E. Hu, Sci. Technol. Adv. Mater.,2007,9,89.
    [90]C. C. Lo, C. H. Hung, C. S. Yuan, J. F. Wu, Sol. Energy Mater. Sol. Cells,2007, 91,1765.
    [91]Z. H. Zhao, J. M. Fan, S. H. Liu, Z. Z. Wang, Chem. Eng. J.,2009,151,134.
    [92]张金龙,陈锋,何斌,光催化,华东理工大学出版社,2004.
    [93]U. Diebold, Surf. Sci. Rep.,2003,48,53.
    [94]R. Asahi, Y. Taga, W. Mannstadt, A. Freeman, J. Phys. Rev. B,2000,61,7459.
    [95]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,化学工业出版社,2002.
    [96]A. Fujishima, T. N. Rao, D. A. Tryk, J. Photochem. Photobiol. C,2001,1,1.
    [97]K. Zhu, N. R. Neale, A. Miedaner and A. J. Frank, Nano Lett.,2007,7,69.
    [98]J. Y. Liao, B. X. Lei, H. Y Chen, D. B. Kuang and C. Y Su, Energy Environ. Sci., 2012,5,5750.
    [99]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 1998,14, 3160.
    [100]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater.,1999, 11,1307.
    [101]Y. C. Zhu, H. L. Li, Y. Koltypin, Y. R. Hacohen, A. Gedanken, Chem. Commun.,2001,2616.
    [102]P. Maggie, S. Karthik, Y. Sorachon, E. P. Haripriya, K. V. Oomman, K. M. Gopal, A. L. Thomas, F. Adriana, A. G. Craig, J. Phys. Chem. B,2006,110, 16179.
    [103]S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, Nano Lett.,2007,7, 1286.
    [104]C. C. Chung, T. W. Chung, T. C.-K. Yang, Ind. Eng. Chem. Res.,2008,47, 2301.
    [105]X. W. Zhang, T. Zhang, J. W. Ng, D. D. Sun, Adv. Funct. Mater.,2009,19, 3731.
    [106]F. Amano, O. O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, B. Ohtani, Chem. Mater.,2009,21,2601.
    [107]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature,2008,453,638.
    [108]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc.,2009,131,4078.
    [109]F. Amano, T. Yasumoto, O. O. Prieto-Mahaney, S. Uchida, T. Shibayama, B. Ohtani, Chem. Commun.,2009,2311.
    [110]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, Chem. Commun.,2009,4381.
    [111]Y. Alivov, Z. Y. Fan, J. Phys. Chem. C,2009,113,12954.
    [112]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, J. Pan, G. Q. Lu, H. M. Cheng, J. Am. Chem. Soc.,2009,131,12868.
    [113]X. H. Yang, Z. Li, G. Liu, J. Xing, C. Sun, H. G. Yang, C. Li, CrystEngComm, 2011,13,1378.
    [114]J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc.,2010,132,6124.
    [115]W. Q. Fang, J. Z. Zhou, J. Liu, Z. G. Chen, C. Yang, C. H. Sun, G. R. Qian, J. Zou, S. Z. Qiao, H. G. Yang, Chem. Eur. J.,2011,17,1423.
    [116]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng, J. Am. Chem. Soc., 2009,131,3152.
    [117]J. Zhu, S. H. Wang, Z. F.Bian, S. H. Xie, C. L. Cai, J. G. Wang, H. G. Yang, H. X. Li, CrystEngComm,2010,12,2219.
    [118]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, P. Wang, M. H. Whangbo, Chem. Eur. J.,2009,15,12576.
    [119]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, Chem. Commun.,2009,4381.
    [120]D. Q. Zhang, G. S. Li, H. B.Wang, K. M. Chan, J. C. Yu, Cryst. Growth Des., 2010,10,1130.
    [121]J. G. Yu, Y. R. Su, B. Cheng, Adv. Funct. Mater.,2007,17,1984.
    [122]W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem.,1994,98,13669.
    [123]F. B. Li, X. Z. Li, M. F. Hou, Appl. Catal. B,2004,48,185.
    [124]Y. Bessekhouad, D. Robert, J. V. Weber, N. Chaoui, J. Photochem. Photobiol. A, 2004,167,49.
    [125]P. Hoyer, R. Koenenkamp, Appl. Phys. Lett.,1995,66,349.
    [126]R.Vogel, P. Hoyer, H.Weller, J. Phys. Chem.,1994,98,3183.
    [127]Q. Shen, D. Arae, T. Toyoda, J. Photochem. Photobiol. A,2004,164,75.
    [128]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H.Murakami, Y. Ohki, N. Yoshida, T. Watanabe, J. Am Chem. Soc.,2008,130,1676.
    [129]Y. Tian, T. Tatsuma, Chem. Commun.,2004,1810.
    [130]X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science,2011,331,746.
    [131]G. M. Wang, H. Y. Wang, Y. C. Ling, Y. C. Tang, X. Y Yang, R. C. Fitzmorris, C. C. Wang, J. Z. Zhang, Y. Li, Nano Lett.,2011,11,3026.
    [132]J. B. Lu, Y Dai, H. Jin and B. B. Huang, Phys. Chem. Chem. Phys.,2011,13, 18063.
    [1]J. H. Pan, X. W. Zhang, A. J. H. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc., 2008,130,11256.
    [2]S. Matsuda, Appl. Catal.,1983,8,149.
    [3]S. Iijima, Nature,1991,354,56.
    [4]C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, ChemPhysChem,2001, 2,78.
    [5]Z.-G. Zhao, M. Miyauchi, Angew. Chem. Int. Ed.,2008,47,7051.
    [6]M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev.,1995,95, 69.
    [7]N. Vlachopoulos, P. Liska, J. Augustynski, M. Graetzel, J. Am. Chem. Soc.,1988, 110,1216.
    [8]P. Maggie, S. Karthik, Y. Sorachon, E. P. Haripriya, K. V. Oomman, K. M. Gopal, A. L. Thomas, F. Adriana, A. G. Craig, J. Phys. Chem. B,2006,110,16179.
    [9]R. K. Karn, O. N. Srivastava, Int. J. Hydro. Energy,1999,24,27.
    [10]X. W. Zhang, A. J. Du, P. F. Lee, D. D. Sun, J. O. Leckie, Appl. Catal. B: Environ.,2008,84,262.
    [11]A. L. Linsebigler, G. Lu, J. T. Yates Jr., Chem. Rev.,1995,95,735.
    [12]S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, Nano Lett.,2007,7, 1286.
    [13]W. S. Wang, L. Zhen, C. Y. Xu, L. Yang, W. Z. Shao, Cryst. Growth Des.,2008, 8,1734.
    [14]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir,1998,14, 3160.
    [15]B. D. Yao, Y. F. Chan, X. Y. Zhang, W. F. Zhang, Z. Y. Yang, N. Wang, Appl. Phys. Lett.,2003,82,281.
    [16]D. V. Bavykin, V. N. Parmon, A. A. Lapkin, F. C. Walsh, J. Mater. Chem.,2004, 14,3370.
    [17]H. Y. Zhu, X. P. Gao, Y. Lan, D. Y. Song, Y. X. Xi, J. C. Zhao, J. Am. Chem. Soc.,2004,126,8380.
    [18]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, M.-H. Whangbo, Chem. Eur. J.,2009,15,12576.
    [19]H. Y. Zhu, Y. Lan, X. P. Gao, S. P. Ringer, Z. F. Zheng, D. Y. Song, J. C. Zhao, J. Am. Chem. Soc.,2005,127,6730.
    [20]E. Morgado Jr., M. A. S. de Abreu, G. T. Moure, B. A. Marinkovic, P. M. Jardim, A. S. Araujo, Chem. Mater.,2007,19,665.
    [21]C.-C. Tsai, H. Teng, Chem. Mater.,2004,16,4352.
    [22]Q. Zhang, L. Gao, J. Sun, S. Zheng, Chem. Lett.,2002,226.
    [23]J. G. Yu, Y. R. Su, B. Cheng, Adv. Funct. Mater.,2007,17,1984.
    [24]P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M.-H. Whangbo, Angew. Chem.2008,120,8049; Angew. Chem. Int. Ed.,2008,47,7931.
    [25]H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc.,2007, 129,4538.
    [26]P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang, M.-H. Whangbo, Chem. Eur. J.,2009,15, 1821.
    [27]P. Wang, B. B. Huang, Z. Z. Lou, X. Y. Zhang, X. Y. Qin, Y. Dai, Z. K. Zheng, X. N. Wang, Chem. Eur. J.,2010,16,538.
    [28]Z. F. Zheng, J. Teo, X. Chen, H. W. Liu, Y. Yuan, E. R. Waclawik, Z. Y. Zhong, H. Y. Zhu, Chem. Eur. J.,2010,16,1202.
    [29]J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H.-J. Choi, P. Yang, Nature, 2003,422,599.
    [30]B. Liu, H. C. Zeng, J. Am. Chem. Soc.,2004,126,16744.
    [31]Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science,2004,304,711.
    [32]J. X. Yu, B. B. Huang, Z. Y. Wang, X. Y. Qin, X. Y. Zhang, P. Wang, Inorg. Chem.,2009,48,10548.
    [33]H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc.,2007,129,8406.
    [34]J. H. Pan, X. W. Zhang, A. J. H. Du, D. D. Sun, J. O. Leckie, J. Am. Chem. Soc., 2008,130,11256.
    [35]A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, D. A. Weitz, Science,2002,298,1006.
    [36]R. A. Caruso, J. H. Schattka, A. Greiner, Adv. Mater.,2001,13,1577.
    [37]L. M. Qi, J. Li, J. M. Ma, Adv. Mater.,2002,14,300.
    [38]T. Nakashima, N. Kimizuka, J. Am. Chem. Soc.,2003,125,6386.
    [39]Q. Peng, Y. Dong, Y. Li, Angew. Chem. Int. Ed.,2003,42,3027.
    [40]X. Sun, J. Liu, Y. Li, Chem. Eur. J.,2006,12,2039.
    [41]X. N. Wang,B. B. Huang, Z. Y. Wang,X. Y. Qin,X. Y. Zhang, Y. Dai, M.-H. Whangbo, Chem. Eur. J.,2010,16,7106.
    [42]A. G. Schrott, J. A. Misewich, V. Nagarajan, R. Ramesh, Appl. Phys. Lett.,2003, 82,4770.
    [43]D. E. Grupp, A. M. Goldman, Science,1997,276,392.
    [44]Y. Hu, O. K. Tan, J. S. Pan, X. Yao, J. Phys. Chem. B,2004,108,11214.
    [45]L. Pellegrino, I. Pallecchi, D. Marre,E. Bellingeri, S. Siri, Appl. Phys. Lett., 2002,81,3849.
    [46]W. Wei, Y. Dai, M. Guo, L. Yu, B. B. Huang, J. Phys. Chem. C,2009,113, 15046.
    [47]Y. Watanabe, J. G. Bednorz, A. Bietsch, C. Gerber, D. Widmer, A. Beck, S. J. Wind, Appl. Phys. Lett.,2001,78,3738.
    [48]H. Kato, A. Kudo, J. Phys. Chem. B,2002,106,5029.
    [49]R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B,2004,108,8992.
    [50]M. Miyauchi, M. Takashio, H. Tobimatsu, Langmuir,2004,20,232.
    [51]D. F. Wang, J. H. Ye, T. Kako, T. Kimura, J. Phys. Chem. B,2006,110,15824.
    [52]X. Wei, G. Xu, Z. H. Ren, Y. G. Wang, G. Shen, G. R. Han, J. Am. Ceram. Soc., 2008,91,299.
    [53]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, Chem. Eur. J.,2010, 16,11266.
    [54]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y Dai, M.-H. Jiang, M.-H. Whangbo, Chem. Eur. J.,2009,15,12576.
    [55]M. Chol, H. S. Cho, R. Srivastava, C. Venkatesan, D. H. Chol, R. Ryoo, Nature Mater.,2006,5,718.
    [56]X. H. Zhu, J. M. Zhu, S. H. Zhou, Z. G. Liu, N. B. Ming, D. Hesse, J. Cryst. Growth,2005,283,553.
    [57]J. Moon, T. Li, C. A. Randall, J. H. Adair, J. Mater. Res.,1997,12,189.
    [58]T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir,1998,14, 3160.
    [59]H. T. Zhu, J. X. Wang, D. X. Wu, Inorg. Chem.,2009,48,7099.
    [60]H. Y. Zhu, X. P. Gao, Y. Lan, D. Y. Song, Y. X. Xi, J. C. Zhao, J. Am. Chem. Soc.,2004,126,8380.
    [61]Y. Li, X. P. Gao, G. R. Li, G. L. Pan, T. Y. Yan, H. Y. Zhu, J. Phys. Chem. C, 2009,113,4386.
    [62]S. D. Mo, W. Y. Ching, M. F. Chisholm, G. Duscher, Phys. Rev. B,1999,60, 2416.
    [63]J. M. Bolts, M. S. Wrighton, J. Phys. Chem.,1976,80,2641.
    [64]L. Kavan, M. Gra"tzel, S. E. Gilbert, C. Klemenz, H. J. Scheel, J. Am. Chem. Soc.,1996,118,6716.
    [65]J. M. Meichtry, M. Brusa, G. Mailhot, M. A. Grela, M. I. Litter, Appl. Catal. B, 2007,71,101.
    [66]P. Mohapatra, S. K. Samantaray, K. Parida, J. Photochem. Photobiol. A,2005, 170,189.
    [1]A. Fujishima, K. Honda, Nature,1972,238,37.
    [2]M. Gratzel, Nature,2001,414,338.
    [3]C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Ceram. Soc.,1997,80,3157.
    [4]X. Chen, S. Mao, Chem. Rev.,2007,107,2891.
    [5]X. Q. Gong, A. Selloni, J. Phys. Chem. B,2005,109,19560.
    [6]X. G. Han, Q. Kuang, M. S. Jin, Z. X. Xie, L. S. Zheng, J. Am. Chem. Soc.,2009, 131,3152.
    [7]G. Garnweitner, N. Tsedev, H. Dierke, M. Niederberger, Eur. J. Inorg. Chem., 2008,890.
    [8]F. Amano, O. O. Prieto-Mahaney, Y. Terada, T. Yasumoto, T. Shibayama, B. Ohtani, Chem. Mater.,2009,21,2601.
    [9]B. H. Wu, C. Y. Guo, N. F. Zheng, Z. X. Xie, G. D. Stucky, J. Am. Chem. Soc., 2008,130,17563.
    [10]A. S. Barnard, L. A. Curtiss, Nano Lett.,2005,5,1261-1266.
    [11]P. H. Wen, H. Itoh, W. P. Tang, Q. Feng, Langmuir,2007,23,11782-11790.
    [12]Y. W. Jun, M. F. Casula, J. H. Sim, S. Y. Kim, J. Cheon, A. P. Alivisatos, J. Am. Chem. Soc.,2003,125,15981-15985.
    [13]Y. Q. Dai, C. M. Cobley, J. Zeng, Y. M. Sun, Y. N. Xia, Nano Lett,2009,9, 2455.
    [14]H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng, G. Q. Lu, Nature,2008,453,638.
    [15]H. G. Yang, G. Liu, S. Z. Qiao, C. H. Sun, Y. G. Jin, S. C. Smith, J. Zou, H. M. Cheng, G. Q. Lu, J. Am. Chem. Soc.,2009,131,4078.
    [16]H. X. Li, Z. F. Bian, J. Zhu, D. Q. Zhang, G. S. Li, Y. N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc.,2007,129,8406.
    [17]H. J. Koo, Y. J. Kim, Y. H. Lee, W. I. Lee, K. Kim, N. G. Park, Adv. Mater., 2008,20,195.
    [18]P. Wang, T. F. Xie, H. Y. Li, L. Peng, Y. Zhang, T. S. Wu, S. Pang, Y. F. Zhao, D. J. Wang, Chem. Eur. J.,2009,15,4366.
    [19]X. M. Sun, J. F. Liu, Y. D. Li, Chem. Eur. J.,2006,12,2039.
    [20]J. F. Qian, P. Liu, Y. Xiao, Y. Jiang, Y. L. Cao, X. P. Ai, H. X. Yang, Adv. Mater.,2009,21,1.
    [21]X. C. Jiang, T. Herricks, Y. N. Xia, Adv. Mater.,2003,15,1205.
    [22]H. K. Yu, G. R. Yi, J. H. Kang, Y. S. Cho, V. N. Manoharan, D. J. Pine, S. M. Yang, Chem. Mater.,2008,20,2704.
    [23]P. Wang, B. B. Huang, X. Y Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M. H. Whangbo, Angew. Chem., Int. Ed.,2008,47,7931.
    [24]P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, Y. Dai, H. Jin, J. Y. Wei, M.-H. Whangbo, Chem. Eur. J.,2008,14,10543.
    [25]Briskman, R. N. Sol. Energy Mater. Sol. Cells,1992,27,361.
    [26]J. T. Zhang, J. F. Liu, Q. Peng, X. Wang, Y. D. Li, Chem. Mater.,2006,18,867.
    [27]P. Poizot, S. Laruelle, S. Grugeon, L. Dupront, J. M. Taracon, Nature,2000,407, 496.
    [28]M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen, Chem. Commun.,1998,3,357.
    [29]Y. G. Zhang, L. L. Ma, J. L. Li, Y Yu, Environ. Sci. Technol.,2007,41,6264.
    [30]J. L. Li, L. Liu, Y. Yu, Y. W. Tang, H. L. Li, F. P. Du, Electrochem. Commun., 2004,6,940.
    [31]W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, E. W. McFarland, Sol.
    Energy Mater. Sol. Cells,2003,77,229.
    [32]Y. Bessekhouad, D. Robert, J. V. Weber, Catal. Today,2005,101,315.
    [33]L. Huang, F. Peng, H. Yu, H. Wang, J. Solid State Sciences,2009,11,129.
    [34]M. Kiskinova, Chem. Rev.,1996,96,1431.
    [35]G. A. Somorjai, Chem. Rev.,1996,96,1223.
    [36]F. Seker, K. Meeker, T. F. Kuech, A. B. Ellis, Chem. Rev.,2000,100,2505.
    [37]N. Kislov, J. Lahiri, H. Verma, D. Y. Goswami, E. Stefanakos, M. Batzill, Langmuir,2009,25,3310.
    [38]K. Kawano, M. Komatsu, Y. Yajima, H. Haneda, H. Maki, T. Yamamoto, Appl. Surf. Sci.,2002,189,265.
    [39]X. Q. Gong, A. Selloni, M. Batzill, U. Diebold, Nat. Mater.,2006,5,665.
    [40]C. W. Peng, M. Richard-Plouet, T. Y. Ke, C. Y. Lee, H. T. Chiu, C. Marhic, E. Puzenat, F. Lemoigno, L. Brohan, Chem. Mater.,2008,20,7228.
    [41]D. Brinkley, T. Engel, J. Phys. Chem. B,2000,104,9836.
    [42]H. L. Xu, W. Z. Wang, W. Zhu, J. Phys. Chem. B,2006,110,13829.
    [43]H. G. Yu, J. G. Yu, S. W. Liu, S. Mann, Chem. Mater.,2007,19,4327.
    [44]Z. Y. Wang, B. B. Huang, Y. Dai, X. Y. Qin, X. Y. Zhang, P. Wang, H. X. Liu, J. X. Yu, J. Phys. Chem. C,2009,113,4612.
    [45]K. S. Yang, Y. Dai, B. B. Huang, M.-H. Whangbo, J. Phys. Chem. C,2009,113, 2624.
    [46]Z. G. Zou, H. Arakawa, J. Photochem. Photobiol. A,2003,158,145.
    [47]A. Soon, M. Todorova, B. Delley, C. Stampfl, Phys. Rev. B,2006,73,165424.
    [48]P. M. Oliver, G. W. Watson, E. T. Kelsey, S. C. Parker, J. Mater. Chem.,1997,7, 563.
    [49]T. Ohno, K. Sarukawa, M. Matsumura, New. J. Chem.,2002,26,1167.
    [50]C. Kormann, D. W. Bahnemann, M. R. Hoffmann, Environ. Sci. Technol.,1988, 22,798.
    [51]J. Bandara, I. Guasaquillo, P. Bowen, L. Soare, W. F. Jardim, J. Kiwi, Langmuir, 2005,21,8554.
    [52]K. H.Yoon, W. J. Choi, D. H. Kang, Thin Solid Films,2000,372,250.
    [53]W. Z. Wang, G. H. Wang, X. S. Wang, Y. J. Zhan, Y. K. Liu, C. L. Zheng, Adv. Mater.,2002,14,67.
    [54]J. J. Teo, Y. Chang, H. C. Zeng, Langmuir,2006,22,7369.
    [55]J. P. Espins, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. Gonzlez-Elipe, J. Phys. Chem. B,2002,106,6921.
    [56]J. W. Zhu, H. Q. Chen, H. B. Liu, X. J. Yang, L. D. Lu, X. Wang, Mater. Sci. Eng. A,2004,384,172.
    [57]W. Wang, Z. Liu, Y. Liu, C. Xu, C. Zheng, G. Wang, Appl. Phys. A,2003,76, 417.
    [58]J. F. Xu, W. Ji, Z. X. Shen, S. H. Tang, X. R. Ye, D. Z. Jia, X. Q. Xin, J. Solid State Chem.,1999,147,516.
    [59]H. Wang, J. Z. Xu, J. J. Zhu, H. Y. Chen, J. Cryst. Growth,2002,244,88.
    [60]M. A. Brookshier, C. C. Chusuei, D. W. Goodman, Langmuir,1999,15,2043.
    [61]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science,2001,293,269.
    [62]Z. Z. Lou, B. B. Huang, X. Y. Qin, X. Y. Zhang, Z. Y. Wang, Z. K. Zheng, H. F. Cheng, P. Wang, Y, Dai, CrystEngComm,2011,13,1789.
    [63]X. N. Wang,B. B. Huang, Z. Y. Wang,X. Y. Qin, X. Y. Zhang, Y. Dai, M.-H. Whangbo, Chem. Eur. J.,2010,16,7106.
    [64]F. Amano, T. Yasumoto, O. O. Prieto-Mahaney, S. Uchida, T. Shibayama, B. Ohtani, Chem. Commun.,2009,2311.
    [65]D. Q. Zhang, G. S. Li, X. F. Yang, J. C. Yu, Chem. Commun.,2009,4381.
    [66]Y. Alivov, Z. Y. Fan, J. Phys. Chem. C,2009,113,12954.
    [67]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, J. Pan, G. Q. Lu, H. M. Cheng, J. Am. Chem. Soc.,2009,131,12868.
    [68]X. H. Yang, Z. Li, G. Liu, J. Xing, C. Sun, H. G. Yang, C. Li, CrystEngComm, 2011,13,1378.
    [69]J. S. Chen, Y. L. Tan, C. M. Li, Y. L. Cheah, D. Luan, S. Madhavi, F. Y. C. Boey, L. A. Archer, X. W. Lou, J. Am. Chem. Soc.,2010,132,6124.
    [70]W. Q. Fang, J. Z. Zhou, J. Liu, Z. G. Chen, C. Yang, C. H. Sun, G. R. Qian, J. Zou, S. Z. Qiao, H. G. Yang, Chem. Eur. J.,2011,17,1423.
    [71]G. Liu, C. H. Sun, H. G. Yang, S. C. Smith, L. Z. Wang, G. Q. Lu, H.-M. Cheng, Chem. Commun.,2010,46,755.
    [72]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, P. Wang, M. H. Whangbo, Chem. Eur. J.,2009,15,12576.
    [73]S.W. Liu, J. G. Yu, M. Jaroniec, J. Am. Chem. Soc0,2010,132,11914.
    [74]D. Q. Zhang, G. S. Li, H. B. Wang, K. M. Chan, J. C. Yu, Cryst. Growth Des., 2010,10,1130.
    [75]J. Pan, G. Liu, G. Q. Lu, H.-M. Cheng, Angew. Chem. Int. Ed.,2011,50,2133.
    [76]C.-C. Tsai, H. Teng, Chem. Mater.,2004,16,4352.
    [77]J. C. Yu, J. G. Yu, W. K. Ho, Z. T. Jiang, L. Z. Zhang, Chem. Mater.,2002,14, 3808.
    [78]J. G. Yu, W. G Wang, B. Cheng, B. L. Su, J. Phys. Chem. C,2009,113,6743.
    [79]J. H. Liao, L. Y. Shi, S. Yuan, Y. Zhao, J. H. Fang, J. Phys. Chem. C,2009,113, 18778.
    [80]L. Ge, M. X. Xu, H. B. Fang, Chinese J. Inorg. Chem.,2005,21,393.
    [81]H. Hsutomu, Y. Nosaka, Langmuir,2002,18,3247.
    [82]A. Selloni, Nat. Mater.,2008,7,613.
    [83]J. M. Li, Y. X. Yu, Q. W. Chen, J. J. Li, D. S. Xu, Cryst. Growth Des.,2010,10, 2111.
    [84]Z. K. Zheng, B. B. Huang, Z. Y. Wang, M. Guo, X. Y. Qin, X. Y. Zhang, P. Wang, Y. Dai, J. Phys. Chem. C,2009,113,14448.
    [85]N. Murakami, Y. Kurihara, T. Tsubota, T. Ohno, J. Phys. Chem. C,2009,113, 3062.
    [86]T. Taguchi, Y. Saito, K. Sarukawa, T. Ohno, M. Matsumura, New. J. Chem.,2003, 27,1304.
    [87]J. G. Yu, J. F. Xiong, B. Cheng, S. W. Liu, Appl. Catal. B,2005,60,211.
    [88]Y. Z. Li, N.-H. Lee, D.-S. Hwang, J. S. Song, E. G. Lee, S.-J. Kim, Langmuir, 2004,20,10838.
    [89]J. G. Yu, L. F. Qi, M. Jaroniec, J. Phys. Chem. C,2010,114,13118.
    [90]F. B. Li, X. Z. Li, Chemosphere,2002,48,1103.
    [91]J. G. Yu, H. G. Yu, B. Cheng, X. J. Zhao, J. C. Yu, W. K. Ho, J. Phys. Chem. B, 2003,107,13871.
    [92]G. Kresse, J. Furthmuller, Phys. Rev. B,1996,54,11169.
    [93]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B,1992,46,6671.
    [94]J. P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett.,1996,77,3865.
    [95]H. J. Monkhorst, J. D. Pack, Phys. Rev. B,1976,13,5188.
    [1]P. V. Kamat, J. Phys. Chem. B,2002,106,7729.
    [2]S. Eustis, M. A. El-Sayed, Chem. Soc. Rev.,2006,35,209.
    [3]K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B,2003,107, 668.
    [4]J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, R. L and Letsinger, J. Am. Chem. Soc.,1998,120,1959.
    [5]Y. Tian and T. Tatsuma, Chem. Commun.,2004,1810.
    [6]Y. Tian and T. Tatsuma, J. Am. Chem. Soc.,2005,127,7632.
    [7]K. Matsubara and T. Tatsuma, Adv. Mater.,2007,19,2802.
    [8]K. Awazu, M. Fujimaki, C. Rockstuhl, J. Tominaga, H. Murakami, Y. Ohki, N. Yoshida and T. Watanabe, J. Am. Chem. Soc.,2008,130,1676.
    [9]J. G. Yu, G. P. Dai, B. B. Huang, J. Phys. Chem. C,2009,113,16394.
    [10]H. Y. Zhu, X. B. Ke, X. Z. Yang, S. Sarina, H. W. Liu, Angew. Chem. Int. Ed., 2010,49,9657.
    [11]H. Y. Zhu, X. Chen, Z. F. Zheng, X. B. Ke, E. Jaatinen, J. C. Zhao, C. Guo, T. F. Xie, D. J. Wang, Chem. Commun.,2009,7524.
    [12]X. Chen, Z. F. Zheng, X. B. Ke, E. Jaatinen, T. F. Xie, D. J. Wang, C. Guo, J. C. Zhao, H. Y. Zhu, Green Chem.,2010,12,414.
    [13]A. Furube, L. Du, K. Hara, R. Katoh, M. Tachiya, J. Am. Chem. Soc.,2007,129, 14852.
    [14]G. L. Zhao, H. Kozuka, T. Yoko, Thin Solid Films,1996,277,147.
    [15]K. F. Yu, Y. Tian, T. Tatsuma, Phys. Chem. Chem. Phys.,2006,8,5417.
    [16]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, Chem. Eur. J.,2010, 16,11266.
    [17]M. Zhang, C. C. Chen, W. H. Ma, J. C. Zhao, Angew. Chem. Int. Ed.,2008,47, 9730.
    [18]J. Y. Zhang, Z. Y. Zhao, X. Y. Wang, T. Yu, J. Guan, Z. T. Yu, Z. S. Li, Z. G. Zou, J. Phys. Chem. C,2010,114,18396.
    [19]P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, J. Y. Wei, M.-H. Whangbo, Angew. Chem., Int. Ed.,2008,47,7931.
    [20]P. Wang, B. B. Huang, X. Y. Zhang, X. Y. Qin, H. Jin, Y. Dai, Z. Y. Wang, J. Y. Wei, J. Zhan, S. Y. Wang, J. P. Wang, M.-H. Whangbo, Chem. Eur. J.,2009,15, 1821.
    [21]P. Wang, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M.-H. Whangbo, Inorg. Chem.,2009,48,10697.
    [22]C. H. An, S. Peng, Y. G. Sun, Adv. Mater.,2010,22,2570.
    [23]Y. P. Bi, J. H. Ye, Chem. Commun.,2009,6551.
    [24]C. Hu, T. W. Peng, X. X. Hu, Y. L. Nie, X. F. Zhou, J. H. Qu, H. He, J. Am. Chem. Soc.,2010,132,857.
    [25]H. Huang, X. R. Li, Z. H. Kang, Y. Liu, H. T. Li, X. D. He, S. Y. Lian, J. L. Liu, S.-T. Lee, Dalton Trans.,2010,39,10593.
    [26]M. S. Chen, D.W. Goodman, Acc. Chem. Res.,2006,39,739.
    [27]A. Corma, P. Serna, H. Garca, J. Am. Chem. Soc.,2007,129,6358.
    [28]L. Carbonea, P. D. Cozzoli, Nano Today,2010,5,449.
    [29]M. Casavola, R. Buonsanti, G. Caputo, P. D. Cozzoli, Eur. J. Inorg. Chem.,2008, 837.
    [30]Y. L. Chen, D. Z. Li, X. C. Wang, X. X. Wang, X. Z. Fu, Chem. Commun.,2004, 2304.
    [31]J. Li, H. C. Zeng, Chem. Mater.,2006,18,4270.
    [32]M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M. J. Genet, B. Delmon, J. Catal.,1993,144,175.
    [33]W. F. Yan, S. M. Mahurin, Z. W. Pan, S. H. Overbury, S. Dai, J. Am. Chem. Soc.,2005,127,10480.
    [34]T. Sano, N. Negishi, D. Mas, K. Takeuchi, J. Catal.,2000,194,71.
    [35]M. Epifani, C. Giannini, L. Tapfer, L. Vasanelli, J. Am. Ceram. Soc.,2000,83, 2385.
    [36]P. D. Cozzoli, M. L. Curri, C. Giannini, A. Agostiano, small,2006,2,413.
    [37]P. D. Cozzoli, R. Comparelli, E. Fanizza, M. L. Curri, A. Agostiano, D. Laub, J. Am. Chem. Soc.,2004,126,3868.
    [38]L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, C. Maragno, E. Tondello, U. L. Stangar, M. Bergant, D. Mahne, Nanotechnology,2007,18, 375709.
    [39]L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maccato, E. Tondello, O. I. Lebedev, S. Turner, G. Van Tendeloo, C. Sada, U. L. Stangar, ChemPhysChem, 2009,10,3249.
    [40]Y. Xie, K. L. Ding, Z. M. Liu, R. T. Tao, Z. Y. Sun, H. Y. Zhang, G. M. An, J. Am. Chem. Soc.,2009,131,6648.
    [41]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, M.-H. Whangbo, Chem. Eur. J.,2009,15,12576.
    [42]P. V. Kamat, I. Bedja, S. Hotchandani, J. Phys. Chem.,1994,98,9137.
    [43]J. M. Warman, M. P. de Haas, P. Pichat, N. Serpone, J. Phys. Chem.,1991,95, 8858.
    [44]R. W. Fessenden, P. V. Kamat, J. Phys. Chem.,1995,99,12902.
    [45]S. T. Martin, H. Herrmann, W. Choi, M. R. Hoffmann, Faraday Trans.,1994,90, 3315.
    [46]M. Graetzel, R. F. Howe, J. Phys. Chem.,1990,94,2566.
    [47]R. F. Howe, M. Graetzel, J. Phys. Chem.,1985,89,4495.
    [48]T. Rajh, A. E. Ostafin, O. I. Micic, D. M. Tiede, M. C. Thurnauer, J. Phys. Chem.,1996,100,4538.
    [49]M. Li, W. Hebenstreit, U. Diebold, A. M. Tryshkin, M. K. Bowman, G. G. Dunhan, M. Henderson, J. Phys. Chem. B,2000,104,4944.
    [50]A. M. Czoska, S. Livraghi, M. Chiesa, E. Giamello, S. Agnoli, G. Granozzi, E. Finazzi, C. Di Valentin, G. Pacchioni J. Phys. Chem. C,2008,112,8951.
    [51]N. C. Bigall, T. Hartling, M. Klose, P. Simon, L. M. Eng, A. Eychmuller, Nano Lett.,2008,8,4588.
    [52]R. H. Li, W. X. Chen, H. Kobayashi, C. X. Ma, Green Chem.,2010,12,212.
    [53]T. R. Jensen, R. P. V. Duyne, J. Phys. Chem. B,1999,103,2394.
    [54]P. D. Cozzoli, M. L. Curri, A. Agostiano, Chem. Commun.,2005,3186.
    [55]R. Buonsanti, V. Grillo, E. Carlino, C. Giannini, F. Gozzo, M. Garcia-Hernandez, M. A. Garcia, R. Cingolani, P. D. Cozzoli, J. Am. Chem. Soc.,2010,132,2437.
    [56]Y. Ide, M. Matsuoka, M. Ogawa, J. Am. Chem. Soc.,2010,132,16762.
    [57]F. B. Li, X. Z. Li, Appl. Catal. A,2002,228,15.
    [58]I. M. Arabatzis, T. Stergiopoulos, D.,reeva, S. Kitova, S. G. Neophytides, P. Falaras, J. Catal.,2003,220,127.
    [59]Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu, Hexing Li, Chem. Commun.,2009,3789.
    [60]H. X. Li, Z. F. Bian, J. Zhu, Y. N. Huo, H. Li, Y. F. Lu, J. Am. Chem. Soc.,2007, 129,4538.
    [61]P. Wang, T.-F. Xie, H.-Y. Li, L. Peng, Y. Zhang, T.-S. Wu, S. Pang, Y.-F. Zhao, D.-J. Wang, Chem. Eur. J.,2009,15,4366.
    [62]Z. F. Zheng, J. Teo, X. Chen, H. W. Liu, Y. Yuan, E. R. Waclawik, Z. Y. Zhong, H. Y. Zhu, Chem. Eur. J.,2010,16,1202.
    [63]Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, A. Fujishima, Nat. Mater.,2003,2,29.
    [64]J. P. Blondeau, F. Catan, C. Andreazza-Vignolle, N. Sbai, Plasmonics,2008,3, 65.
    [65]G. De Marchi, F. Caccavale, F. Gonella, G. Mattei, P. Mazzoldi, G. Battaglin, A. Quaranta, Appl. Phys. A,1996,63,403.
    [66]P. Gangopadhyay, P. Magudapathy, R. Kesavamoorthy, B. K. Panigrahi, K. G. M. Nair, P. V. Satyam, Chem. Phys. Lett.,2004,388,416.
    [1]A. Fujishima, K. Honda, Nature,1972,238,37.
    [2]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Jiang, P. Wang, M. H. Whangbo, Chem. Eur. J.,2009,15,12576.
    [3]X. Chen, S. Mao, Chem. Rev.,2007,107,2891.
    [4]Z. K. Zheng, B. B. Huang, X. Y. Qin, X. Y. Zhang, Y. Dai, M. H. Whangbo, J. Mater. Chem.,2011,21,9079.
    [5]S. Hoang, S. W. Guo, N. T. Hahn, A. J. Bard, C. B. Mullins, Nano Lett.,2012,12, 26.
    [6]J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, J. Phys. Chem. B,2004,108, 8106.
    [7]K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, Nano Lett.,2007,7,69.
    [8]J. Y Liao, B. X. Lei, H. Y. Chen, D. B. Kuang, C. Y. Su, Energy Environ. Sci., 2012,5,5750.
    [9]S. Yamabi, H. Imai, Chem. Mater.,2002,14,609.
    [10]Y Aoyama, Y. Oaki, R. Ise, H. Imai, CrystEngComm,2012,14,1405.
    [11]H. Y. Zhang, T. H. Ji, Y. F. Liu, J. W. Cai, J. Phys. Chem. C,2008,112,8604.
    [12]W. Ho, J. C. Yu, S. Lee, Chem. Commun.,2006,1115.
    [13]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y Taga, Science,2001,293,269.
    [14]W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem.,1994,98,13669.
    [15]S. U. M. Khan, M. Al-Shahry, W. B. Ingler Jr, Science,2002,297,2243.
    [16]X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Science,2011,331,746.
    [17]G M. Wang, H. Y. Wang, Y C. Ling, Y C. Tang, X. Y Yang, R. C. Fitzmorris, C. C. Wang, J. Z. Zhang, Y. Li, Nano Lett.,2011,11,3026.
    [18]R. H. Li, H. Kobayashi, J. F. Guo, J. Fan, Chem. Commun.,2011,47,8584.
    [19]F. Zuo, L. Wang, T. Wu, Z. Y Zhang, D. Borchardt, P. Y. Feng, J. Am. Chem. Soc.,2010,132,11856.
    [20]D. V. Bavykin, J. M. Friedrich, F. C. Walsh, Adv. Mater,2006,18,2807.
    [21]Q. Chen, L.-M. Peng, Int. J. Nanotechnol.,2007,4,44.
    [22]H. H. Ou, S. L. Lo, Sep. Purif. Technol.,2007,58,179.
    [23]D. V. Bavykin, A. A. Lapkin, P. K. Plucinski, J. M. Friedrich, F. C. Walsh, J. Phys. Chem. B,2005,109,19422.
    [24]S. H. Lim, J. Luo, Z. Zhong, W. Ji, J. Lin, Inorg. Chem.,2005,44,4124.
    [25]L. Schlapbach, A. Ziittel, Nature,2001,414,353.
    [26]Z. K. Zheng, B. B. Huang, X. Y Qin, X. Y Zhang, Y. Dai, Chem. Eur. J.,2010, 16,11266.
    [27]C.-C. Tsai, H. Teng, Chem. Mater.,2004,16,4352.
    [28]S. Sahoo, A. K. Arora, V. Sridharan, J. Phys. Chem. C,2009,113,16927.
    [29]X. Y. Yang, C. Salzmann, H. H. Shi, H. Z. Wang, M. L. H. Green, T. C. Xiao, J. Phys. Chem. A,2008,112,10784.
    [30]J. B. Lu, Y. Dai, H. Jin, B. B. Huang, Phys. Chem. Chem. Phys.,2011,13,18063.
    [31]M. S. Lazarus, T. K. Sham, Chem. Phys. Lett.,1982,92,670.
    [32]M. Batzill, E. H. Morales, U. Diebold, Chem. Phys.,2007,339,36.
    [33]G. Liu, H. G. Yang, X. W. Wang, L. Cheng, H. F. Lu, L. Z. Wang, G. Q. Lu, H.-M. Cheng, J. Phys. Chem. C,2009,113,21784.
    [34]Z. S. Lin, A. Orlov, R. M. Lambert, M. C. Payne, J. Phys. Chem. B,2005,109, 20948.
    [35]A. Riss, T. Berger, H. Grothe, J. Bernardi, O. Diwald, E. Knolzinger, Nano. Letters,2007,7,433.
    [36]D. V. Bavykin, M. Carravetta, A. N. Kulak, F. C. Walsh, Chem. Mater.,2010,22, 2458.
    [37]T. Gao, H. Fjellvag, P. Norby, Inorg. Chem.,2009,48,1423.
    [38]Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C. Yan, Z. G Zou, J. Am. Chem. Soc.,2010,132,14385.
    [39]K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, Pure Appl. Chem.,1985,57,603.
    [40]J. Yu, S. Liu, H. Yu, J. Catal.,2007,249,59.
    [41]G. Kresse, J. Furthmuller, Phys. Rev. B:Condens. Matter,1996,54,11169.
    [42]J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, C. Fiolhais, Phys. Rev. B:Condens. Matter,1992,46,6671.
    [43]J. P. Perdew, K. Bruke, M. Ernzerhof, Phys. Rev. Lett.,1996,77,3865.
    [44]H. J. Monkhorst, J. D. Pack, Phys. Rev. B:Solid State,1976,13,5188.
    [45]R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science,2001,293, 269.
    [46]W. Choi, A. Termin and M. R. Hoffmann, J. Phys. Chem.,1994,98,13669.
    [47]R. Sasikala, A. Shirole, V. Sudarsan, T. Sakuntala, C. Sudakar, R. Naik, S. R. Bharadwaj, Int. J. Hydrogen Energy,2009,34,3621.
    [48]D. C. Cronemeyer, Phys. Rev.,1959,113,1222.
    [49]I. Justicia, P. Ordejon, G. Canto, J. L. Mozos, J. Fraxedas, G. A. Battiston, R. Gerbasi, A. Figueras, Adv. Mater.,2002,14,1399.
    [50]F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng J. Am. Chem. Soc., 2010,132,11856.
    [51]T. L. Thompson, J. T. Yates, Chem. Rev.,2006,106,4428.
    [52]M.Y. Xing, J. L. Zhang, F. Chen, B. Z. Tian, Chem. Commun.,2011,47,4947.
    [53]A. Teleki, S. E. Pratsinis, Phys. Chem. Chem. Phys.,2009,11,3742.
    [54]K. Komaguchi, T. Maruoka, H. Nakano, I. Imae, Y. Ooyama, Y. Harima, J. Phys. Chem. C,2010,114,124.
    [55]L. Q. Jing, B. F. Xin, F. L. Yuan, L. P. Xue, B. Q. Wang, and H. G. Fu, J. Phys. Chem. B 2006,110,17860-17865.
    [56]Y. Zhao, C. Z. Li, X. H. Li, F. Gu, H. L. Du, L. Y. Shi, Appl. Catal. B:Environ., 2008,79,208.
    [57]G. Marci, V. Augugliaro, M. J. Munoz, J. Phys. Chem. B,2001,105,1033.
    [58]G. Liu, H. G. Yang, X. W. Wang, L. N. Cheng, H. F. Lu, L. Z. Wang, G. Q. Lu, H.-M. Cheng, J. Phys. Chem. C 2009,113,21784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700