新型嵌段共物的合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以α-氯代丙酸乙酯(ECP)为引发剂,2,2′-联二吡啶(bpy)和N,N,N′,N″,N″-五甲基二亚乙基三胺(PMDETA)为配体,氯化亚铜(CuCl)为催化剂,在N,N′-二甲基甲酰胺(DMF)中使甲基丙烯酸叔丁酯(tBMA)进行原子转移自由基合(ATRP),考察了不同配体/催化剂条件下tBMA的ATRP反应过程。用凝胶渗透色谱(GPC)跟踪合物的相对分子质量变化,发现配体类型对tBMA的合反应速率有明显影响。通过改变引发剂与单体的物质的量之比(1:25~1:100),可将甲基丙烯酸叔丁酯(PtBMA-Cl)的相对分子质量控制在1.8×103~1×104范围内,并保持其相对分子质量分布≤1.30。同时用傅里叶红外光谱(FTIR)、核磁共振氢谱(1H-NMR)对产物的结构进行了表征,结果表明所得合物PtBMA-Cl的结构明确,为目标产物。
     进而以5,5,7,12,12,14-六甲基-1,4,8,11-四氮杂环化合物(Me6[14]aneN4)为配体, CuCl为催化剂,由PtBMA-Cl引发4-乙烯基吡啶(4VP)进行溶液ATRP反应,合成得到了甲基丙烯酸叔丁酯-b-4-乙烯基吡啶(PtBMA-b-P4VP)嵌段共物。研究了溶剂、配体的种类对合成嵌段共物ATRP过程的影响,制得了分子量可控的PtBMA-b-P4VP。用FTIR、1H-NMR、GPC对产物的结构和分子量进行了表征,结果表明所得嵌段共物的结构明确,为目标产物。通过对嵌段共物PtBMA-b-P4VP的PtBMA链段进行定向水解,得到甲基丙烯酸-b-4-乙烯基吡啶(PMAA-b-P4VP)嵌段共物,初步研究其在不同pH条件下的胶束化行为。重点研究对P4VP链段进行了季铵化反应,得到了甲基丙烯酸-b-季铵化4-乙烯基吡啶(PMAA-b-QPVPB)亲水性嵌段共物。
     以Me6[14]aneN4为配体,CuCl为催化剂,在异丙醇溶液中以对氯甲基苯乙烯(CMSt)为功能性引发剂引发4VP进行ATRP反应,以得到末端带有不饱和双键的大分子单体(St-P4VP),考察了不同配体对4VP的ATRP反应过程的影响。通过改变引发剂与单体的物质的量之比,可将St-P4VP的相对分子质量控制在2.0×103~1×104范围内。用FTIR、1H-NMR对产物的结构进行了表征,结果表明所得大分子单体St-P4VP的结构明确。使不同分子量的St-P4VP大分子单体进行均反应,由GPC测定结果显示,大分子单体的相对分子质量从2.90×103增加到2.88×104 ,从6.11×103增加到5.8×104,说明所制备的St-P4VP末端上的双键具有良好的合反应活性。由于该大分子单体端基α位上含有诱导共轭基团的氯原子,可以引发单体进行合,有望得到新的两嵌段大分子单体。
In this paper, a solusion atom transfer radical polymerization (ATRP) of tert-butylmethacrylate (tBMA) was first studied. Ethyl-2-chloro-propionate (ECP) was selected as initiator, 2,2’-bipyridyl (bpy) and N,N,N′,N″,N″-penta-methyldiethylenetriamine (PMDETA) as ligand, with CuCl as catalyst in DMF. It was found that ligand could clearly affect polymerization rate of tBMA monomer based on measurement of molecular weight of PtBMA-Cl by using gel permeation chromatography (GPC) under different ligand system. The polymerization regulations were compared for different systems. The number average molecular weight (Mn) of PtBMA-Cl could be controlled from 1.8×103 to 1×104 g/mol by varying the ratio of monomer to initiator in range of 1:25 to 1:100, and distribution of molecular weight (Mw/Mn) kept low than 1.30. The structure of the PtBMA-Cl was characterized by fourier transform infrared (FTIR) and nuclear magnetic resonance (1H-NMR). It was found that the obtained PtBMA-Cl had a specific structure.
     A solution ATRP of 4-vinylpyridine (4VP) was then studied using resulting PtBMA-Cl as macroinitiator, CuCl as catalyst, 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclote- tradecane (Me6[14]aneN4) as ligand to form block copolymer. It was found that different solvent and ligand could affect the polymerization of 4VP. PtBMA-b-P4VP was characterized by FTIR, 1H-NMR and GPC. Furthermore, the hydrolysis of the synthesized PtBMA-b-P4VP was finished under room temperature to form block copolymer PMAA-b-P4VP. The self-assembly of this block copolymer in selective solvents was also studied. The focus is that the quaternization of the synthesized PtBMA-b-P4VP was finished. The quaternizated diblock copolymer was then hydrolyzed under room temperature to form hydrophilic PMAA-b-QPVPB diblock copolymer.
     Also, a solusion ATRP of 4VP was studied using CuCl as catalyst, p-chloromethylstyrene (CMSt) as functional initiator to synthesize macromonomer (St-P4VP) in the presence of bpy, PMDETA or Me6[14]aneN4 as ligand. Mn of St-P4VP could be controlled in a range from 2.0×103 to 1×104 g/mol by varying the ratio of monomer to initiator from 1:25 to 1:100. The structure was characterized by FTIR and 1H-NMR. In order to study the living character of C=C bond in St-P4VP end, a homopolymerization of St-P4VP is done. Mn was increased from 2.90×103 to 2.88×104, 6.11×103 to 5.8×104. It means that the C=C bond in end of St-P4VP has high reacting activity. The macromonomer with a halogen atom in end can initiate polymerization of new monomer which is expected to obtain diblock macromonomer.
引文
1. Wang J S, Matyjaszewski K. Controlled/“Living”radical polymerization atom transfer radical polymerization in the presence of transition-metal complexs[J]. J. Am. Chem. Soc., 1995, 117: 5614-5618
    2. Matyjaszewski K, Wei M L. Synthesis and characterization of polyphosphazene homopolymers and copolymers[J]. Macromolecules, 1997, 30: 8161-8167
    3. Veerle C, Tomislav P, Matyjaszwski K. Functional polymers by atom transfer radical polymerization[J]. Prog. Polym. Sci., 2001, 26: 337-377
    4.陆志豹,吴平平,韩哲文等.核磁共振法测定苯乙烯和甲基丙烯酸正丁酯竞率的研究[J].高分子学报, 1996, (1): 47-53
    5. Alexakis S, Commercon A, Coulentianos C, et al. Carbocupration of acetylenic acetals and ketals: synthesis ofα,βethylenic acetals and of dienals and dienones [J]. Pure. Appl. Chem., 1983, 55:1759-1766
    6. Erdik E. Copper(I) catalyzed reactions of organolithium and grinard reagents [J]. Tetrahedron, 1984, 40: 641-644
    7. Asscher M, Vosfi D. A general synthesis of tetraphenylcycolbutadiene-metal complexes by ligand-transfer [J]. J. Chem. Soc., 1963: 1887-1896
    8. Asscher M, Vosfi D. Characteristics of tetraphenylcycolbutadiene-metal complexes by ligand-transfer [J]. J. Chem. Soc., 1963: 3921-3927
    9. Wang J S, Matyjaszewski K. Cntrolled "living" radical polymerizaton: atom transfer radical polymerization in the presence of transition-metal complexes [J]. J. Am. Chem. Soc., 1995, 117: 5614-5619
    10.韩哲文等.《高分子化学》[M],华东理工大学出版社,1994
    11. Wang J S, Matyjaszewski K. Controlled/"living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process [J]. Macromolecules, 1995, 28(23), 7901-7910
    12. Kotani Y, Kamigaito M, Sawamoto M. FeCp(CO)2I: A phosphine-free half-metallocene -type Iron(II) catalyst for living radical polymerization of styrene [J]. Macormolecules, 1999, 32(20): 6877-6880
    13. Kotani Y, Kamigaito M, Sawamoto M. Living radical polymerization of styrene by half-metallocene iron carbonyl complexes [J]. Macromolecules, 2000, 33(10): 3543-3549
    14. Patten T E, Xia J H, Abemathy T, et al. Polymers with very low polydispersities fromatom transfer radical polymerization [J]. Science, 1996, 272: 866-868
    15. Greszta D, Matyjaszewski K. Gradient copolymers-a new class of materials [J]. Polym. Preprint, 1996, 37 (1):569-570
    16. Kotani Y, Sawamoto M. Living random copolymerization of styrene and methyl methacrylate with a Ru(II) complex and synthesis of ABC-Type "Block-Random" copolymers [J]. Macromolecules, 1998, 31(17): 5582-5587
    17. Coca S, Matyjaszewski K. Alternating copolymers of methyl acrylate with isobutene and isobutyl vinyl ether using ATRP [J]. Polym. Perprint, 1996, 37(1): 573-578
    18. Chen G Q, Wu Z Q, Wu J R, et al. Synthesis of alternative copolymers of N-substituted maleimides with styrene via atom transfer radical polymerization [J]. Macromolecules, 2000, 33(2): 232-234
    19. Kathryn L B, Scot G G, Matyjaszewski K. The use of "living" radical polymerization to synthesize graft copolymers [J]. Polym. Preprint, 1996, 37(1): 571-572
    20. Kathryn L B, Scot G G, Matyjaszewski K. The synthesis of densely grafted copolymers by atom transfer radical polymerization [J]. Macromolecules, 1998, 31(26): 9413-9416
    21. Matyjaszewski K, Peter J M, Jefery P, et al. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators [J]. Macromolecules, 1999, 32(20): 6526-6535
    22. Heise A, Nguyen C, Malek R, et al. Starlike polymeric architectures by atom transfer radical polymerization: Templates for the production of low dielectric constant thin films [J]. Macromolecules, 2000, 33(7): 2346-2354
    23. Xia J H, Zhang X, Matyjaszewski K. Synthesis of star-shaped polystyrene by atom transfer radical polymerization using an "arm first" approach [J]. Macromolecules, 1999, 32(13): 4482-4484
    24. Zhang X, Xia J H, Matyjaszewski K. End-functional poly(tert-butyl acrylate) star polymers by controlled radical polymerization [J]. Macromolecules, 2000, 33(7): 2340-2345
    25. Gaynor S G, Edelman S Z, Matyjaszewski K. Synthesis of branched and hyperbranched polystyrenes [J]. Macromolecules, 1996, 29(3): 1079-1081
    26. Frechet J M J, Ledui M R, Weimer M, et al. Living free radical polymerization and dendritic polymers [J]. Polym. Preprint, 1997, 38(1): 756-759
    27.程广楼,胡春圃.活性自由基合反应合成苯乙烯与丙烯酸酯嵌段共物及相关共物[J].高分子学报, 2000, (2 ): 210-214
    28.邹友思,邱志平,庄荣传等.甲基丙烯酸丁酯和苯乙烯的原子转移自由基共[J].高分子学报, 1999, (2): 146-150
    29. Davis K A, Charleux B, Matyjaszewski K. Preparation of block copolymers of polystyrene and poly (t-butyl acrylate) of various molecular weights and architectures by atom transfer radical polymerization [J]. Polym. Sci. Part A: Polym. Chem. 2000, 38(12): 2274-2283
    30.闰庆玲.嵌段共物的合成, [D],北京:北京化工大学, 2000
    31. Zhang X, Matyjaszewski K. Synthesis of well-defined amphiphilic block copolymers with 2-(dimethylamino)ethyl methacrylate by controlled radical polymerization [J]. Macromolecules, 1999, 32(5): 1763-1766
    32. Pan C Y, Tao L, Wu D C. Synthesis and characterizations of the four-armed amphiphilic block copolymer S[poly(2,3-dihydroxypropyl acrylate)-block-poly(methyl acrylate)]4 [J]. J. Polym. Sci. Part A: Polym. Chem, 2001, 39(18): 3062-3072
    33.华曼,陈明清,刘晓亚等, ATRP法制备两亲性嵌段共物的研究[J].高分子学报, 2004, (5): 645-649
    34. Narrainen A P, Pascual S, Haddleton D M. Amphiphilic diblock, triblock, and star block copolymers by living radical polymerization: Synthesis and aggregation behavior [J]. J. Polym. Sci. Part A: Polym. Chem, 2002, 40(4): 439-450
    35. Liu Y, Wang L, Pan C Y. Synthesis of block copoly(styrene-b-p-nitrophenyl methacrylate) and its derivatives by atom transfer radical polymerization [J]. Macromolecules, 1999, 32(25): 8301-8305
    36. Smith A P, Fraser C L. Luminescent polymeric ruthenium complexes with polystyrene-b- poly(methyl methacrylate) macroligands: The sequential activation of initiator sites for blocks generated by parallel polymerization mechanisms [J]. J. Polym. Sci. PartA: Polym. Chem., 2002, 40(23): 4250-4255
    37. Chen X P, Padias A B, Jr H K H. Atom transfer radical homo- and block copolymerization of methyl 1-bicyclobutanecarboxylate [J]. J. Polym. Sci. Part A: Polym. Chem 2002, 40(12): 1929-1936
    38. Zhang A B, Ying S K, Hu C P, et al. Semifluorinated ABA triblock copolymers: Synthesis, characterization, and amphiphilic properties [J]. J. Appl. Polym. Sci., 2002, 83(12): 2625-2633
    39. Ma Q C, Wooley K L. The preparation of t-butyl acrylate, methyl acrylate, and styrene block copolymers by atom transfer radical polymerization: Precursors to amphiphilic and hydrophilic block copolymers and conversion to complex nanostructured materials [J]. J. Polym. Sci. Part A: Polym. Chem., 2000, 38(1): 4805-4820
    40.傅志峰,石艳,焦书科.用原子转移自由基合制备苯乙烯/丙烯酸丁酯/苯乙烯三嵌段共物合成[J].橡胶工业, 1998, 21(6): 360-364
    41. Shipp D A, Wang J L, Matyjaszewski K. Synthesis of acrylate and methacrylate block copolymers using atom transfer radical polymerization [J]. Macromolecules, 1998, 31(23): 8005-8008
    42. Moineau C, Minet M, Teyssie P, et al. Concurrent chain and stepwise polymerizations for the preparation of block copolymers in one step [J]. Macromolecules, 1999, 32(24): 8277-8229
    43. Nakagawa Y, Miller P J, Matyjaszewski K. Development of novel attachable initiators for atom transfer radical polymerization. Synthesis of block and graft copolymers from poly(dimethylsiloxane) macroinitiators [J]. Polymer, 1998, 39(21): 5163-5170
    44. Miller P J, Matyjaszewski K. Atom transfer radical polymerization of (meth)acrylates from poly(dimethylsiloxane) macroinitiators[J]. Macromolecules, 1999, 32(26): 8760-8767
    45. Rossi N A A, Jones R G, Holder S J. Synthesis and characterization of poly(methyl methacrylate)-block-poly(methylphenylsilane)- block-poly(methyl methacrylate) by atom transfer radical polymerization [J]. J. Polym. Sci. Part A: Polym. Chem, 2003, 41(1): 30-40
    46. Lutesn L, Cordina G P, Jones R G, et al. Poly(methylphenylsilylene)-block-polystyrene copolymer prepared by the use of a chloromethylphenyl end-capped poly(methylphenylsilylene) as a macromolecular initiator in an atom transfer radical polymerisation of styrene [J]. Eur. Polym. J., 1998, 34(12): 1829-1837
    47. Gaynor S G, Matyjaszewski K. Step-growth polymers as macroinitators for "Living" radical polymerization: Synthesis of ABA block copolymers [J]. Macromolecules, 1997, 30(14): 4241-4243
    48. Coca S, Matyjaszewski K. Block copolymers by transformation of "living" carbocationic into "Living" radical polymerization [J]. Macromolecules, 1997, 35(9): 2808-2810
    49. Hertler W R, Songh D Y, Webster O W. Group-transfer polymerization. 3. Lewis acid catalysis [J]. Macromolecules, 1984, 17(7): 1415-1417
    50. Shen Y Q, Zhu S P, Zeng F Q, Pelton R. Versatile initiators for macromonomer syntheses of acrylates, methacrylates, and styrene by atom transfer radical polymerization [J]. Macromolecules, 2000, 33(15): 5399-5404
    51. Muehlebach A, Rime F. Synthese of well-defined macromonomers from polymers made by atom transfer radical polymerization.[J]. J Polym Sci Part A: Polym Chem, 2003, 41(21): 3425-3439
    52. Jayachandran N, Kazhakkedathu, Donald E. Brooks. Synthesis of poly(N,N-dimethylacrylamide) brushes from charged polymeric surfaces by aqueous ATRP: Effect of surface initiator concentration [J]. Macromolecules, 2003, 36(3): 591-598
    53. Wu C, Akashi M, Chen M Q. A simple structural model for the polymer microsphere stabilized by the poly(ethylene oxide) macromonomers grafted on its surface[J]. Macromolecules, 1997, 30(7): 2187-2189
    54.陈明清,陈瑜,刘晓亚等.热敏性(N-乙烯基异丁酰胺)接枝高分子微球的合成[J].高分子学报, 2002, (4): 447-451
    55.陈明清,张明,张坤等. PAM-g-PMAA亲水性合物微球的合成[J].高分子学报, 2004, (5): 673-678
    56.陈明清,倪忠斌,陈瑜等. PNVIBA接枝苯乙烯微球制备与颗粒直径控制[J].石油化工, 2003, 32(2): 121-124
    57.陈瑜,陈明清,刘晓亚等.(N-乙烯基异丁酰胺)接枝苯乙烯微球的合成研究[J].精细化工, 2002, 19(2): 118-120
    58.刘群峰,李思东,何卫东. 3-氯-2-氯甲基-1-丙烯引发苯乙烯原子转移自由基合的研究[J].高分子学报, 2007, (6): 582-584
    59.胡春红,张爱清.对氯甲基苯乙烯物引发甲基丙烯酸甲酯原子转移自由基合[J].精细化工, 2006, 23(3): 298-301
    60.陆剑燕,陈明清,倪忠斌等. pH响应性合物微球的制备及其粒径控制[J].化工新型材料, 2008, 4(36): 28-31
    61.唐燕春,艾长军,张莉等.丙烯酸叔丁酯-b-(N-异丙基丙烯酰胺)嵌段共物的制备及其自组装[J].功能高分子学报, 2007, 21(1): 61-64
    62. Samson A, Jenekhe, Chen X L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes[J]. Science, 1998, 279(5358): 1903-1907
    63. Yu K, Bartels C, Eisenberg A. Vesicles with hollow rods in the walls: A trapped intermediate morphology in the transition of vesicles to inverted hexagonally packed rods in dilute solutions of PS-b-PEO[J]. Macromolecules, 1998, 31(26):9399-9402
    64. Liu J B, Zeng F Q, Allen C. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration [J]. Eur J Pharm Biopharm, 2007, 65(3): 309-319
    65. Chen Z, Cai J. Nitroxide-mediated radical polymerization of 4-vinylpyridine and itsapplication on modification of silicon substrate[J]. J Appl Polym Sci, 2002, 86(11):2687-2695
    66. Chen Z J, Wang Y, Feng Y, et al. Synthesis of hydroxyl-terminated copolymer of styrene and 4-vinylpyridine via nitroxide-mediated living radical polymerization[J]. J Appl Polym Sci, 2004, 91(3): 1842-1847
    67.岳玲,陶斯禄,张晓宏等.(苯乙烯-alt-马来酸酐)-b-苯乙烯亲水/亲油嵌段共物在溶液中的集行为研究[J].功能高分子学报, 2005, 18(2): 248-254
    68. Lee J M, Lee K, Min K J, et al. The effect of polystyrene-block-poly(4-vinylpyridine) prepared by a RAFT method in the dispersion polymerization of styrene[J]. Curr Appl Phys, 2008, 8(6): 732-735
    69. Rizzardo E, Thang S H. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps[J]. Macromolecules, 2000, 33 (2):243-245
    70. Luo X X, Zhuang Y, Zhao X, et al. Controlled/living radical polymerization of styrene catalyzed by cobaltocene[J]. Polymer, 2008, 49(16): 3457-3461
    71. Matyjaszewski K, Xia J H. Atom transfer radical polymerization[J]. Chem Rev, 2001, 101(9): 2921-2990
    72.华曼,陈明清,刘晓亚等. ATRP法制备两亲性嵌段共物的研究[J].高分子学报, 2004, (5): 645-649
    73. Antonietti M, Goltner C. Superstructures of functional colloids: Chemistry of the nanometer scale[J]. Angew Chem In Ed, 1997, 36(9): 910-928
    74. Matyjaszewski K, Patter T E, Xia J J. Controlled/"living" radical polymerization. kinetics of the homogeneous atom transfer radical polymerization of styrene[J]. J Am Chem Soc, 1997, 119(4): 674-680
    75. Xia J H, Zhang X, Matyjaszewski K. Atom transfer radical polymerization of 4-vinylpyridine [J]. Macromolecules 1999, 32(10): 3531-3533
    76. Li J B, Shi L Q, An Y L, et al. Reverse micelles of star-block copolymer as nanoreactors for preparation of gold nanoparticles[J]. Polymer, 2006, 47(26): 8480-8487
    77. Yang R M, Wang Y M, Wang X G, et al. Synthesis of poly(4-vinylpyridine) and block copoly(4-vinylpyridine-b-styrene) by atom transfer radical polymerization using 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazamacrocyclotetradecane as ligand[J]. Eur Polym. J., 2003, 39(10): 2029-2033
    78.高保娇,曹霞,酒红芳.丙烯酰胺与4-乙烯基吡啶共物的季胺化及其若干性能[J].高分子学报, 2002, (4): 487-492
    79. Ravi P, Wang C, Tam K. C. et al. Association behavior of poly(methacrylic acid)-block-poly(methyl methacrylate) in aqueous medium: Potentiometric and laser light scattering studies. Macromolecules[J] , 2003, 36(1): 173-179
    80. Frank S, Markus H, Abrel H E. ATRP of methyl methacrylate in the presence of ionic liquids with ferrous and cuprous anions[J]. Macromolecules, 2001, 34(16):5394-5397.
    81. Shen Y Q, Zhu S P, Zeng F Q, Robert. Atom transfer radical copolymerization kinetics[J]. Macromolecules, 2000, 33(15): 5399-5402
    82.张双分,胡娜,倪忠斌等,原子转移自由基合法合成双亲性两嵌段大分子单体[J].石油化工, 2008, 37(4): 350-355

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700