碳纳米管负载四氧化三铁复合纳米粒子的制备及其对17α-甲基睾酮的类Fenton降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,环境激素污染已引起人们的广泛关注,环境激素危害已成为全球性的重大环境问题。目前,非均相Fenton催化作为一种高级氧化技术正在被广泛研究用来催化降解有机污染物。开发一种易分离回收,铁流失量小,可重复使用,催化性能稳定,对水中环境激素有较好吸附能力的非均相Fenton催化剂己成为Fenton催化研究的一个重要方向。
     本论文通过在表面改性的MWCNTs上负载磁性四氧化三铁(Fe3O4)纳米晶体,得到Fe3O4/MWCNTs纳米复合粒子催化剂;以被广泛使用的人工环境激素甲基睾酮(MT)为目标物,研究了催化剂对水中痕量MT的吸附性能,在非均相Fenton, UV-Fenton, MW-Fenton体系中,详细考察了影响MT降解的因素,探讨了MT降解的反应机理。主要内容归纳如下:
     (1)采用多种氧化法对MWCNTs进行表面改性,通过液相化学沉积反应,在改性的MWCNTs表面生长出规则的正八面体构型的磁性Fe3O4纳米晶体,形成负载牢固的纳米复合物Fe3O4/MWNTs。所负载的Fe3O4粒子直径在40-100nm之间;复合物的比表面积为20.58m2/g,分散性能好,有较强的磁性,便于回收。
     (2)考察了Fe3O4/MWCNTs对水中痕量MT吸附能力。常温下,吸附剂用量为2gL-1,MT的初始浓度为212μgL-1时,Fe3O4/MWCNTs可吸附水中约90%的MT,而同样浓度的Fe3O4只能吸附10%左右。pH值的变化对其吸附能力无明显影响。在Fe3O4/MWCNTs-H2O2体系中,当pH=5.0;T=20℃,H2O2初始浓度为5.3mmol L-1,Fe3O4/MWNTs用量为2gL-1的条件下,初始浓度为212μgL-1的MT在8h内可降解85.9%。pH值的变化对Fe3O4/MWCNTs-H2O2体系降解MT的影响明显。在pH值2.5至8范围内,随着pH值的降低,MT的降解速率明显加快。Fe3O4/MWCNTs在Fenton反应中显示了良好的催化稳定性,在pH值为3.5,H2O2浓度为20mmol L-1时,铁流失量低于1mgL-1。7次重复使用后对MT的8h降解率为79.4%。非均相Fenton反应是MT降解的主要路径,而由催化剂的铁流失导致的溶液中均相Fenton反应是MT降解的次要路径。
     (3)按照准一级反应模型分别计算了MT和H2O2在Fe3O4/MWCNTs-H2O2体系中的降解速率和分解速率,估算了反应—扩散模量,认为反应物在催化剂表面的化学反应过程是整个反应的控制步骤。MT在催化剂表面附近微区内的富集有利于其与H2O2竞争·OH,从而提高了MT的降解效率。根据主要中间体的可能分子结构以及采用理论计算得到的MT分子的FEDs和C-H、O-H的键离解焓(BEDs),推测了·OH与MT分子首先发生加成和抽氢反应的位置。ELISA实验表明:Fenton氧化在降低MT的浓度的同时,也相应降低了反应体系雄激素活性。
     (4)微波能加速MT的降解。相比单纯的非均相Fenton, UV的协同作用可使MT更快转化为小分子化合物。紫外辐射强度的增加能加快MT的降解。
In recent years, the environmental hormone pollution has attracted much attention among the people. The endangers of environmental hormones to the living things have become one of the most important environmental problems in the world at present. Nowadays, as an important advance oxidation processes (AOPs), heterogeneous Fenton method is being widely studied for the degradation of organic pollutants. To develop a heterogeneous Fenton catalyst which has good structural stability, little iron leaching, simple separation, stable catalytic activity in repetitive reaction cycle is an important trend in the Fenton catalysis.
     A novel Fenton oxidation catalyst, the ferroferric oxide nanoparticles decorated multiwalled carbon nanotubes (Fe3O4/MWCNTs) was successfully prepared. The widely used artificial hormone17a-methyltestosterone (MT) was chosen as a target contaminant. The adsorption capacity of the nanocomposites for trace MT in water was studied. The catalytic property of the catalyst in heterogeneous Fenton, UV-Fenton and MW-Fenton systems was investigated. The degradation mechanism and the reaction conditions that influence the MT degradation efficiency were discussed.
     (1) The surface of the MWCNTs was functionized by several oxidation methods. The regular growth of ferroferric oxide crystal on MWCNTs was achieved by in situ oxidation of Fe2+in hot alkaline solution. Inverse-spinel ferroferric oxide nanoparticles decorated MWCNTs (Fe3O4/MWCNTs) was obtained. The diameters of the loaded octahedron Fe3O4nanoparticles range from40to100nm. The specific surface area of the catalyst was20.58m2g-1. The catalyst has good dispersion property, strong magnetism and convenient recovery.
     (2) The adsorption capacity of Fe3O4/MWCNTs for trace MT in water was investigated. About90%MT was absorbed onto the catalyst when the conditions were [MT]=212μg L-1,[Fe3O4/MWCNTs]=2gL-1, pH=7.0and T=20℃, and just about10%of MT was absorbed by the same amount of Fe3O4. The adsorption of MT on Fe3O4/MWCNTs or Fe3O4in aqueous solution had no significant change when pH ranged from3-10. The degradation efficiency of MT in8h was85.9%for the first oxidation when the initial conditions were [MT]=212μg L-1,[Fe3O4/MWCNTs]=2g L-1, pH=5.0,[H2O2]=5.3mmol L-1under normal temperature and pressure. The change of pH has significant influence on the degradation efficiency of MT. The degradation efficiencies increased with the initial pH decreasing in the wide pH range of8.0-2.5. The nanocomposites displayed good catalytic stability. The leached iron concentration was lower than20mmol L-1in8h degradation time when the initial conditions were [MT]=212μg L-1,[Fe3O4/MWCNTs]=2g L-1, pH=3.5,[H2O2]=20mmol L-1. The MT degradation performance on the reused catalyst showed a slight difference with the first oxidation cycle. The degradation efficiency of MT was79.4%for the seventh oxidation cycle. The homogeneous reaction by the leached iron species from the catalyst just made a very small contribution to the MT degradation. The heterogeneous Fenton-like oxidation reaction occurred on the catalyst surface was the main pathway of the MT degradation.
     (3) The MT degradation and H2O2analysis approximately followed a pseudo-first-order reaction in kinetics under degradation conditions. The reaction-diffusion modulus implied that the average rate of the reaction of MT and H2O2on the catalyst surface was far slower than its diffusion rate to the surface through the external film. Therefore, the intrinsic reaction on the oxide surface was expected to be the rate-limiting step for the degradation process. The enriched MT in the very near vicinity of the catalyst surface might lead to a more efficient·OH scavenging action when competed with H2O2. The degradation mechanism of MT by Fe3O4/MWCNTs catalysis was discussed on the basis of analysis of the intermediates and the theoretical calculation of frontier electron densities and bond dissociation enthalpies of C-H and O-H of MT molecule. The estrogenic activity of the treated water was investigated during the catalytic reactions by human androgen ELISA test. The results showed that Fe3O4/MWCNTs-H2O2system could not only degrade MT but also remove its androgenic activity.
     (4) The MT degradation could be accelerated by the coupling of MW radiation with the heterogeneous Fenton reaction. The coupling of UV radiation could make MT transformed to be smaller compounds faster. The degradation efficiency increased with the rising of the UV irradiation intensity.
引文
[1]Colborn T., Saal F. S. V., Soto A. M. Developmental Effects of Endocrine-Disrupting Chemicals in Wildlife and Humans. Environmental health perspectives,1993,101(5):378-384.
    [2]Daston G. P., Cook J. C., Kavlock R. J. Uncertainties for Endocrine Disrupters:Our View on Progress. Toxicological sciences.2003,74(2):245-252.
    [3]李剑,马梅,王子健.环境内分泌干扰物的作用机理及其生物检测方法.环境监控与预警,2010,2(3):18-22.
    [4]戴璇颖,徐世清,陈息林,等.环境激素对生物的影响及其预防措施.四川环境,2003,22(6):13-16.
    [5]Cook J. W., Dodds E. C., Hewtt C. L. A Synthetic Oestrus-Exciting Compound. Nature,1933, 131(3298):56-57.
    [6]Dodds E. C., Lawson W. Synthetic Oestrogenic Agents without the Phenanthrene Nucleus. Nature,1936,137(3476):996.
    [7]刘慧泉.食品中环境激素研究现状及监测分析.中国国境卫生检疫杂,2005,28(5):290-293.
    [8]Carson R., Darling L. Silent Spring. Boston: Houghton Mifflin Publish,1962.
    [9]王簃兰.环境内分泌干扰物对健康影响的研究进展.中国医师杂志,2003,5(1):1-2.
    [10]Colborn T., Dumanoski D., Myers J. P. Our Stolen Future:Are We Threatening Our Fertility, Intelligence and Survival? A Scientific Detective Story. New York:Dutton Books,1996.
    [11]Harrison P.T.C., Holmes P., Humfrey C.D.N. Reproductive health in humans and wildlife:are adverse trends assoeiated with environmental chemical exposure. The seience of the total environmental,1997,205(2-3):97-106.
    [12]Hutchinson T. H., Mathiessen P. Endocrine disruption in wildlife:identification and ecological relevance. The seience of the total environmental,1999,233(1-3):1-3.
    [13]Gillesby B.E., Zacharewski,T. R., Exoestrogens:mechanism of action and strategies for identification and assessment. Environmental toxicology and chemistry,1998,17(1):3-14.
    [14]Scott Alex U. K. industry prepares for tough rules. Chemical week,1998,160(2):22.
    [15]曹信孚.国外环境激素问题的研究动态.广州环境科学,2002,17(1):46-48.
    [16]国家环境保护总局政策法规司.中国缔结和签署的国际环境条约集.北京:学苑出版社, 1999,5-26.
    [17]国家环境保护总局国际合作司译.绿色全球年鉴(1999-2000).北京:中国环境科学出版社,2001,102-117.
    [18]姜成哲,张乾坤,许正斗,等.环境内分泌干扰物的安全性评价研究进展.中国比较医学杂志,2006,16(7):426-428.
    [19]丁晓妹,李向阳,张明泉.环境激素浅析环境科学与技术,2010,33(6E):144-149.
    [20]刘先利,刘彬,邓南圣.环境内分泌干扰物研究进展.上海环境科学,2003,22(1):57-63.
    [21]Semenza J. C., Tolbert, P. E., Rubin, C. H., et al. Reproductive toxins and alligator abnormalities at Lake Apopka, Florida. Environmental health perspectives,1997,105(10): 1030-1032.
    [22]Rollerova E., Urbancikova M. Estrogenic potential of environmental compounds. Biologia, 1999,54(6):625-634.
    [23]富英群,杨德文,侯咏.环境荷尔蒙的研究现状.中国国境卫生检疫杂,2005,28(2):112-115.
    [24]任仁,黄俊.哪些物质属于内分泌干扰物(EDCs)安全与环境工程.2004,11(3):7-10.
    [25]胡梦桑,陈毅斐,徐营.胚胎发育与环境激素的影响.中国组织工程研究与临床康复,2011,15(11):2059-2063..
    [26]Rudel R. Predicting health effects of exposure to compounds with estrogenic activity: methodological issues. Environmental health perspectives,1997,105(3):655-663.
    [27]Golden R. J., Noller K. L., Titus-Ernstoff L., et al. Environmental endocrine modulators and human health:an assessment of the biological evidence. Critical reviews in toxicology,1998, 28(2):109-227.
    [28]Diamanti-Kandarakis E., Bourguignon J. P., Giudice L. C., et al. Endocrine-disrupting chemicals:an Endocrine Society scientific statement. Endocrine reviews,2009,30(4): 293-342.
    [29]Zhu H. X., Zhang W. W., Zhuang Y. L., et al. Mifepristone as an Anti-Implantation Contraceptive Drug: Roles in Regulation of Uterine Natural Killer Cells during Implantation Phase. American journal of reproductive immunology,2009,61(1):68-74.
    [30]李丹丹,佟慧丽,杨丹,等.环境雌激素对胚胎发育的影响.东北农业大学学报,2009,40(5):135-139.
    [31]王祥川,孙彬,陈桂来,等.环境激素的毒害效应及其表观遗传机制.国际生殖健康/计划生育杂志,2011,30(3):243-246.
    [32]Pfaff D. W., Vasudevan N., Kia H. K., et al. Estrogens, brain and behavior: studies in fundamental neurobiology and observations related to women's health. Journal of steroid biochemistry and molecular biology,2000,74(5):365-373.
    [33]Hung C. H., Yangi S. N., Kuo P. L., et al. Modulation of cytokine expression in human myeloid dendritic cells by environmental endocrine-disrupting chemicals involves epigenetic regulation. Environmental health perspectives,2010,118(1):67-72.
    [34]Mustafa A., Holladay S. D., Goff M., et al. An enhanced postnatal autoimmune profile in 24 week-old C57BL/6 mice developmentally exposed to TCDD. Toxicology and applied pharmacology,2008,232(1):51-59.
    [35]Clotfelter E. D., Bell A. M., Levering K. R. The role of animal behavior in the study of endocrine-disrupting chemicals. Animal behavior,2004,68:665-676.
    [36]伍吉云,万祎,胡建英.环境中内分泌干扰物的作用机制.环境与健康杂志,2005,22(6):494-497.
    [37]张信连.环境内分泌干扰物对生物和人体健康的影响.国外医学(临床生物化学与检验学分册),2005,26(6):349-351.
    [38]徐涛,孙刚,房岩,胡子祎.环境激素的作用机制及研究进展.广东农业科学,2011,23:155-157.
    [39]夏星辉,杨居荣,许嘉琳.环境激素污染研究进展.上海环境科学,2001,20(2):56-59.
    [40]Shore L. S, Shemesh M. Naturally produced steroid hormones and their release into the environment. Pure and applied chemistry,2003,75(11-12):1859-1871.
    [41]Lange I. G., Daxenberger A., Schiffer B., et al. Sex hormones originating from different livestock production systems:fate and potential disrupting activity in the environment. Analytica chimica acta,2002,473(1-2):27-37.
    [42]Soto A. M., Calabro J. M., Prechtl N. V., et al. Androgenic and Estrogenic Activity in Water Bodies Receiving Cattle Feedlot Effluent in Eastern Nebraska, USA. Environmental health perspectives,2004,112(3):346-352.
    [43]Orlando E. F., Kolok A. S., Binzcik G. A., et al. Endocrine-disrupting effects of cattle feedlot effluent on an aquatic sentinel species, the fathead minnow. Environmental health perspectives, 2004,112(3):353-358.
    [44]Lee L. S., Strock T. J., Sarmah A. K., et al. Sorption and dissipation of testosterone estrogens, and their primary transformation products in soils and sediment. Environmental science & technology,2003,37(18):4098-4105.
    [45]Torres-Lapasio J. R., Ruiz-angel M.J., Garcia-alvarez-Coque M.C., et al. Micellar versus hydro-organic reversed-phase liquid chromatography: A solvation parameter-based perspective. Journal of chromatography A,2008,1182 (2) 176-196.
    [46]Barbosa I. R., Nogueira A. J. A., Soares A. M. V. M. Acute and chronic effects of testosterone and 4-hydroxyandrostenedione to the crustacean Daphnia magna. Ecotoxicology and environmental safety,2008,71(3):757-764.
    [47]Kang I. J., Yokota H., Oshima Y., et al. The effects of methyltestosterone on the sexual development and reproduction of adult medaka (Oryzias latipes). Aquatic toxicology,2008, 87(1):37-46.
    [48]Kolok A. S, Sellin M. K. The Environmental Impact of Growth-Promoting Compounds Employed by the United States Beef Cattle Industry: History, Current Knowledge, and Future Directions. Review of environmental contamination and toxicology,2008,195:1-30.
    [49]Radl V., Pritsch K., Munch J. C., Schloter M. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical. Environmental pollution,2005,137(2):345-353.
    [50]Finlay-Moore O., Hartel P. G., Cabrera M. L.17 beta-estradiol and testosterone in soil and runoff from grasslands amended with broiler litter. Journal of environmental quality,2000, 29(5):1604-1611.
    [51]Sun L., Liu Y., Chu X.G., et al, Trace analysis of fifteen androgens in environmental waters by LC-ESI-MS-MS combined with solid-phase disk extraction cleanup. Chromatographia,2010, 71(9-10):867-873.
    [52]韩伟,李艳霞,杨明,等.环境雄激素的危害、来源与环境行为.生态学报,2010,30(6):1594-1603.
    [53]Lee L. S., Carmosini N., Sasman S. A., et al. Agricultural contributions of antimicrobials and hormones on soils and water quanlity. Advance in agronomy,2007,93:1-68.
    [54]Kolodziej E. P., Sedlak D. L. Rangeland grazing as a source of steroid hormones to surface waters. Environmental science & technology,2007,41(10):3514-3520.
    [55]张爱芝,王全林,沈坚,等.超高效液相色谱-串联质谱法同时测定鱼制品中残留的7种性激素.色谱,2010,28(2):190-196.
    [56]Arnon S., Dahan O., Elhanany S., et al. Transport of testosterone and estrogen from dairy farm waste lagoons to groundwater. Environmental science & technology,2008,42(15):5521-5526.
    [57]Jenkins M. B., Endale D. M., Schomberg H. H., et al.17β-Estradiol and testosterone in drainage and runoff from poultry litter applications to tilled and no-till crop land under irrigation. Journal of environmental management,2009,90(8):2659-2664.
    [58]Bradley P. M., Barber L. B., Chapelle F. H., et al. Biodegradation of 17β-estradiol, estrone and testosterone in stream sediments. Environmental science & technology,2009,43(6): 1902-1910.
    [59]刘泺,郑虎,翁玲玲,等.甲睾酮的合成.中国医药工业杂志,2005,36(7):385-386.
    [60]刘敏.甲基睾酮对鱼类内分泌的作用机理及其在水产养殖上的应用.北京水产,2005,114(5):26-29.
    [61]沈根祥,张慧,柿井一男Fenton反应研究进展Science & technology information,2007,34: 24-25.
    [62]Haber F, & Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society London,1934,147(Series A),332-351.
    [63]陈传好,谢波,任源,等Fenton试剂处理废水中各影响因子的作用机制.环境科学,2000,21(5):93-96.
    [64]Bossmann S. H., Oliveros E., Gob S., et al. New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemically enhanced Fenton Reaction. Journal of physical chemistry A,1998,102 (28):5542-5550.
    [65]Eisenhauer H. R. Oxidation of phenolic wastes. Journal of the water pollution control federation 1964,36(9):1116-1128.
    [66]龙明策,林金清,许庆清.非均相Fenton反应技术研究进展.环境污染治理技术与设备,2005,6(7):14-18.
    [67]吴伟,吴程程,赵雅萍.非均相Fenton技术降解有机污染物的研究进展.环境科学与技术,2010,33(6):99-104.
    [68]张德莉,黄应平,罗光富,等Fenton及Photo-Fenton反应研究进展.环境化学,2006,25(2): 121-127.
    [69]Zepp R. G., Faust B. C., Hoigne J. Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron (Ⅱ) with hydrogen peroxide:the photo-Fenton reaction. Environmental science & technology.1992,26(2):313-319.
    [70]刘勇弟,徐寿昌.紫外-Fenton试剂作用机理及在废水处理中的应用.环境化学,1994,13(4):302-306.
    [71]李金莲,金永峰,钱慧娟,等. Fenton试剂在水处理中的应用研究.化工科技市场,2006,29(6):28-33.
    [72]Safarzadeh-Amiri A., Bolton J. R., Cater S. R. Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water research,1997,31(4):787-798.
    [73]陈芳艳,倪建玲,唐玉斌.光助Fenton法在废水处理中的应用研究进展.工业用水与废水,2008,39(3):12-16.
    [74]刘钟栋.微波技术在食品工业中的应用[M].北京:中国轻工业出版社,1999.
    [75]Sanz J., Lombrana J. I., De Luis A. M., et al. Microwave and Fenton's reagent oxidation of wastewater. Environmental chemistry letters,2003,1(1):45-50.
    [76]赵景联,任国勇.微波辐射Fenton试剂氧化催化降解水中三氯乙烯.微波学报,2003,19(1):85-90.
    [77]吕敏春,严莲荷,王剑红,等.光、微波、热催化氧化效果的比较.工业水处理,2003,23(8):36-38.
    [78]袁易全.近代超声原理与应用[M].南京:南京大学出版社,1997.
    [79]赵德明,史惠祥,雷乐成,等Fenton试剂强化双低频超声降解对氯苯酚的研究.浙江大学学报,2004,38(1):114-120.
    [80]赵景联,韩杰.超声辐射Fenton试剂耦合法降解直链十二烷基苯磺酸钠的研究.重庆环境科学,2003,25(9):10-14.
    [81]He J., Tao X., Ma W. H., et al. Heterogeneous photo-Fenton degradation of an azo dye in aqueous H2O2/iron oxide dispersions at neutral pH. Chemistry letters,2002, (1):9286-87.
    [82]Garade A. C., Bharadwaj M., Bhagwat S. V., et al. An efficient y-Fe2O3 catalyst for liquid phase air oxidation of p-hydroxybenzyl alcohol under mild conditions. Catalysis communications,2009,10(5):485-489.
    [83]Costa R. C. C., Moura F. C. C., Ardisson J. D., et al, Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Applied catalysis B:environmental,2008,83(1-2):131-139.
    [84]杨士建,何宏平,吴大清,等.钛磁铁矿的制备及其异相Fenton反应催化性能.地球化学,2009,38(2):159-164.
    [85]Kwan W. P., Voelker B. M. Rates of hydroxyl radical generation and organic compound oxidation in mineral-catalyzed Fenton-like systems. Environmental science & technology, 2003,37(6):1150-1158.
    [86]Costa, R. C. C., de Fatima, M., Lelis, F., et al. Remarkable effect of Co and Mn on the activity of Fe3-xMxO4 promoted oxidation of organic contaminants in aqueous medium with H2O2. Catalysis communications,2003,4(10):525-529.
    [87]Costa, R. C. C., de Fatima, M., Lelis, F., et al. Novel active heterogeneous Fenton system based on Fe3-xMxO4 (Fe, Co, Mn, Ni):The role of M2+ species on the reactivity towards H2O2 reactions. Journal of hazardous materials,2006,128(1-3):171-178.
    [88]Magalhaes, F., Pereira, M. C., Botrel, S. E. C., et al. Cr-containing magnetites Fe3-xCrxO4:The role of Cr3+ and Fe2+ on the stability and reactivity towards H2O2 reactions. Applied catalysis A-general,2007,332(1):115-123.
    [89]Xue X. F., Hanna, K., Abdelmoula M., et al. Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Applied catalysis B-environmental,2009,89(3-4):432-440.
    [90]Shukla P., Wang S. B., Sun H. Q., et al. Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SB A-15 and H2O2. Chemical engineering journal,2010,164(1):255-260.
    [91]Liao Q, Sun J, Gao L. Degradation of phenol by heterogeneous Fenton reaction using multi-walled carbon nanotube supported Fe2O3 Catalysts. Colloids and surfaces A-physicochemical and engineering aspects,2009,345(1-3):95-100.
    [92]Ramirez J. H., Maldonado-Hodar F. J., Perez-Cadenas A. F., et al. Azo-dye Orange Ⅱ degradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts. Applied catalysis B:environmental,2007,75(3-4):312-323.
    [93]Duarte F., Maldonado-Hodar F. J., Perez-Cadenas A. F., et al. Fenton-like degradation of azo-dye Orange Ⅱ catalyzed by transition metals on carbon aerogels. Applied catalysis B: environmental,2009,85(3-4):139-147.
    [94]Han, Y. F., Chen, F., Ramesh, K., et al. Preparation of nanosized Mn3O4/SBA-15 catalyst for complete oxidation of low concentration EtOH in aqueous solution with H2O2. Applied catalysis B:environmental,2007,76(3-4):227-234.
    [95]Gonzalez-Olmos, R., Roland, U., Toufar, H., et al. Fe-zeolites as catalysts for chemical oxidation of MTBE in water with H2O2. Applied catalysis B:environmental,2009,89(3-4): 356-364.
    [96]Castro, C. S., Guerreiro, M. C., Oliveira, L. C. A., et al. Iron oxide dispersed over activated carbon: Support influence on the oxidation of the model molecule methylene blue. Applied catalysis A-general,2009,367(1-2):53-58.
    [97]Tekbas M., Yatmaz H. C., Bektas N. Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst. Microporous and meso-porous materials,2008,115(3):594-602.
    [98]Kasiri M. B., Aleboyeh H., Aleboyeh A. Degradation of acid Blue 74 using Fe-ZSM zeolite as a heterogeneous photo-Fenton catalyst. Applied catalysis B:environmental,2008,84(1-2): 9-15.
    [99]Martinez F., Calleja G., Melero J. A., et al. Heterogeneous photo-Fenton degradation of phenolic aqueous solutions over iron-containing SBA-15 catalyst. Applied catalysis B: environmental,2005,60(3-4):181-190.
    [100]De Leon M. A., Castiglioni J., Bussi J., et al. Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process. Catalysis today,2008, 133-135:600-605.
    [101]Huang C. P., Huang Y. H. Comparison of catalytic decomposition of hydrogen peroxide and catalytic degradation of phenol by immobilized iron oxides. Applied catalysis A:general,2008, 346(1-2):140-148.
    [102]Fernandez J., Bandara J., Lopez A., et al. Efficient photo-assisted Fenton catalysis mediated by Fe ions on Nafion membranes active in the abatement of non-biodegradable azo-dye. Chemical communications,1998, (14):1493-1494.
    [103]Sabhi S., Kiwi J. Degradation of 2,4-dichlorophenol by immobilized iron catalysts. Water research,2001,35(8):1994-2002.
    [104]Cheng M. M., Ma W. H., Li J., et al. Visible-light-assisted degradation of dye pollutants over Fe(Ⅲ)-loaded resin in the presence of H2O2 at neutral pH values. Environmental science & technology,2004,38(5):1569-1575.
    [105]Tao, X., Ma, W. H., Li, J., et al. Efficient degradation of organic pollutants mediated by immobilized iron tetrasulfophthalocyanine under visible light irradiation.Chemical communications,2003,1:80-81.
    [106]Zhao Y. P., Hu H. Y. Photo-Fenton degradation of 17 beta-estradiol in presence of α-FeOOHR and H2O2. Applied catalysis B:environmental,2008,78(3-4):250-258.
    [107]Iijima S. Helical micro-tubes of graphitic carbon. Nature,1991,354(6348):56-58.
    [108]Colbert D. T., Zhang J., Mcclure S. M., et al. Growth and sintering of fullerene nanotubes. Science,1994,266(5188):1218-1222.
    [109]Endo M., Takeuchi K., Igarashi S., et al. The production and structure of pyrolytic carbon nanotubes (pCNTs). Journal of physics and chemistry of solids,1993,54(12):1841-1848.
    [110]Wang Y., Wei F., Luo G. H., et al. The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor. Chemical physics letters,2002,364(5-6):568-572.
    [111]Thess A., Lee R., Nikolaev P., et al. Crystalline ropes of metallic carbon nanotubes. Science, 1996,273(5274):483-487.
    [112]Ishii H., Kataura H., Shiozawa H., et al. Direct observation of Tomonaga-Luttinger-liquid state in carbon nanotubes at low temperatures. Nature,2003,426(6966):540-544.
    [113]Endo M., Takeuchi K., Kobori K., et al. Pyrolytic carbon nanotubes from vapor-grown carbon-fibers. Carbon,1995,33(7):873-881.
    [114]Blase X., Benedict L. X., Shirley E. L., et al. Hybridization effects and metallicity in small radius carbon nanotubes. Physical review letters,1994,72(12):1878-1881.
    [115]Treacy M. M. J., Ebbesen T. W., Gibson J. M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature,1996,381(6584):678-682.
    [116]Wong E. W., Sheehan P. E., Lieber C. M. Nanobeam mechanics:Elasticity, strength, and toughness of nanorods and nanotubes. Science,1997,277(5334):1971-1975.
    [117]Ebbessen T. W. (Ed.). Carbon Nanotubes:Preparation and Properties[M]. CRC press, Boca Raton,1997.
    [118]Dresselhaus M. S., Dresselhaus G, Eklund P. C. Science of fullerenes and carbon nanotubes[M]. Academic Press, San Diego,1996.
    [119]Peigney A., Laurent C., Flahaut E., et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon,2001,39(4):507-514.
    [120]Gao G. H., Cagin T., Goddard, W. A. Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes. Nanotechnology,1998,9(3):184-191.
    [121]Nuriel S., Liu L., Barber A. H., et al. Direct measurement of multiwall nanotube surface tension. Chemical physics letters,2005,404(4-6):263-266.
    [122]薛朝华.碳纳米管的功能化及其性能研究[D].杭州:浙江大学,2008.
    [123]廖晓宁,李凤仪,华丽,等.碳纳米管的改性与应用.化工新型材料,2006,34(6):25-28.
    [124]高濂,刘阳桥.碳纳米管的分散及表面改性.硅酸盐通报,2005,24(5):114-118.
    [125]Xie X. F., Gao L., Sun J. Thermodynamic study on aniline adsorption on chemical modified multi-walled carbon nanotubes. Colloids and surfaces A,2007,308(1-3):54-59.
    [126]Coleman K. S., Bailey S. R., Fogden S., et al. Functionalization of Single-walled carbon nanotubes via the bingel reaction. Journal of the American chemical society,2003,125(29): 8722-8723.
    [127]Chen J., Hamon M. A., Hu H., et al. Solution properties of single-walled carbon nanotubes. Science,1998,282(5386):95-98.
    [128]阴强,李爱菊,孙康宁,等Fenton试剂对碳纳米管表面改性研究.人工晶体学报,2009,38(6):1481-1484.
    [129]佟珊珊,石云峰,吕学举,等.多壁碳纳米管对稀土元素的吸附性能.应用化学,2010,27(8):44-949.
    [130]Ji L. L., Shao Y., Xu Z. Y., et al. Adsorption of Monoaromatic Compounds and Pharmaceutical Antibiotics on Carbon Nanotubes Activated by KOH Etching. Environmental science & technology,2010,44(16):6429-6436.
    [131]Zhang L., Ni Q. Q., Natsuki T., et al. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties. Applied surface science,2009,255(20): 8676-8681.
    [132]Rao G. P., Lu C., Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes:A review. Separation and purification technology,2007,58(1):224-231.
    [133]陈光才,沈秀娥.碳纳米管对污染物的吸附及其在土水环境中的迁移行为.环境化学, 2010,29(2):159-168.
    [134]Chen C. L., Wang X. K. Adsorption of Ni(II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & engineering chemistry research,2006,45(26):9144-9149.
    [135]Long R. Q., Yang R. T. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American chemical society,2001,123(9):2058-2059.
    [136]Chen W., Duan L., Zhu D. Q. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental science & technology,2007,41(24):8295-8300.
    [137]Papirer E., Brendle E., Ozil F., et al. Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography.Carbon,1999,37(8): 1265-1274.
    [138]Peng X. J., Li Y. H., Luan Z. K., et al. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical physics letters,2003,376(1-2):154-158.
    [139]Yang K, Zhu L Z, Xing B S. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental science & technology,2006,40(6):1855-1861.
    [140]Pan B., Lin D. H., Mashayekhi H., et al. Adsorption and hysteresis of bisphenol A and 17 alpha-ethinyl estradiol on carbon nanomaterials. Environmental science & technology,2008, 42(15):5480-5485.
    [141]Lin D. H., Xing B. S. Adsorption of phenolic compounds by carbon nanotubes:role of aromaticity and substitution of hydroxyl groups. Environmental science & technology,2008, 42(19):7254-7259.
    [142]孙明礼,成荣明,徐学诚,等.苯酚及取代酚在碳纳米管上的吸附研究.化学研究与应用,2006,18(1):13-16.
    [143]沈秀娥.多壁碳纳米管对硝基化合物和抗生素的吸附特性研究[D].吉林大学博士论文,2009.
    [144]陈光才.铜、铅和镉对阿特拉津等有机物在多壁碳纳米管上吸附与解吸的影响及作用机理[D].中国科学院研究生院博士学位论文,2008.
    [145]Wang S. G., Liu X. W., Gong W. X., et al. Adsorption of fulvic acids from aqueous solutions by carbon nanotubes. Journal of chemical technology and biotechnology,2007,82(8):698-704.
    [146]王敬念,李晓东,杨荣杰Fe2O3/CNTs纳米粒子的制备及其对高氯酸铵燃速的催化作用.火炸药学报,2006,29(2):44-47.
    [147]Wang X. F., Wang D. Z., Liang J. Carbon Nanotube capacitor materials loaded with different amounts of ruthenium oxide. Acta physico-chimica sinica,2003,19(6):509-513.
    [148]周龙梅,刘宏英,李凤生,等.Y2O3纳米粒子/碳纳米管复合体的制备及其催化高氯酸铵热分解.物理化学学报,2006,22(5):627-630.
    [149]Cao H. Q., Zhu M. F., Li Y. G. Novel carbon nanotube iron oxide magnetic nanocomposites. Journal of magnetism and magnetic materials,2006,305(2):321-324.
    [150]Zhao L. P., Gao L. Coating of multi-walled carbon nanotubes with thick layers of tin(IV) oxide. Carbon,2004,42(8-9):1858-1861.
    [151]刘建勋,姜炜,王作山,等.直形碳纳米管、分叉碳纳米管负载纳米NiO及其对高氯酸铵热分解的影响.化学学报,2007,65(23):2725-2730.
    [152]Planeix J. M., Coustel N., Coq B., et al. Application of carbon nanotubes as supports in heterogeneous catalysis. Journal of the American chemical society,1994,16(17):7935-7936.
    [153]王曙光,李延辉,赵丹,等.碳纳米管负载氧化铝材料的制备及其吸附水中氟离子的研究.高等学校化学学报,2003,24(1):95-99.
    [154]李茂刚,成荣明,徐学诚,等.碳纳米管负载氧化铁的制备与机理.化学通报,2006,69(1):36-40.
    [155]吴玉程,刘晓璐,叶敏,等.碳纳米管负载纳米TiO2复合材料的制备及其性能.2008,24(1):97-102.
    [156]Seeger T., Redlich P., Grobert N., et al. SiOx-coating of carbon nanotubes at room temperature. Chemical physics letters,2001,339(1-2):41-46.
    [157]Wang W. D., Serp P., Kalck P., et al. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of molecular catalysis A-chemical,2005,235(1-2):194-199.
    [158]Lupo F., Kamalakaran R., Scheu C., et al. Microstructural investigations on zirconium oxide-carbon nanotube composites synthesized by hydrothermal crystallization. Carbon,2004, 42(10):1995-1999.
    [159]吴小利,岳涛,陆荣荣,等.碳纳米管/氧化锌纳米复合材料的制备及其形貌控制.无机化学学报,2005,2l(10):1605-1609.
    [160]白书立,管玉江,蒋胜韬,等.TiO2纳米管/碳纳米管复合材料光催化降解玫瑰红染料废水的研究.化工新型材料,2010,38(7):67-69.
    [161]徐静,宋小杰,魏先文.紫外吸收光谱法研究ZnO/碳纳米管复合材料催化降解偶氮染料.光谱学与光谱分析,2007,27(12):2510-2513.
    [162]Kuang Q., Li S. F., Xie Z. X., et al. Controllable fabrication of SnO2-coated nanotubes by chemical vapor multiwalled carbon deposition. Carbon,2006,44(7):1166-1172.
    [163]Orlanducci S, Sessa V, Terranova M L, et al. Nanocrystalline TiO2 on single walled carbon nanotube arrays:Towards the assembly of organized C/TiO2 nanosystems. Carbon,2006, 44(13):2839-2843.
    [164]Wang G J, Lee M W, Chen Y H. A TiO2/CNT Coaxial Structure and Standing CNT Array Laminated Photocatalyst to Enhance the Photolysis Efficiency of TiO2. Photochemistry and photobiology,2008,84(6):1493-1499.
    [165]Shi D., Cheng J. P., Liu F., et al. Controlling the size and size distribution of magnetite nanoparticles on carbon nanotubes. Journal of alloys and compounds,2010,502(2):365-370.
    [166]Jiang L. Q., Gao L. Fabrication and characterization of Fe3O4/CNTs and Fe2N/CNTs composites. Journal of electroceramics,2006,17(1):87-90.
    [167]Wang X. Z., Zhao Z. B., Qu J. Y., et al. Fabrication and characterization of magnetic Fe3O4-CNT composites. Journal of Physics and chemistry of solids,2010,71(4):673-676.
    [168]Qu S., Wang J., Kong J. L., et al. Magnetic loading of carbon nanotube/nano-Fe304 composite for electrochemical sensing. Talanta,71(3):1096-1102.
    [169]Mishra A. K., Ramaprabhu S. Magnetite Decorated Multiwalled Carbon Nanotube Based Supercapacitor for Arsenic Removal and Desalination of Seawater. Journal of physical chemistry C,2010,114(6):2583-2590.
    [170]Jia B. P., Gao L., Sun J. Self-assembly of magnetite beads along multiwalled carbon nanotubes via a simple hydrothermal process. Carbon,2007,45(7):1476-1481.
    [171]Yang S. J., He H. P., Wu D. Q., et al. Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3-xTixO4 (0≤x≤0.78) at neutral pH values. Applied catalysis B: environmental,2009,89 (3-4) 527-535。
    [172]Qian W. Z., Liu T., Wei F., et al. The evaluation of the gross defects of carbon nanotubes in a continuous CVD process. Carbon,2003,41(13):2613-2617.
    [173]Kim U. J., Furtado C. A., Liu X. M., et al. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. Journal of the American chemical society.2005, 127(44):15437-15445.
    [174]Tiwari S., Phase D. M., Choudhary R. J. Probing antiphase boundaries in Fe3O4 thin films using micro-Raman spectroscopy. Applied physics letters.2008,93(23):234108.
    [175]He Y., Huang L., Cai J. S., et al. Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries. Electrochimica acta, 2010,55(3):1140-1144.
    [176]Zhu W. Z., Miser D. E., Chan W. G., et al. Characterization of multiwalled carbon nanotubes prepared by carbon arc cathode deposit. Materials chemistry and physics,2003,82(3): 638-647.
    [177]Liu Y., Jiang W., Wang Y., et al. Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid-liquid interface using oleate as surfactant and reactant. Journal of magnetism and magnetic materials,2009,321(5):408-412.
    [178]Song S. Q., Rao R. C., Yang H. X, et al. Facile synthesis of Fe3O4/MWCNTs by spontaneous redox and their catalytic performance. Nanotechnology,2010,21(18):185602.
    [179]Zhang L., Kiny V. U., Peng H. Q., et al. Sidewall functionalization of single-walled carbon nanotubes with hydroxyl group-terminated moieties. Chemistry of materials,2004,16(11): 2055-2061.
    [180]郭丽华,宫丽红,袁福龙,等.高纯度可溶性单壁碳纳米管的吸收光谱.化学学报,2005,63(20):1936-1938.
    [181]晋卫军,孙旭峰,王煜.碳纳米管溶解性及其化学修饰.新型炭材料,2004,19(4):312-318.
    [182]De Laat J., Gallard H. Catalytic decomposition of hydrogen peroxide by Fe(Ⅲ) in homogeneous aqueous solution:Mechanism and kinetic modeling. Environmental science & technology.1999,33(6):2726-2732.
    [183]Maldonado-Hodar F. J., Madeira L. M., Portela M. F. The use of coals as catalysts for the oxidative dehydrogenation of n-butane. Applied catalysis A:general,1999,178(1):49-60.
    [184]Lucking F., Koser H., Jank M., et al. Iron powder, graphite and activated carbon as catalysts for the oxidation of 4-chlorophenol with hydrogen peroxide in aqueous solution. Water research,1998,32(9):2607-2614.
    [185]Georgi A., Kopinke F. D. Interaction of adsorption and catalytic reactions in water decontamination processes. Part Ⅰ. Oxidation of organic contaminants with hydrogen peroxide catalyzed by activated carbon. Applied catalysis B:environmental,2005,58(1-2):9-18.
    [186]Noorjahan A., Kumari V. D., Subrahmanyam A., et al. Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Applied catalysis B:environmental,2005,57 (4):291-298.
    [187]Arnold S. M., Hickey W. J., Harris R. F. Degradation of atrazine by fentons reagent:condition optimization and product quantification. Environmental science & technology,1995,29(8): 2083-2089.
    [188]Lin S. S; Gurol M. D. Catalytic decomposition of hydrogen peroxide on iron oxide:kinetics, mechanism, and implications. Environmental science & technology,1998,32(10):1417-1423.
    [189]Luo W., Zhu L. H., Wang N., et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst. Environmental science & technology,2010,44(5):1786-1791.
    [190]Kwan W. P., Voelker B. M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissolved iron and ferrihydrite. Environmental science & technology,2002, 36(7):1467-1476.
    [191]Kong S. H, Watts R. J., Choi J. H. Treatment of petroleum-contaminated soils using iron mineral catalyzed hydrogen peroxide. Chemosphere,1998,37(8):1473-1482.
    [192]Plgnatello J. J. Dark and Photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental science & technology,1992,26(5):944-95.
    [193]Rush J. D., Bielski B. H. J. Pulse radiolysis studies of alkaline Fe(III) and Fe(VI) solutions. observation of transient iron complexes with intermediate oxidation states. Journal of the american chemical society,1986,108(3):523-525.
    [194]He J., Ma W. H., He J. J., et al. Photooxidation of azo dye in aqueous dispersions of H2O2/α-FeOOH. Applied catalysis B:environmental,2002,39(3):211-220.
    [195]Melero J.A., Calleja G., Martinez F., et al. Nanocomposite Fe2O3/SBA-15:An efficient and stable catalyst for the catalytic wet peroxidation of phenolic aqueous solutions. Chemical engineering journal,2007,131(1-3):245-256.
    [196]Dhananjeyan M. R., Mielczarski E., Thampi K. R., et al. Photodynamics and surface characterization of TiO2 and Fe2O3 photocatalysts immobilized on modified polyethylene films. Journal of physical chemistry B,2001,105(48):12046-12055.
    [197]Ohko Y., Iuchi K. I., Niwa C., et al.17 β-estrodial degradation by TiO2 photocatalysis as means of reducing estrogenic activity. Environmental science & technology,2002,36(19): 4175-4181.
    [198]Kilic, M.; Kocturk, G.; San, N.; et al. A model for prediction of product distributions for the reactions of phenol derivatives with hydroxyl radicals. Chemosphere.2007,69(9):1396-1408.
    [199]Wang, L. F.; Zhang, H. Y. A theoretical investigation on DPPH radical-scavenging mechanism of edaravone. Bioorganic & medicinal chemistry letters,2003,13(21),3789-3792.
    [200]Sherwood, T. K.; Pigford, R. L.; Wilke, C. Mass Transfer; McGraw-Hill:New York,1975; p 222.
    [201]Qian, Y. P.; Shang, Y.J.; Teng, Q. F.; et al. Hydroxychalcones as potent antioxidants: Structure-activity relationship analysis and mechanism considerations. Food chemistry,2010, 126(1):241-248.
    [202]Fragkaki, A. G.; Angelis, Y. S.; Koupparis, M.; et al. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities applied modifications in the steroidal structure. Steroids.2009,74(2): 172-197.
    [203]颜爱国,刘浩梅,刘娉婷,等.Fe3O4和Zn2+掺杂型Zn1-xFe2+xO4纳米晶的溶剂热合成和电磁性能.高等学校化学学报,2010,31(3):447-451.
    [204]纳米Fe3O4/PANI复合体系的微波电磁特性研究.湖南大学学报(自然科学版),2006,33(6):81-84.
    [205]彭志华,彭延峰,宁艳桃,等.碳纳米管的本征微波吸收特性研究.河南科学,2010,28(12):1526-1529.
    [206]Remya N., Lin J. G. Current status of microwave application in wastewater treatment-A review. Chemical Engineering Journal,2011,166(3):797-813.
    [207]Einschlag F. S. G., Lopez J., Carlos L., et al. Evaluation of the efficiency of photodegradation of nitroaromatics applying the UV/H2O2 technique. Environmental science & technology, 2002,36(18):3936-3944.
    [208]Liang X. L., Zhong Y. H., Zhu S. Y., et al. The contribution of vanadium and titanium on improving methylene blue decolorization through heterogeneous UV-Fenton reaction catalyzed by their co-doped magnetite. Journal of hazardous materials,2012,199:247-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700