17α-甲基睾酮和三丁基锡氧化物暴露对稀有鮈鲫的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过环境内分泌干扰物17α-甲基睾酮(17α-MT)和三丁基锡氧化物(TBTO)对稀有鮈鲫(Rare Minnow,Gobiocypris rarus)不同生命阶段的暴露,研究它们在环境浓度范围内对稀有鮈鲫的影响,从生长、组织学和卵黄蛋白原含量方面探讨对稀有鮈鲫的内分泌干扰效应和生物毒性,并比较稀有鮈鲫不同生命阶段对内分泌干扰物暴露检测的敏感性,主要内容如下:
     在实验室模拟自然环境使用不会带来污染的材料和设备建立了稀有鮈鲫流水养殖系统和流水暴露系统,符合美国环境保护局关于内分泌干扰物生物检测的实验标准,探索和规范了稀有鮈鲫培育方法,为实验室进行鱼类毒理学试验提供了适合的试验材料,保证了实验结果的准确性和可靠性。
     稀有鮈鲫不同生命阶段的暴露表明:在胚胎发育阶段,17α-MT暴露后稀有鮈鲫胚胎发育没有延缓,没有胚胎死亡现象,17α-MT暴露对稀有鮈鲫胚胎发育没有生物毒性;在性分化阶段和未成熟至成熟阶段,17α-MT能促进雄性稀有鮈鲫的性腺发育,表现出雄激素效应,50ng/L以上浓度的17α-MT可诱导性分化阶段稀有鮈鲫血浆中产生卵黄蛋白原,可能是17α-MT转变为17α-ME而表现出类雌激素效应,17α-MT暴露后没有对此阶段稀有鮈鲫的生长产生影响,对鳃、肝和肾组织没有细胞毒性;在成熟阶段,雌性稀有鮈鲫血浆卵黄蛋白原含量随17α-MT浓度增加而下降,稀有鮈鲫体内卵黄蛋白原的合成受到抑制,表现出内分泌干扰效应,17α-MT暴露后对稀有鮈鲫生长没有影响。
     TBTO对稀有鮈鲫各生命阶段暴露后,在胚胎发育阶段没有表现出内分泌干扰效应和生物毒性,稀有鮈鲫胚胎发育没有受到抑制,没有胚胎死亡现象,所有胚胎都能正常发育;在性分化阶段,TBTO对稀有鮈鲫的精巢发育有促进作用,表现出类雄激素效应,稀有鮈鲫的鳃上皮细胞增生,肝细胞出现空泡化,肾小管上皮细胞出现增生、肥大,对各组织表现出较强的生物毒性,TBTO暴露后没有对此阶段稀有鮈鲫的生长造成影响;在未成熟至成熟阶段和成熟阶段,16ng/L以上浓度的TBTO暴露后稀有鮈鲫肝脏受到一定的损伤,肝细胞出现空泡化,表现出生物毒性,TBTO暴露后没有对稀有鮈鲫体内卵黄蛋白原合成产生影响,TBTO暴露后没有对未成熟至成熟和成熟阶段稀有鮈鲫生长产生影响。
     比较稀有鮈鲫不同生命阶段暴露结果,发现不同生命阶段对17α-MT和TBTO暴露的敏感性不同,性分化阶段为最敏感阶段,其次为未成熟阶段和成熟阶段,胚胎发育阶段对内分泌干扰物的敏感性较差,不适合进行内分泌干扰物测试。TBTO暴露后稀有鮈鲫鳃和肝脏的损伤严重,可以作为检测环境内分泌干扰物毒性效应的组织器官。
The experiment was conducted to evaluate the impact of environmental endocrine disruptors, 17α-Methyltestosterone and Bis(tributyltin)oxide, on biology of rare minnow (Gobiocypris rarus). The fish, at different life stages, was exposed to 17α-Methyltestosterone and Bis(tributyltin)oxide, at concentration levels closed to environmental conditions. Embryonic development, growth, hispathology and vitellogenine analysis was used to investigate endocrine disruption effect and biotoxicity of 17α-Methyltestosterone and Bis(tributyltin)oxide, and comparative sensitivity of the fish at different life stages.Water flow through controlled system and the exposure system was set up in laboratory simulating natural environment. For the sake of accuracy, the materials and equipment were made pollution free in accordance with endocrine disruptor's bioassay standard of US Environmental Protection Agency. The culture methodology of rare minnow was established according to laboratory scale, which provided a system enough for fish toxicology experiments. The relevant conditions were adjusted so as to assure the accuracy and reliability of results.The results of present research endeavor reveal that 17α-Methyltestosterone has no toxic effect upon the embryonic development of rare minnow. During experimental exposure, fish embryo developed normally and no embryonic mortality was observed. At sexual differentiation stage and fry-to-fish stage of rare minnow, 17α-Methyltestosterone showed androgenetic effect and promoted gonad development. Plasma vitellogenin was induced during sexual differentiation stage at exposure concentration higher than 50ng/L. It may have been caused due to conversion of 17α-Methyltestosterone into 17α-Methylestradiol, which showed estrogen effect. The growth of rare minnow was not affected and there was no cytotoxicity in hepatic, renal and gill tissues after exposure to 17α-Methyltestosterone. Increased exposure concentration of 17α-Methyltestosterone showed a negative impact on the plasma vitellogenine contents of adult female fish. Vitellogenine synthesis was suppressed due to endocrine disruption effect of 17α-Methyltestosterone but with no impact on the growth of adult fish.The results of exposure to Bis(tributyltin)oxide showed that also, there was no endocrine disruption and biotoxicity observed at embryonic development stage of rare minnow. The embryo development was not inhibited, and no embryo mortality was observed. All the embryos developed normally. At sexual differentiation stage and fry-to-fish stage of rare minnow, Bis(tributyltin)oxide showed androgen effect spermary development of the fish was promoted. The epithelial cells of gills and nephric tubules proliferated and showed hypertrophic growth. In adult fish, at exposure concentration higher than 16ng/L, hepatic tissues showed lesions and hepatic cells were found to be vacuolar. The results indicate that Bis(tributyltin)oxide had a strong biotoxic impact upon the fish tissues. Vitellogenine synthesis and growth of the fish were not affected throughout the exposure duration.
     Comparative sensitivity at different life stages of rare minnow to exposure of environmental endocrine disruptors, 17α-Methyltestosterone and Bis(tributyltin)oxide, was different at every stage. Sexual differentiation stage of rare minnow was found to be the most sensitive stage, followed by the fry and adult stage. Sensitivity of embryonic development stage of rare minnow to exposure of environmental endocrine disruptors was not significant. Hepatic and gill tissue were badly affected by the exposure to Bis(tributyltin)oxide concluding that these tissues could be used as test specimen to investigate the biotoxic effect of exposure to environmental endocrine disruptors.
引文
1.常剑波,王剑伟,曹文宣.稀有鮈鲫胚胎发育的研究.水生生物学报,1995,2:97-103
    2.出云逾明(日).威胁人类存亡的定时炸弹——环境荷尔蒙.深圳:海天出版社,1999
    3.王剑伟.稀有鮈鲫的繁殖生物学.水生生物学报,1992,2:165-174
    4.王磊,王旭东,刘莹,段文松.环境荷尔蒙对水体的污染及水污染控制技术的新课题.西安建筑科技大学学报,2005,37:69-73
    5.周群芳,江桂斌,刘稷燕.三丁基锡化合物对稀有鮈鲫的急慢性毒理研究.中国科学(B辑),2003,2:150-156
    6.周群芳.有机锡化合物形态分析及其生态毒理学研究.博士学位论文,中科院研究生院,2002,106
    7.周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单.中国环境监测,1990,4:1-3
    8.查金苗.鱼类实验动物建立与环境内分泌干扰物长期慢性毒性机理的研究.博士学位论文,中科院研究生院,2005,50
    9. Ackermann G E, Schwaiger J, Negele R D, Fent K. Effects of long-term nonylphenol exposure on gonadal development and biomarkers of estrogenicity in juvenile rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol, 2002, 60:203-221
    10. Adams S M, McLean R B. Estimation of largemouth bass, micropterus-salmoides lacepede, growth using the liver somatic index and physiological variables. Fish Biol, 1985, 2:111-126
    11. AFS. Early mortality syndrome: reproductive disruptions in fish in the Great Lakes, New York Finger Lakes, and the Baltic Region. Symposium as part of the 126th annual meeting of the American fisheries society, Dearborn, Michigan, USA. 1996, August 26-29, Abstract volume, 172
    12. Allner B, Wegener G; Knacker T, Stahlschmidt-Allner P. Electrophoretic determination of estrogen-induced protein in fish exposed to synthetic and naturally occurring chemicals. Sci Total Environ, 1999, 233:21-30
    13. Andersen L, Holbech H, Gesso A, Norrgren L, Petersen G I. Effects of exposure to 17a-ethinylestradiol during early development on sexual differentiation and induction of vitellogenin in zebrafish (Danio rerio). Comp Biochem Physiol C, 2003, 134:365-374
    14. Ankley G T, Jensen K M, Kahl M D, Korte J J, Makynen E A. Description and evaluation of a short-term reproduction test with the fathead minnow (Pimephales promelas). Environ Toxicol Chem, 2001, 20:1276-1290
    15. Arcand-Hoy L D, Benson W H. Fish reproduction: an ecologically relevant indicator of endocrine disruption. Environ Toxicol Chem, 1998, 1:49-57
    16. Boudreau M, Courtenay S C, MacLatchy D L, Berube C H, Hewitt L M, Van Der Kraak G J. Morphological abnormalities during early-life development of the estuarine mumrnichog, Fundulus heteroclitus, as an indicator of androgenic and anti-androgenic endocrine disruption. Aquatic Toxicol, 2005, 71:357-369
    17. Carson R. Silent spring [M]. New York: Houghton Mifflin, 1962
    18. Chikae M, Ikeda R, Hasan Q, Morita Y, Tamiya E. Effects of tamoxifen, 17α-ethynylestradiol, flutamide, and methyltestosterone on plasma vitellogenin levels of male and female Japanese medaka (Oryzias latipes). Environ Toxicol Pharm, 2004, 17:29-33
    19. Colborn T, Dumanoski D, Myers J P. Our stolen future. New York: Dutton, 1996
    20. De Metrio G. Corriero A, Desantis S, Zubani D, Cirillo F, Deflorio M, Bridges C R, Eicker J, de la Serna J M, Megalofonou P,Kime D E. Evidence of a high percentage of intersex in the Mediterranean swordfish (Xiphias gladius L.). Marine Pollut Bull, 2003, 3: 358-361
    
    21. Denny J S. Guidelines for the culture of fathead minnows for use in toxicity tests. Environmental Research Laboratory, Duluth, Minn.Epa/600/3-87/001. 1987
    
    22. European Commission DGX 11, Report EUR 17549, European Workshop on the Impact of Endocrine Disrupters on Human Health and Wildlife, Brussels. 1997
    
    23. Evans C J, Karpel S. Organotin compounds in morden technology, Elsevier, Amsterdam, 1985: 1-279
    
    24. Fairchild W L, Swansburg E O, Arsenault J T, Brown S B. Does an association between pesticide use and subsequent declines in catch of Atlantic salmon (Salmo salar) represent a case of endocrine disruption? Environ Health Perspect, 1999, 107: 349-358
    
    25. Fenske M, van Aerle R, Brack S, Tyler C R, Segner H. Development and validation of a homologous zebrafish (Danio rerio Hamilton-Buchanan) vitellogenin enzyme-linked immunosorbent assay (ELISA) and its application for studies on estrogenic chemicals. Comp Biochem Physiol C, 2001, 129: 217-232
    
    26. Fry D M. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect, 1995, 103:165-171
    
    27. Gac F L, Thomas J L, Mourot B, Loir M. Vivo and in vitro effects of prochloraz and nonylphenol ethoxylates on trout spermatogenesis. Aquatic Toxicol, 2001, 3-4: 187-200
    
    28. Gibbs P E, Bryan G W. Reproductive failure in populations of the dogwhelk, Nucella lapillus, caused by imposex induced by tributyltin from antifouling paints. J Mar Biol Assoc UK, 1986, 66: 767-777
    
    29. Gibbs P E, Pascoe P L, Bryan G W. Tributyltin-induced imposex in stenoglossan gastropods: pathological effects on the female reproductive system. Comp Biochem Physiol, 1991, 1: 231-235
    
    30. Granmo A, Ekelund R, Sneli J A, Berggren M, Svavarsson J. Effects of antifouling paint components (TBTO, copper and triazine) on the early development of embryos in cod (Gadus morhua L.). Mar Pollut Bull, 2002, 44: 1142-1148
    
    31. Grinwis G C M, Boonstra A, van den Brandhof E J, Dormans J A M A, Engelsma M, Kuiper R V, van Loveren H, Wester P W, Vaal M A, Vethaak A D, Vos J G Short-term toxicity of bis(tri-n-butyltin)oxide in flounder (Platichthys flesus): Pathology and immune function. Aquatic Toxicol, 1998, 42: 15-36
    
    32. Hahlbeck E, Katsiadaki I, Mayer I, Adolfsson-Erici M, James J, Bengt-Erik Bengtsson. The juvenile three-spined stickleback (Gasterosteus aculeatus L.) as a model organism for endocrine disruption II-kidney hypertrophy, vitellogenin and spiggin induction. Aquatic Toxicol, 2004, 4: 311-326
    
    33. Hansen P D, von Westernhagen H, Rosenthal H. Chlorinated hydrocarbons and hatching success in Baltic Herring spring spawners. Mar Environ Res, 1985, 15: 59-76
    
    34. Holm G, Norrgren L, Linden O. Reproductive and histopathological effects of long-term experimental exposure to bis(tributyltin)oxide(TBTO) on the three-spined stickleback Gasterosteus aculeatus Linnaeus. Fish Biol, 1991, 38: 373-386
    
    35. Hornung M W, Jensen K M, Korte J J, Kahl M D, Duehan E J, Denny J S, Henry T R, Ankley G T. Mechanistic basis for estrogenic effects in fathead minnow (Pimephales promelas) following exposure to the androgen 17α -methyltestosterone: conversion of 17 α-methyltestosterone to 17 α -methylestradiol. Aquat Toxicol, 2004, 66: 15-23
    
    36. Jensen K M, Korte J J, Kahl M D, Pasha M S, Ankley G T. Aspects of basic reproductive biology and endocrinology in the fathead minnow (Pimephales promelas). Comp Biochem Physiol C. 2001, 1: 127-141
    37. Kang I J, Yokota H, Oshima Y, Tsuruda Y. Hano T, Maeda M, Imada N, Tadokoro H, Honjo T. Effects of 4-nonylphenol on reproduction of Japanese medaka (Oryzias latipes). Environ Toxicol Chem, 2003, 22: 2438-2445
    
    38. Katsiadaki I, Scott A P, Hurst M R, Matthiessen P, Mayer I. Detection of environmental androgens: a novel method based on enzyme-linked immunosorbent aeeay of spiggin, the Stickleback (Gasterosteus aculeatus) glue protein. Environ Toxicol Chem, 2002, 21: 1946-1954
    
    39. Kavlock R J. Research needs for risk assessment of health and environmental effects of endocrine disruptors: A review of the U. S. EPA-sponsored workshop. Environ Health Perspect, 1996, 104: 715-740
    
    40. Kime D E, Nash D. A strategy for assessing the effects of xenobiotics on fish reproduction. Sci Total Environ, 1999, 1-2: 3-11
    
    41. Kris Van den Belt, Verheyen R, Witters H. Effects of 17alphaethynylestradiol in a partial life-cycle test with zebrafish (Danio rerio): effects on growth, gonads and female reproductive success. Sci Total Environ, 2003, 309: 127-137
    
    42. Kris Van den Belt, Wester P W, van der Ven Loe T M, Verheyen R, Witters H. Effects of ethynylestradiol on the reproductive physiology in zebrafish (Danio Rerio): time dependency and reversibility. Environ Toxicol Chem, 2002, 21: 767-775
    
    43. Lahnsteiner F, Berger B, Weismann T, Patzner R A. Determination of semen quality of the rainbow trout, Oncorhynchus mykiss, by sperm motility, seminal plasma parameters, and spermatozoal metabolism. Aquaculture, 1998,1-2: 163-181
    
    44. Lange R, Hutchinson T H, Croudace C P, Siegmund F. Effects of the synthetic estrogen 17 α -ethinylestradiol on the life cycle of the fathead minnow (Pimephales promelas). Environ Toxicol Chem, 2001, 20: 1216-1227
    
    45. Larry N. National Center for Environmental Health, Centers for Disease Control & Prevention, Public Health Service, DHHS, Atlanta, GA, Private Communication, August 25,1996
    
    46. LeBlane G A, Brin J. Chronic toxicity of environmental contaminants: sentinels and biomarkers. Environ Health Perspect, 1997, 1: 65-80
    
    47. Lignot J H, Pannier F, Trilles J P, Charmantier G Effects of tributyltin oxide on survival and osmoregulation of the shrimp Penaeus japonicus (Crustacea, Decapoda). Aquatic Toxicol, 1998, 41: 277-299
    
    48. Matthiessen P, Allen Y, Allchin C R, Feist S W, Kirby M F, Law R J, Scott A P, Thain J E, Thomas K V. Oestrogenic endocrine disruption in folunder (Platichthys flesus) from United Kingdom estuarine and marine waters. Sci Ser Tech Pep, 1998, 107: 48
    
    49. McAllister B G, Kime D E. Early life exposure to environmental levels of the aromatase inhibitor tributyltin causes masculinisation and irreversible sperm damage in zebrafish (Danio rerio). Aquat Toxicol, 2003, 65: 309-316
    
    50. Moav B, Liu Z J, Caldovic L D, Gross M L, Faras A J, Hackett P B. Regulation of expression of transgenes in developing fish. Transgenic Research, 1993, 2: 153-161
    
    51. Nagler J J, Cyr D G. Exposures of male American plaice (Hippoglossoides platessoides) to contaminated marine sediment decrease the hatching success of their progeny. Environ Toxicol Chem, 1997, 16: 1733-1738
    
    52. Nishi K, Chikae M, Hatano Y, Mizukami H, Yzmashita M, Sakakibara R, Tamiya E. Development and application of a monoclonal antibody-based sandwich ELISA for quantification of Japanese medaka (Oryzias latipes) vitellogenin. Comp Biochem Physiol C, 2002, 132: 161-169
    
    53. OECD. (Organization for Economic Co-operation and Development). OECD Guidelines for Testing of Chemicals. OECD, Paris. 1993
    54. OECD. Reports of the OECD expect consultation on testing in fish- EDF2. Tokyo. OECD. Rue Andre Pascal, Paris. March 2000
    
    55. Oern S, Gessbo A, Steinholz A, Norrgren L. Zebrafish (Danio rerio)—a candidate to evaluate endocrine disrupting chemicals. In: Zebrafish for Testing Endocrine Disrupting Chemicals, TemaNord 2000, 555. Nordic Council of Ministers, Copenhagen, Denmak, 47-62
    
    56. Orn S, Holbech H, Madsen T H, Norrgren L, Petersen G I. Gonad development and vitellogenin production in zebrafish (Danio rerio) exposed to ethinylesstradiol and methyltestosterone. Aquatic Toxicol, 2003, 65: 397-411
    
    57. Panter G H, Hutchinson T H, Lange R, Lye C M, Sumpter J P, Tyler C R, Zerulla M. Development of a juvenile fish screening assay for the detection of endocrine active substances. CEFIC-EMSG Aquatic Research Programme. European Chemical Industry Council (CEFIC). Progress Report Project A. 2000, 1-63
    
    58. Panter G H, Hutchinson T H, Nge R L, Lye C M, Sumpter J, Zerulla M, Tyler C R. Utility of a juvenile fathead minnow screening assay for detecting (anti-) estrogenic substances. Environ Toxicol Chem, 2002, 21: 319-326
    
    59. Papoulias D M, Noltie D B, Tillitt D E. An in vivo model fish system to test chemical effects on sexual differentiation and development: exposure to ethinyl estradiol. Aquatic Toxicol, 2000, 48: 37-50
    
    60. Pastva S D, Villalobos S A, Kannan K, Ciesy J P. Morphological effects of bisphenol-A on the early life stages of medaka (Oryzias latipes). Chemosphere, 2001, 45: 535-541
    
    61. Pawlowski S, Sauer A, Shears J A, Tyler C R, Braunbeck T. Androgenic and estrogenic effects of the synthetic androgen 17 α -methyltestosterone on sexual development and reproductive performance in the fathead minnow (Pimephales promelas) determined using the gonadal recrudescence assay. Aquatic Toxicol, 2004, 68: 277-291
    
    62. Purdom C E, Hardiman P A, Bye V J. Estrogenic effects from sewage treatment works. Chem Ecol, 1994, 8: 275-285
    
    63. Rinchard J, Dabroeski K, Garcia-Abiado M A, Ottobre J. Uptake and deoletion of plasma 17 α -methyltestosterone during induction of masculinization in muskellunge, Esox masquinongy: Effect on plasma steroids and sex reversal. Steroids, 1999, 64: 518-525
    
    64. Scholz S, Gutzeit H O. 17-alpha-ethinylestradiol affects reproduction, sexual differentiation and aromatase gene expression of the medaka (Oryzias latipes). Aquatic Toxicol (Amsterdam), 2000, 4: 363-373
    
    65. Schwaiger J, Bucher F, Ferling H, Kalbfus W, Negele R D. A prolonged toxicity study on the effects of sublethal concentrations of bis(tri-n-butyltin)oxide (TBTO): histopathological and histochemical findings in rainbow trout (Oncorhynchus mykiss). Aquatic Toxicol, 1992, 1: 31-48
    
    66. Seki M, Yokota H, Matsubara H, Maeda M, Tadokoro H, Kobayashi K. Fish full life-cycle testing for androgen methyltestosterone on medaka (Oryzias Latipes). Environ Toxicol Chem, 2004, 23: 774-781
    
    67. Sharpe R L, MacLatchy D L, Courtenay S C, Van Der Kraak G J. Effects of a model androgen (methyl teststerone) and a model anti-androgen (cyproterone accetate) on reproductive endocrine endpoints in a short-term adult mummichog (Fundulus heterclitus) bioassay. Aquatic Toxicol, 2004, 67: 203-215
    
    68. Sheahan D A. Bucke D, Matthiessen P, Sumpter J P, Kirby M F, Neall P, Waldock M. The effects of low levels of 17alpha-ethylnylestradiol upon plasma vitellogenin levels in male and female rainbow trout, Oncorhynchus mykiss, in sublethal and chronic effects of pollutants on freshwater fish. R. Muller. R. Lloyd, Eds., Fishing News Books. London. 1994. 99-112
    69. Silversand C, Hyllner S J, Haux C. Isolation, immunochemical detection and observation of the instability of vitellogenin from four teleosts. Exp Zool, 1993, 267: 587-597
    
    70. Takahashi A, Higashitani K, Yakou Y, Saitou M, Tamamoto H, Tanaka H. Evaluating bioaccumulation of suspected endocrine disruptors into periphytons and benthos in the Tama River. Water Sci Technol, 2003, 47(9): 71-76
    
    71. Tammy J, US EPA, Las Vegas N V. Private Communication, December 12, 1996
    
    72. Todd N E, Van Leeuwen M. Effects of sevin (Carbaryl insecticide) on early life stages of zebrafish (Danio rerio). Ecotoxicol Environ safe, 2002, 53: 267-272
    
    73. Tyler-Schroeder D B. Use of the grass shrimp (Palaemonetes pugio) in a life cycle toxicity tests[R]. Philadelphia, PA, USA: American Society for Testing and Materials, 1979, 159 -170
    
    74. USEPA. Environmental Research Laboratory, Gulf Breeze, FL. Effects of the Synthetic Pyrethroids AC 222,705, Permethrin and Fenvalerate on Sheepshead Minnows in Early Life Stage Toxicity Tests, EPA-600/J-83-106. 1983
    
    75. USEPA. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. U.S. Environmental Protection Agency. EPA-821-R-02-012. 2002
    
    76. USEPA. Revised Draft Detailed Review Paper on Fish Screening Assays for Endocrine Disruption. Washington, DC 20460. 2003
    
    77. USEPA. Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms. U. S. Environmental Protection Agency. EPA-821-R-02-013, 2002
    
    78. Verslycke T, Vandenbergh G F, Versonnen B, Arijs K, Janssen C R. Induction of vitellogenesis in 17 α -ethinylestradiol-exposed rainbow trout (Oncorhynchus mykiss): a method comparison. Comp Biochem Physiol. Part C, 2002, 132: 483-492
    
    79. Vuorinen P J, Keinanen M, Brouwer A, Vartiainen T, Spenkelink A, Schipholt I. Retinods and thyreoid hormones and toxicant loads with the occurrence of the M74 syndrome in Baltic salmon. In: Proceeding Third Finnish Conference of Environmental Sciences, Jyvaskyla Ambiotica, paginanr. 1997
    
    80. Ward G S, Gramm G C, Parrish P R, Trachman H, Slesinger A. Bioaccumulation and chronic toxicity of bis(tributyltin)oxide(TBTO): tests with a saltwater fish. In: Branson D R., Dickson K L. (Eds), Aquatic Toxiciology and Hazard Assessment: Fourth Conference, ASTM STP 737. American Society for Testing and Materials, 183-200
    
    81. Weber L P, Hill R L, Janz D M. Developmental estrogenic exposure in zebrafish (Danio rerio): II. Histological evaluation of gametogenesis and organ toxicity. Aquatic Toxicol, 2003, 63: 431-446
    
    82. Wester P W, Canton J H, Van Iersel A A J, Krajnc E I, Vaessen H A M G The toxicity of bis(tri-n-butylin)oxide(TBTO) and di-n-butyltindichloride(DBTC) in small fish species Oryzias latipes (medaka) and Poecilia reticulate (guppy). Aquat Toxicol, 1990, 16: 53-72
    
    83. World Wildlife Fund Canada [Online] Available http://www.greatlakes.nwf.org: 80/toxics/hcclint.htm, Feb. 11, 1997
    
    84. Yamamoto T. Medaka (Killifish): Biology and Strains Keigaku Pub. Co., Tokyo. 1975
    
    85. Yamamoto T. Permanency of hormone-induced reversal of sex differentiation in the medaka, Oryzias latipes.Anno Zool Jpn.1968, 41: 172-179
    
    86. Yamazaki F. Sex control and manipulation in fish. Aquaculture, 1983, 33: 329-354
    
    87. Yeh S L, Kuo C M, Ting Y Y, Chang C F. Androgens stimulate sex change on protogytous grouper, Epinephelus coioides: spawning performance in sex-changed males. Comp. Biochem Physiol. Part C, 2003, 135: 375-382
    
    88. Yokota H, Seki M, Maeda M, Oshima Y, Tadokoro H, Honjo T, Kobayashi K. Life-cycle toxicity of A-nonylphenol to medaka (Oryzias Latipes). Environ Toxicol Chem, 2001, 11:2552-2503
    89. Zanuy S, Carillo M, Mateos J, Trudeau V, Kah O. Effects of sustained administration of testosterone in pre-pubertal sea bass (Dicentrarchus labrax L.). Aquaculture, 1999, 177:21-35
    90. Zerulla M, Lange R, Steger-Hartmann T, Panter G, Hutchinson T, Dietrich D R. Morphological sex reversal upon short-term exposure to endocrine modulators in juvenile fathead minnow (Pimephales promelas). Toxicol Lett, 2002, 131:51-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700