蛋白质—多糖反应体系的共振瑞利散射光谱、共振非线性散射光谱及其分析应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二十世纪九十年代发展起来的共振瑞利散射(RRS)和共振非线性散射(RNLS)因其高的灵敏度、简便快速的分析过程和简单价廉的设备而得到越来越多的关注和研究。目前该技术已经广泛地应用于药物分析、无机小分子之间的相互作用研究、小分子和生物大分子之间的相互作用以及某些物理-化学参数的测定等领域,但是对于大分子特别是生物大分子之间的相互作用、结合模式等研究甚少。因此,本文以蛋白质和多糖为研究对象,研究探讨了它们之间的相互作用机理、结合模式、结合位点以及结合作用力等,并发展了RRS和RNLS法测定蛋白质和多糖的新方法。主要研究内容如下:
     1.蛋白质作探针共振瑞利散射法及共振非线性散射法测定硫酸软骨素A
     在pH 2.5-4.0的Britton-Robinson(BR)缓冲溶液介质中,人血清白蛋白(HSA)、牛血清白蛋白(BSA)、糜蛋白酶(Chy)和α-淀粉酶(α-Amy)等蛋白质能通过静电引力、氢键作用力和疏水作用力与酸性多糖的硫酸软骨素A(CSA)形成结合产物。此时将引起共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射显著增强并产生新的散射光谱。在蛋白质过量时,三种散射增强(△IRRS、△ISOS和△IFDS)均在一定范围内与CSA的浓度成正比,方法具有高灵敏度。当用HSA、Chy、BSA和α-Amy作探针时,三种散射法对于CSA的检出限分别在1.1-2.0 ng/mL(RRS),1.9-2.9 ng/mL(SOS)和3.1-13.2 ng/mL(FDS)。其中以HSA-CSA体系的RRS法最灵敏(检出限1.1 ng/mL),可用于痕量CSA的测定。本文研究了反应体系的RRS、SOS和FDS的光谱特征、适宜的反应条件和影响因素,并以HSA-CSA体系为例,讨论了二者之间的反应机理和结合模式:认为静电引力、氢键作用和疏水作用是它们的主要作用力,而CSA的乙酰氨基与HSA中芳香氨基酸(主要是色氨酸和酪氨酸)的生色团和荧光团的相互作用是吸收光谱变化和荧光猝灭的重要原因,而分子体积增大、疏水界面的形成及荧光-散射共振能量转移作用是共振光散射增强的重要因素。
     2.用硫酸软骨素A作探针共振瑞利散射及共振非线性散射法测定蛋白质
     在pH 1.8-2.5的BR缓冲介质中,硫酸软骨素A(CSA)的硫酸酯基离解而以带多个负电荷的大阴离子存在,而HSA、BSA、Chy、α-Amy和溶菌酶(Lyso)等蛋白质处于其等电点(pI)之下,则是带多个正电荷的大阳离子,两者可借静电引力、氢键作用、疏水作用而结合形成复合物。此时将引起共振瑞利散射(RRS)和二级散射(SOS)、倍频散射(FDS)等共振非线性散射(RNLS)的显著增强并出现新的散射光谱。3种散射的散射增强(△IRRS、△ISOS的△IFDS)均在一定范围内与蛋白质的浓度成正比,方法具有高灵敏度。三种方法对蛋白质的检出限分别为4.5-12.0 ng/mL(RRS法)、8.9-15.8 ng/mL(SOS法)和13.4-31.5 ng/mL(FDS法),其中以CSA-BSA体系灵敏度最高(检出限可达4.5 ng/mL)。本文研究了反应体系的RRS、SOS和FDS的光谱特征、适宜的反应条件和影响因素,讨论了反应机理、结合模式以及散射增强的原因。并以CSA-BSA体系为例考察了共存物质的影响,表明方法有良好的选择性。方法可用于正常人血清及尿样中蛋白质的测定。
     3.蛋白质与透明质酸钠相互作用的共振瑞利散射及共振非线性散射光谱研究及其分析应用
     在适当酸度的BR缓冲溶液介质中,透明质酸钠(Sodium Hyaluronate, SH)的D-葡萄醛酸单元上的羧酸离解而带上负电荷,而与在处于等电点以下带正电荷的HSA、BSA、Chy和a-Amy借助静电引力、疏水作用等结合而形成离子缔合物。此时将引起共振瑞利散射(RRS)显著增强,并产生新的RRS光谱,其最大散射波长位于300nm(Chy-SH)、290 nm(HSA-SH, BSA-SH);和305 nm(α-Amy-SH)处。散射增强(AIRRS)与SH浓度在一定范围内成正比,可用于SH的定量测定。HSA-SH,BSA-SH, Chy-SH以及α-Amy-SH体系的检出限(3σ)分别是:3.0,7.7,4.3和3.5ng/mL(RRS);5.4,16.3,10.5和6.8 ng/mL(SOS);8.9,21.0,17.2和8.8 ng/mL(FDS)。本文研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性。基于此可以建立起一种灵敏度高、简便、快速测定透明质酸钠的新方法。
     4.用蛋白质作探针共振瑞利散射和共振非线性散射发测定痕量藻酸钠
     在适当酸度的BR缓冲溶液介质中,藻酸钠(Sodium Alginate, Alg)的甘露糖醛酸单元上的羧酸离解而带上负电荷,而与在此酸度介质中处于等电点(pI)以下的带正电荷的HSA、BSA、Chy和Lyso借助静电引力、疏水作用等结合而形成离子缔合物。此时将引起共振瑞利散射(RRS)、二级散射(SOS)和倍频散射(FDS)等共振非线性散射(RNLS)的显著增强,并产生新的散射光谱,其最大RRS散射波长分别位于304 nm(Chy-Alg)、300 nm(HSA-Alg,BSA-Alg)和301 nm(Lyso-Alg)处。散射增强(△IRRS、△ISOS和△IFDS)与藻酸钠浓度在一定范围内成正比,可用于痕量藻酸钠的定量测定。HSA-Mg,BSA-Alg,Chy-Alg以及Lyso-Alg体系的检出限(36)分别是:1.9,2.1,2.1和1.6 ng/mL(RRS);2.6,2.9,3.0和2.6 ng/mL(SOS);5.0,5.1,5.5和5.5 ng/mL(FDS)。本文研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性。基于此可以建立起一种灵敏度高、简便、快速测定藻酸钠的新方法。5.糜蛋白酶作探针共振瑞利散射法和共振非线性散射法测定痕量的羧甲基纤维素钠
     在pH 4.4的HAc-NaAc缓冲介质中,羧甲基纤维素钠(CMC)由于分子链上的羧基钠电离而呈带多个负电荷的大阴离子,而此时处于等电点一下的糜蛋白酶则是带多个正电荷的大阳离子型体存在,二者可以通过静电引力和疏水作用力而相互结合形成复合物。此时将引起RRS和SOS、FDS等RNLS的显著增强,并出现新的散射峰。散射增强(△IRRS、△ISOS和△IFDS)的程度与一定浓度范围内的羧甲基纤维素钠成正比,且方法有高的灵敏度。三种方法(RRS法、SOS法和FDS法)对CMC的检出限(3σ)分别为2.3、4.8、4.3 ng/mL,其中以RRS法的灵敏度最高。本文研究了反应体系的RRS、SOS和FDS的光谱特征、适宜的反应条件和影响因素,并讨论了散射增强的原因,考察了共存物质的影响,表明方法有良好的选择性。方法可用于烟丝中CMC的测定。
Resonance Rayleigh scattering (RRS) and resonance non-linear scattering (RNLS) catch people's more attention because of their high sensitivity, rapid analysis speed and cheapness instrument. Now they have been widely used to pharmaceuticals analysis, the study of reactions between the micromolecules and biological macromolecules and reactions among inorganic molecules. But they are rarely applied to the study of reactions among biological macromolecules and their binding mode.
     In this work, the applications of RRS and RNLS to the analysis of proteins and polysaccharides were studied; the reation mechanism, binding mode, binding sites and the main interaction forces were investigated.
     1. Determination of chondroitin sulfate A by resonance Rayleigh scattering and resonance non-linear scattering using proteins as probes
     In pH 2.5-4.0 Britton-Robinson (BR) buffer medium, some proteins such as human serum albumin (HSA), bovine serum albumin (BSA), Chymotrypsin (Chy) andα-Amylase (α-Amy) can react with chondroitin sulfate A (CSA) to form binding products by means of electrostatic, hydrogen bonding and hydrophobic forces. As a result, the resonance Rayleigh scattering (RRS), second-order scattering (SOS) and frequency doubling scattering (FDS) were enhanced greatly and new scattering spectra appeared. The increments of scattering intensity (ΔI) were directly proportional to the concentrations of CSA in certain ranges. The detection limits (3σ) of CSA were 1.1-2.0 ng/mL (RRS),1.9-2.9 ng/mL (SOS) and 3.1-13.2 ng/mL (FDS), separately. Among them, the RRS method exhibited the highest sensitivity and the HSA-CSA system was more sensitive than other reaction systems (DL=1.1 ng/mL). The characteristic of the spectra and optimum conditions of RRS method were investigated. Taking RRS method of HSA-CSA system for example, the reaction mechanism and binding mode were discussed, which indicated that the main interaction forces were electrostatic attraction, hydrogen bonding and hydrophobic interaction. The interaction between acetylamino group of CS and chromophore and fluorophore of aromatic amino acids of HSA (mainly in tryptophan and tyrosine) was the important cause of the change of absorption spectra and the fluorescence quenching. But the increase of molecular volume, formation of hydrophobic interface and fluorescence-RRS resonance energy transfer were the main factors of scattering enhancements.
     2. Determination of proteins by resonance Rayleigh scattering and resonance non-linear scattering methods with chondroitin sulfate A as a probe
     In pH 1.8-2.5 BR buffer medium, negatively charged chondroitin sulfate A (CSA) can react with positively charged proteins, such as HSA, BSA, Chy, a-Amy and lysozyme (Lyso), via electrostatic attraction, hydrogen bonding and hydrophobic interaction. This led to the enhancements of resonance Rayleigh scattering (RRS) and resonance non-linear scattering (RNLS), including second order scattering (SOS) and frequency doubling scattering (FDS), and the appearance of new spectra. The scattering intensities (ΔIRRs,ΔISOS andΔIFDs) were directly linear to the concentrations of proteins in certain ranges. Each method had high sensitivity and the detection limits (3σ) were 4.5-12.0 ng/mL (RRS),8.9-15.8 ng/mL (SOS) and 13.4-31.5 ng/mL (FDS) for proteins. The CSA-BSA system was the most sensitive in which the detection limit for BSA was 4.5 ng/mL. In this article, the spectral characteristics, optimum conditions and influencing factors were investigated. The reaction mechanism and binding mode were discussed. Taking RRS method of CSA-BSA system for example, the effects of coexisting substances on the reaction were investigated. The method can be applied to the determination of protein in serum and urine samples with satisfactory results.
     3. The study of resonance Rayleigh scattering and resonance non-linear scattering of proteins-hyaluronate systems and their analytical applications
     In suitable acidity of BR buffer medium, sodium hyaluronate (SH) with negative charge can react with possitively charged proteins, such as HSA, BSA, Chy and a-Amy. via electrostatic attraction, hydrogen bonding and hydrophobic interaction. The intensities of RRS and RNLS were enhanced obviously and new spectra appeared. The enhanced scattering intensities (ΔIRRS,ΔISOS andΔIFDS) were directly proportional to the concentrations of hyaluronate in certain ranges. The detection limits (3σ) of hyaluronate for HSA-SH, BSA-SH. Chy-SH andα-Amy-SH were 3.0,7.7,4.3 and 3.5 ng/mL (RRS): 5.4,16.3,10.5 and 6.8 ng/mL (SOS);8.9,21.0,17.2 and 8.8 ng/mL (FDS), respectively. In this article, the spectral characteristics, optimum conditions of the reactions and influencing factors were investigated. Based on the above researches, a high sensitive, simple and fast method for the determination of hyaluronate has been established.
     4. Determination of sodium alginate by resonance Rayleigh scattering and resonacne non-linear scattering using proteins as probes
     In suitable acidity of BR buffer medium, sodium alginate (Alg) can react with some proeins such as HSA, BSA, Chy and Lyso by means of electrostatic attraction, hydrogen bonding and hydrophobic interaction, which led to the enhancement of RRS and RNLS intensities such as SOS and FDS. The maximum scattering wavelenghs were 304 nm (Chy-Alg),300 nm (HSA-Alg, BSA-Alg) and 301 nm (Lyso-Alg) for RRS. The enhanced scattering intensities (ΔIRRS,ΔISOS andΔIFDS) were directly linear to the concentrations of Alg in certain ranges. The detection limits (3σ) of alginate for HSA-Alg, BSA-Alg, Chy-Alg and Lyso-Alg were 1.9,2.1,2.1 andl.6 ng/mL (RRS); 2.6,2.9,3.0 and 2.6 ng/mL (SOS); 5.0,5.1,5.5 and 5.5 ng/mL (FDS), respectively. The optimum conditions, influence factors and the effect of coexisting substances were investigated. Based on above reseacches, a high sensitive, simple and quick method is developed to determine the sodium alginate.
     5. Determination of sodium carboxymethylcellulose by resonance Rayleigh scattering and resonance non-linear scattering using chymotrypsin as a probe
     In pH 4.4 Hac-NaAc buffer medium, sodium carboxymethylcellulose (CMC) can react with Chy by means of electrostatic attraction and hydrophobic interaction. The intensities of RRS, SOS and FDS were enhanced greatly and new scattering spectra appeared. The enhanced scattering intensities (ΔIRRS,ΔISOS andΔIFDS) were directly proportional to the concentrations of CMC in certain ranges. The detection limits (3σ) of three method were 2.3,4.8,4.3 ng/mL for RRS, SOS and FDS, respectively. The optimum conditions, influence factors and the effect of coexisting substances have been investigated. The method can be applied to determination of CMC in cut tobacco.
引文
[1]Tully S. E., Mabon R., Gama C. I., et al. A chondroitin sulfate small molecule that stimulates neuronal growth. J. Am. Chem. Soc.2004,126 (25):7736-7737.
    [2]化工百科全书编辑委员会编,化工百科全书,第15卷,北京:化学工业出版社,1997,808-809.
    [3]Izuka K., Murata K., Nakazawa K, et al. Effects of chondroitin sulfates on serum lipids and hexosamines in atherosclerotic patients with special reference to thrombus formation time. Jpn Heart 1968,9:453.
    [4]Morrison L. M., Bajwa G. S., Alfin-Slater R. B., et al. Prevention of vascular lesions by chondroitin sulfate A in the coronary artery and aorta of rats induced by a hypervitaminosis D, cholesterol-containing diet. Atherosclerosis 1972,16:105.
    [5]戴小慧,章建芳,陈龙.硫酸软骨素免疫增强作用研究.药物研究,2006,15(16):16-18.
    [6]高贵珍,焦庆才,丁一磊,等.天青A分光光度法测定硫酸软骨素含量的研究.光谱学与光谱分析,2003,23(3):600-602.
    [7]Elson L. A., Morgan W. T. J. A colorimetric method for the determination of glucosamine and chondrosamine. Biochem.1933,27:1824-1828.
    [8]于兹东,杨桂明,高华,等.咔唑分光光度法测定硫酸软骨素.青岛大学学报(自然科学版),2005,18(3):4144.
    [9]高华,刘坤,于兹东.间苯三酚分光光度法测定硫酸软骨素的研究.中国生化药物杂志,2000,21(5):247-248.
    [10]丁雅勤,孙伟,高瑞芳,等.吖啶橙分光光度法测定硫酸软骨素含量.中国生化药物杂志,2006,27(2):68-70.
    [11]施文健,祝信贤.碱性艳蓝BO分光光度法测定硫酸软骨素.中国生化药物杂志,2004,25(1):28-30.
    [12]陈媛媛,蒋治良,李振中,等.维多利亚蓝B分光光度法测定硫酸软骨素.光谱学与光谱分析,2006,26(6):1148-1150.
    [13]杜美菊,凌翠霞,丁秀云.中性红光度法测定硫酸软骨素含量.理化检验-化学分册,2006,42(8):662-663.
    [14]高贵珍,焦庆才,丁一磊.天青A分光光度法测定硫酸软骨素含量的研究.光谱学与光谱分析,2003,23(3):600-602.
    [15]Homer K. A., Denbow L., Beighton D. Spectrophotometric method for the assay of glycosaminoglycans and glycosaminoglycan-depolymerizing enzymes. Anal. Biochem.1993,214(2):435-441.
    [16]姬胜利,崔慧斐,谢清毅,等.硫酸软骨素钠的比浊法测定.中国医药工业杂志,2001,32(2):63-64.
    [17]Garnjanagoonchorn W., Wongekalak L., Engkagul A.. Determination of chondroitin sulfate from different sources of cartilage. Chem. Eng. Pro.2007,46: 465-471.
    [18]茅力.离子色谱法测定硫酸软骨素的含量.中国药科大学学报,1998,29(5):358-361.
    [19]勾华,罗红群,李念兵.甲苯胺蓝循环伏安法测定硫酸软骨素.西南大学学报(自然科学版),2008,30(5):58-61.
    [20]孙伟,赵娜,徐啸,等.甲苯胺蓝线扫极谱法测定硫酸软骨素.分析化学,2007,35(11):1548-1552.
    [21]夏传俊,孟菁,杨耿.反相高效液相色谱法测定硫酸软骨素的含量.安徽师范大学学报(自然科学版),2000,23(4):354-355.
    [22]Choi D. W., Kim M. J., Kim H. S. A size-exclusion HPLC method for the determination of sodium chondroitin sulfate in pharmaceutical preparations. J. Pharm. Biomed. Anal.2003,31:1229-1236.
    [23]Jin P. F., Ma J., Wu X. J., et al. Simultaneous determination of chondroitin sulfate sodium, allantoin and pyridoxine hydrochloride in pharmaceutical eye drops by an ion-pair high-performance liquid chromatography. J. Pharm. Biomed. Anal.2009, 50:293-297.
    [24]Du J. P., Eddington N. Determination of the chondroitin sulfate disaccharides in dog and horse plasma by HPLC using chondroitinase digestion, precolumn derivatization, and fluorescence detection. Anal. Biochem.2002,306:252-258.
    [25]李艳平,吴拥军,常佩亮,等.化学发光法快速测定硫酸软骨素注射液的含量.华西药学杂志,2007,22(3):331-332.
    [26]Nimptsch A., Schibur S., Schnabelrauch M., et al, Characterization of the quantitative relationship between signal-to-noise (S/N) ratio and sample amount on-target by MALDI-TOF MS:Determination of chondroitin sulfate subsequent to enzymatic digestion. Anal. Chim. Acta 2009,635:175-182.
    [27]Pasternack R. F.. Collings P. J. Resonance light scattering:a new technique for studying chromophore aggregation. Science 1995,269(5226):935-939.
    [28]汪尔康.分析化学新进展.北京:科学出版社,2002,280-288.
    [29]郭思斌,肖佩玉,舒永全,等.固绿共振瑞利散射光谱法测定硫酸软骨素.四川生理科学杂志,2007.29(3):112-114.
    [30]李继桃,李念兵,罗红群.甲基紫硫酸软骨素共振瑞利散射光谱及其应用.分析测试学报,2007,26(2):183-186.
    [31]蒋治良,邹明静,梁爱惠,等.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用.化学学报,2006,64(2):111-116.
    [32]Somsena G. W., Tak Y. H., Torano J. S., et al, Determination of oversulfated chondroitin sulfate and dermatan sulfate impurities in heparin by capillary electrophoresis. J. Chromatogr. A 2009,1216:4107-4112.
    [33]Christina J. M., Athanasia P. A., Fotini N. L., et al. Capillary electrophoresis for the quality control of chondroitin sulfates in raw materials and formulations. Anal. Biochem.2008,374:213-220.
    [34]Nicola V., Francesca M. Microdetermination of chondroitin sulfate in normal human plasma by fluorophore-assisted carbohydrate electrophoresis (FACE). Clin. Chim.Acta 2005,356:125-133.
    [35]Nicola V. High-performance liquid chromatography and on-line mass spectrometry detection for the analysis of chondroitin sulfates/hyaluronan disaccharides derivatized with 2-aminoacridone. Anal. Biochem.2010,397:12-23.
    [36]Okamoto H., Nakajima T., Ito Y, et al. Development of a novel analytical method for determination of chondroitin sulfate using an in-capillary enzyme reaction. J. Chromatogr. A 2004,1035:137-144.
    [37]Nicola V., Francesca M., Robert J. L. Quantitative capillary electrophoresis determination of oversulfated chondroitin sulfate as a contaminant in heparin preparations. Anal. Biochem.2009,388:140-145.
    [38]Bairstow S., McKee J., Nordhaus M., et al. Identification of a simple and sensitive microplate method for the detection of oversulfated chondroitin sulfate in heparin products. Anal. Biochem.2009,388:317-321.
    [39]凌沛学.透明质酸.北京:中国轻工业出版社,2000:11-15.
    [40]冯文帅.透明质酸及其发展应用前景.四川食品与发酵,2001,1:4-6.
    [41]杨素珍,陈贵锐.透明质酸的特性及在食品中的应用.食品工业科技,2008,29(6):317-318,320.
    [42]单连海,熊雄,郭海霞.透明质酸的制备及其应用进展.安徽农业科学,2007,35(11): 3150-3151,3189.
    [43]Ghatak S., Misra S., Toole B. Hyaluronan oligosaccharides inhibit anchorage-independent growth of tumor cells bysuppressing the phosphoinositide 3-Kinase/Akt cell survival pathway. J. Biol. Chem.2002,277 (41):38013-38020.
    [44]Misra S., Ghatak S., Toole B. P. Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-Kinase, and ErbB2. J. Biol. Chem.2005,280(20):20310-20315.
    [45]Trabucchi E., Pallotta S., Morini M., et al. Low molecular weight hyaluronic acid prevents oxygen free radical damage to granulation tissue during wound healing. Int. J. Tissue React.2002,24(2):65-71.
    [46]Taylor K. R., Trowbridge J. M., Rudisill J. A., et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem.2004, 279(17):17079-17084.
    [47]Sattrar A., Rooney P., Kumar S., et al. Application of angiogenic oligosaccharides blood vessel numbers in rat skin. J. Invest. Dermatol.1994,103(4):576-579.
    [48]Pilloni A., Bernard G. W. Low molecular weight hyaluronic acid increase osteogenesis in vitro. J. Dent. Res.1992,71:574.
    [49]Mckee C., Penno M., Cowman M., et al. Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages the role of HA size and CD44. J. Clin. Invest.1996,98(10):2403-2413.
    [50]Kazuaki K., Minako U., Shigeo S., et al. Determination of hyaluronic acid by high-performance liquid chromatography of the oligosaccharides derived therefrom as 1-(4-methoxy)phenyl-3-methyl- 5-pyrazolone derivatives. J. Chromatogr. A 1993,630(1-2):141-146.
    [51]Hiroshi A., Shingo S., Akira M., et al. Chemiluminescence high-performance liquid chromatography for the determination of hyaluronic acid, chondroitin sulphate and dermatan sulphate. J. Chromatogr.:Biomed. Appl.1992,579(2):203-207.
    [52]Hidenao T., Kazuhiro M., Masahiko T., et al. Determination of human urinary hyaluronic acid, chondroitin sulphate and dermatan sulphate as their unsaturated disaccharides by high-performance liquid chromatography. J. Chromatogr.:Biomed. Appl.1991,565(1-2): 141-148.
    [53]Hjerpe A., Aantonopoulos C. A., Engfeldt B. Determination of hyaluronic acid using high-performance liquid chromatography of chondroitinase digests. J. Chromatogr. A 1982,245(3):365-368.
    [54]Hjerpe A. Liquid-Chromatographic Determination of hyaluronic acid in pleural and ascitic fluids. Clin. Chem.1986,32(6):952-956.
    [55]Martensson G., Thylen A., Lindqvist U. The sensitivity of hyaluronan analysis of pleural fluid from patients with malignant mesothelioma and a comparison of different methods. Cancer 2006,73(5):1406-1410.
    [56]Bader J. P., Ray D. A., Steck T. L. Electrophoretic determinations of hyaluronate produced by cells in culture. BBA-Gene. Sub.1972,264(1):73-84.
    [57]Shozo H., Yasuo 0., Susumu H., et al. High-performance capillary electrophoresis of hyaluronic acid:determination of its amount and molecular mass. J. Chromatogr. A 1997,768:295-305.
    [58]Laurent T.C., Barany E., Carlsson B., et al. Determination of hyaluronic acid in the microgram range. Anal. Biochem.1969,31:133-145.
    [59]Laurent U. B. G, Tengblad A. Determination of hyaluronate in biological samples by a specific radioassay technique. Anal. Biochem.1980,109(2):386-394.
    [60]马卫兴,朱倩,朱鹏,等.褪色光度法测定透明质酸钠研究.淮海工学院学报(自然科学版),2009,18(1):50-53.
    [61]刘杰,周心怡,张华英,等.一种快速测定透明质酸的分光光度法.无锡轻工大学学报,1995,14(1):43-48.
    [62]Jourdian G. W., Wolfman M., Sarber R., et al. A specific, sensitive method for the determination of hyaluronate. Anal. Biochem.1979,96(2):474-480.
    [63]Hatae Y., Makita A. Colorimetric determination of hyaluronate degraded by Streptomyces hyaluronidase. Anal. Biochem.1975,64(1):30-36.
    [64]陈莲惠,刘绍璞,罗红群,等.碱性二苯基萘基甲烷染料褪色光度法测定透明质酸钠.分析化学,2004,32(8):1086-1089.
    [65]陈莲惠,罗红群,刘绍璞,等.维多利亚蓝B共振瑞利散射光谱法测定透明质酸钠.光谱实验室,2005,22(3):547-550.
    [66]陈莲惠,刘绍璞,罗红群.夜蓝共振瑞利散射光谱法测定透明质酸钠.分析科学学报,2005,21(3):304-306.
    [67]张世娜,王祥洪.共振瑞利散射法测定透明质酸.临床合理用药,2009,2(19):80-81.
    [68]孙伟,高瑞芳,丁雅勤,等.藏红T作为电化学探针线扫极谱法测定透明质酸.分析化学,2006,34(9):1265-1268.
    [69]张伟丽,郭鲁东,张玉军,等.吡啰红B作为电化学探针线扫极谱法测定透明质酸.化学试剂,2009,31(7):531-534.
    [70]Bohacek J., Singh C. Oscillopolarographic detection and determination of polyanions:dextran sulfate, heparin, hyaluronate, and polyphosphate. Anal. Biochem.1966,15(1):1-7.
    [71]Zheng M., Cai W. M., Zhao J. K., et al. Determination of serum levels of YKL-40 and hyaluronic acid in patients with hepatic fibrosis due to schistosomiasis japonica and appraisal of their clinical value. Acta Tropica.2005,96:148-152.
    [72]Delpech B., Bertrand P., Maingonnat C. Immunoenzymeassay of the hyaluronic acid-hyaluronectin interaction:application to the detection of hyaluronic acid in serum of normal subjects and cancer patients. Anal. Biochem.1985,149:555-565.
    [73]Goldberg R. L., Enzyme-linked immunosorbent assay for hyaluronate using cartilage proteoglycan and an antibody to keratan sulfate. Anal. Biochem.1988, 174:448-458.
    [74]Kongtawelert P., Ghosh P., An enzyme-linked immunosorbentinhibition assay for quantitation of hyaluronan (hyaluronic acid) in biological fluids. Anal. Biochem.1989,178:367-372.
    [75]Martins J. R. M., Passerotti C. C., Maciel R. M. B., et al. Practical determination of hyaluronan by a new noncompetitive fluorescence- based assay on serum of normal and cirrhotic patients. Anal. Biochem.2003,319:65-72.
    [76]Grigoreas G. H. A., Anagnostides S.T., Vynios D. H. A solid-phase assay for the quantitative analysis of hyaluronic acid at the nanogram level. Anal. Biochem. 2003,320:179-184.
    [77]周学良.精细化工产品手册-生物化学品.北京:化学工业出版社,2002,246-248.
    [78]吴东儒.糖类的生物化学.北京:高等教育出版社,1987,462.
    [79]Kawasaki Y., Ishiwata H., Yamada T. Determination method for sodium alginate in foods. Shokuhin Eiseigaku Zasshi 1998,39(5):297-302.
    [80]Pfenninger H. B., Anderegg P., Vykoukal E. Alginate determination in beer. J. Am. Soc. Brew. Chem.1983,41(1):40-42.
    [81]Sagalovich V. P., Kulikov Y. M., Mushnikova O. L., et al. Quantitative determination of sodium alginate. Otkrytiya Izobret 1991,31:182.
    [82]王祥洪,杨季冬,刘绍璞.碱性二苯基萘基甲烷染料褪色分光光度法测定藻酸钠.理化检验-化学分册,2007,43(10):811-814.
    [83]王祥洪,杨季冬,刘绍璞.碱性三苯甲烷染料褪色分光光度法测定藻酸钠.分析科学学报,2006,22(6):679-682.
    [84]Kennedy J. F., Bradshaw I. J. The rapid quantitative determination of alginates by poly (hexamethylenebiguanidinium chloride) complexation in industrial liquors extracted from brown seaweed. Carbohydr. Polym.1987,7(1):35-50.
    [85]Murata Y., Kawashima S., Miyamoto E. Colorimetric determination of alginates
    and fragments thereof as the 2-pitrophenylhydrazide. Carbohydr. Res.1990,208: 289-292.
    [86]Kennedy J. F., Bradshaw I. J. A rapid method for the assay of alginates insolution using polyhexamethylenebiguanidinium chloride. Br. Polym. J.1984,16 (2): 95-101.
    [87]Kjetill (?). Enzymatic microassay for the determination and characterization of alginates. Carbohydr. Polym.1992,19(1):51-59.
    [88]杨季冬,王祥洪,刘忠芳,等.碱性二苯基萘基甲烷染料共振瑞利散射法测定藻酸钠.应用化学,2008,25(4):385-390.
    [89]王祥洪,杨季冬,田华荣.吖啶染料共振瑞利散射法测定藻酸钠.化学研究与应用,2008,20(9):1110-1114.
    [90]Desille M., Allain N., Anger J. P., et al. Method for monitoring alginate released in biological fluids by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. B 2003,784:265-274.
    [91]Pechanek U., Blaicher G., Pfannhauser, et al. Electrophoretic method for qualitative and quantitative analysis of gelling and thicking agents. J. Assoc. Off Anal. Chem.1982,65(3):745-752.
    [92]Padmoyo M., Miserez A. Identification of gelling and thickening agents permitted in Switzerland by electrophoresis and staining on cellulose acetate strips. Mitt. Geb. Lebensmittelunters Hyg.1967,58(1):31-49.
    [93]Better B., Amado R., Neukom H. Electrophoretic determination of gelling and thicking agents on silylated glass fiber paper. Mitt. Geb. Lebensmittelunters Hyg. 1985,76(1):69-82.
    [94]Richmond M. D., Yeung E. S. Development of laser-excited Indirect fluorescence detection for high-molecular-weight polysaccharides in capillary electrophoresis. Anal. Biochem.1993,210(2):245-458.
    [95]Sjoberg A. M, Pyysalo H. Indentification of food thickeners by monitoring of their pyrolytic products. J. Chromatogr.1985,319(1):90-98.
    [96]Scherz H. Analysis of thickening agents in foods lebensmittelchem. Greichtl. Chem. 1985,39(2):32-33.
    [97]Cantafora A., DiMuccio A., Villalohos D. A. Chromatography of thicking agents in some foods. RivSoc. Ital. Sci. Aliment.1974,3(4):99-102.
    [98]Toyoda M., Yomota C., Ito Y., et al. High performance liquid chromatographic method for the determination of sodium alginate in foods. Shokuhin Eiseigaku Zasshi 1985,26(2):189-194.
    [99]Rourke T. J., Mandigo R. W. HPLC quantitation of alginate or pectin added to lean ground pork. J. Food Sci.1993,58(5):973-977.
    [100]汪学荣,阚建全,邓尚贵.羧甲基纤维素钠在食品工业中应用及研究现状.粮食与油脂,2006,3:42-45.
    [101]隋卫平,姜秋.甜菜碱与羧甲基纤维素钠相互作用的研究.济南大学学报,1994,3:90-92.
    [102]郑忻,郑荟.发展纯级羧甲基纤维素钠有关问题的探讨.煤炭科技,2002,4:11-13.
    [103]张丽平,余晓琴.羧甲基纤维素钠(CMC)在食品工业应用的情况和研究动态.中国食品添加剂,2006,1:118-125.
    [104]Khalil A. H. Quality of french fried potatoes as influenced by coating with hydrocolloids. Food Chem.1999,66:201-208.
    [105]阎瑞香,张平,王莉.改性纤维素类成膜剂在食品保鲜中的应用.食品研究与开发,2004,25(1):144-146.
    [106]周伟明.浅谈羧甲基纤维素钠在特种纸上的应用.造纸化学品,2005,5:27-29.
    [107]李华,牛生洋,王华,等.羧甲基纤维素钠(CMC)对葡萄酒酒石稳定的研究.中国食品添加剂,2003,6:34-38.
    [108]牛生洋,郝峰鸽.羧甲基纤维素钠的应用进展.安徽农业科学,2006,34(15):3574-3575.
    [109]Kostareva L. A., Gruzdova N. S., Balueva L. V. Gravimetric determination of sodium carboxymethylcelluouse using molybdophosphoric Acid:USSR, SU1503003 [P/OL].1989,08-23.
    [110]Takano S., Tsuda T., Yamanaka M. Automated determination of builders in detergents. Ⅱ determination of sodium carboxy methylcellulose on the basis of anthrone method. Yukagaku 1977,26(5):287-290.
    [111]Halliwell G., Sakajon M., Duhn T. Microcolorimetric determination of soluble carbohydrates. Enzyme Microb. Technol.1983,5(1):37-40
    [112]陆海燕,宋美,史卫东,等.蒽酮光度法测定羧甲基纤维素钠.天津轻工业学院学报,1996,2:86-88.
    [113]刘绍璞,陈飒,胡小莉,等.羧甲基纤维素对某些碱性吖啶染料的褪色作用及其分析应用.分析化学,2005,33(5):639-642.
    [114]Liu S. P., Chen S., Hu X.L., et al. Fluorescence quenching method for the determination of sodium carboxymethyl cellulose with acridine yellow or acridine orange. Spectrochimica Acta Part A 2006,64:817-822.
    [115]Yomota C., Toyoda M., Ito Y., et al. An improved determination method for sodium carboxymethylcellulose in various foods. Shokuhin Eiseiguku Zasshi 1984,25(6):505-511.
    [116]Hall R. A., Wooten J. B. Quantitative analysis of cellulose in tobacco by 13C CPMAS NMR. J Agric. Food Chem.1998,46(4):1423-1427.
    [117]孔玲,刘绍璞,刘忠芳.硫酸耐尔蓝共振光散射法测定羧甲基纤维素钠.应用化学,2006,23(7):708-712.
    [118]刘绍璞,孔玲,刘忠芳.乙基紫共振瑞利散射法测定羧甲基纤维素钠.西南师范大学学报(自然科学版),2006,31(1):1-6.
    [119]Liu S. P., Chen S., Liu Z. F., et al. Resonance Rayleigh scattering spectra of interaction of sodium carboxymethylcellulose with cationic acridine dyes and their analytical applications. Anal. Chim. Acta 2005,535:169-175.
    [120]Ollis D. L., White S. W. Structural basis of protein-nucleic acid interactions. Chem. Rev.1987,87:981-995.
    [121]Nadassy K., Wodak S. J., Janin J. Structural Features of Protein-Nucleic Acid Recognition Sites. Biochem.1999,38(7):1999-2017.
    [122]R.M.特怀曼著,陈淳,徐沁等译,高级分子生物学要义,北京,2000,217.
    [123]汪尔康主编,陈义副主编,生命分析化学,北京,2006,1
    [124]Stites W. E. Protein-Protein Interactions:Interface Structure, Binding Thermodynamics, and Mutational Analysis. Chem. Rev.1997,97:1233.
    [125]Nocek J. M., Zhou J.S., Forest S. D., et al. Theory and Practice of Electron Transfer within Proteinminus signProtein Complexes:Application to the Multidomain Binding of Cytochrome c by Cytochrome c Peroxidase. Chem. Rev. 1996,96(7):2459-2490.
    [126]Whitford D. Proteins:Structure and Function. Beijing,2008,272
    [127]Pickford A. R., Campbell I. D. NMR Studies of Modular Protein Structures and Their Interactions. Chem. Rev.2004,104(8):3557-3565.
    [128]Branden C., Tooze J. Introduction to protein structure,2nd ed.; Beijing,2007, 272-287 (in Chinese)
    [129]Li Y. F., Shen X. W., Huang C. Z. A coupled reagent of o-phthalaldehyde and sulfanilic acid for protein detection based on the measurements of light scattering signals with a common spectrofluorometer. Talanta 2008,75(4):1041-1045.
    [130]Lu W., Fernandez Band B. S., Yu Y., et al. Resonance light scattering and derived techniques in analytical chemistry:past, present, and future. Microchim. Acta 2007,158(1-2):29-58.
    [131]马春琪,刘瑛,李克安,等.瑞利光散射及其在生物化学分析中的应用研究.科学通报,1999,44(7):682-690.
    [132]Huang C. Z., Li Y. F. Resonance light scattering technique used for biochemical and pharmaceutical analysis. Anal. Chim. Acta 2003,500(1-2):105-117.
    [133]Liu S. P., Luo H. Q., Li N. B. et al. Resonance Rayleigh scattering study of the interaction of heparin with some basic diphenylnaphthylmethane dyes. Anal. Chem.2001,73(16):3907-3914.
    [134]李珊,刘忠芳,刘绍璞.胰蛋白酶与DNA相互作用的共振瑞利散射光谱及其分析应用研究.高等学校化学学报,2006,27(3):432-437.
    [1]刘坤,高华.AHMT分光光度法测定软骨鱼类硫酸软骨素.中国海洋药物杂志,2005,24(4):21-23.
    [2]丁雅勤,孙伟,高瑞芳,等.吖啶橙分光光度法测定硫酸软骨素含量.中国生化药物杂志,2006,27(2):68-70.
    [3]施文健,祝信贤.碱性艳蓝BO分光光度法测定硫酸软骨素.中国生化药物杂志,2004,25(1):28-30.
    [4]姬胜利,崔慧斐,谢清毅,等.硫酸软骨素钠的比浊法测定.中国医药工业杂志,2001,32(2):63-64.
    [5]丁秀云,杜美菊,陈红燕.溴酚蓝褪色分光光度法测定硫酸软骨素.商丘师范学院学报,2008,24(12):80-82.
    [6]高华,刘坤,于兹东.间苯三酚分光光度法测定硫酸软骨素的研究.中国生化药物杂志,2000,21(5):247-248.
    [7]李明明,逯家辉,陈韵,等.硫酸软骨素的结晶紫分光光度法测定.中国医药工业杂志,2008,39(1):50-51.
    [8]茅力.离子色谱法测定硫酸软骨素的含量.中国药科大学学报,1998,29(5):358-361
    [9]张关顺.电位法测定硫酸软骨素的含量.海峡药学,2004,16(5):92-93.
    [10]孙伟,赵娜,徐啸,等.甲苯胺蓝线扫极谱法测定硫酸软骨素.分析化学,2007,35(11):1548-1552.
    [11]勾华,罗红群,李念兵.甲苯胺蓝循环伏安法测定硫酸软骨素.西南大学学报(自然科学版),2008,30(5):58-61.
    [12]Govert W. S., Yvonne H. T., Javier S. T., et al. Determination of oversulfated chondroitin sulfate and dermatan sulfate impurities in heparin by capillary electrophoresis. J. Chromatogr. A 2009,1216:4107-4112.
    [13]Okamoto H., Nakajima T., Ito Y., et al, Development of a novel analytical method for determination of chondroitin sulfate using an in-capillary enzyme reaction. J. Chromatogr. A 2004,1035:137-144.
    [14]Xia C. J., Meng J., Yang G. Determination of chondroitin sulfate by reversed-phase high performance liquid chromatography. J. Anhui Nor. Univ.(Nat.e Sci.),2000,23(4):354-355.
    [15]Choi D. W., Kim M. J., Kim H. S. A size-exclusion HPLC method for the determination of sodium chondroitin sulfate in pharmaceutical preparations. J. Pharm. Biomed. Anal.2003,31:1229-1236.
    [16]Jin P. F., Ma J., Wu X. J., et al. Simultaneous determination of chondroitin sulfate sodium, allantoin and pyridoxine hydrochloride in pharmaceutical eye drops by an ion-pair high-performance liquid chromatography. J. Pharm. Biomed. Anal.2009, 50:293-297.
    [17]李艳平,吴拥军,常佩亮,等.化学发光法快速测定硫酸软骨素注射液的含量.华西药学杂志,2007,22(3):331-332.
    [18]Nimptsch A., Schibur S., Schnabelrauch M., et al, Characterization of the quantitative relationship between signal-to-noise (S/N) ratio and sample amount on-target by MALDI-TOF MS:Determination of chondroitin sulfate subsequent to enzymatic digestion. Anal. Chim. Acta 2009,635:175-182.
    [19]郭思斌,肖佩玉,舒永全,等.固绿共振瑞利散射光谱法测定硫酸软骨素.四川生理科学杂志,2007,29(3):112-114.
    [20]李继桃,李念兵,罗红群.甲基紫硫酸软骨素共振瑞利散射光谱及其应用.分
    析测试学报,2007,26(2):183-186.
    [21]蒋治良,邹明静,梁爱惠,等.硫酸软骨素-阳离子表面活性剂缔合物微粒体系的共振散射光谱研究及分析应用.化学学报,2006,64(2):111-116.
    [22]沈同,王镜岩,生物化学(上册),北京:高等教育出版社,1990,87.
    [23]中国大百科全书编辑委员会编,中国大百科全书,生物学(Ⅱ),中国大百科全书出版社,北京,1991,1374.
    [24]刘绍璞,蒋治良,孔玲,等.[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱.中国科学(B辑),2002,45(6):616-624.
    [25]Xi C. X., Liu Z. F., Kong L. et al. Effects of interaction of folic acid with uranium (Ⅵ) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical application. Anal. Chim. Acta 2008,613:83-90.
    [1]Zheng H., Mao Y. X., Li D. H., et al. Dye-binding protein assay using a long-wave-absorbing cyanine probe. Anal.Biochem.2003,318:86-90.
    [2]Wang H., Li W. R., Guo X. F., et al. Spectrophotometric determination of total protein in serum using a novel near-infrared cyanine dye,5,5'-dicarboxy-1,1'-disulfobutyl-3,3,3',3'-tetramethylindotricarbocyanine. Anal. Bioanal. Chem.2007,387:2857-2862.
    [3]Zhu X. S., Sun J., Hu Y. Y. Determination of protein by hydroxypropyl-β-cyclodextrin sensitized fluorescence quenching method with erythrosine sodium as a fluorescence probe. Anal. Chim. Acta 2007,596:298-302.
    [4]Chen Y. J., Yang J. H., Wang Z. L., et al. Scopoletine as fluorescence probe for determination of protein. Spectrochimica Acta Part A 2007,66:686-690.
    [5]陈定玺,王韶华.碱性藏花红-十二烷基苯磺酸钠-蛋白质体系的荧光反应及其分析应用,光谱学与光谱分析,2007,27(1):104-107.
    [6]马春琪,刘瑛,李克安,等,瑞利光散射及其在生物化学分析中的应用研究,科学通报,1999,44(7):682-690.
    [7]Huang C. Z., Li Y. F. Resonance light scattering technique used for biochemical and pharmaceutical analysis. Anal. Chim. Acta 2003,500:105-117.
    [8]杨睿,刘绍璞,某些分子光谱法测定蛋白质的进展.分析化学,2001,29(2),232-241.
    [9]刘绍璞,蒋治良,孔玲,等.[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱.中国科学(B辑),2002,45(6):616-624.
    [10]Xi C. X., Liu Z. F., Kong L. et al. Effects of interaction of folic acid with uranium(Ⅵ) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical application. Anal. Chim. Acta 2008,613:83-90.
    [11]Tanford C. Physical Chemistry of Macromolecules, John Wiley &Sons Inc, New York and London,1961,275.
    [12]Melneikov S. M., Sergeyev V. G., Yoshikawa K. Discrete coil-globule transition of large DNA induced by cationic surfactant. J. Am. Chem. Soc.1995,117: 2401-2408.
    [13]刘绍璞,胡小莉,罗红群,等.阳离子表面活性剂与核酸反应的共振Rayleigh散射光谱及其分析应用.中国科学(B辑),2002,32(1):18-26.
    [14]Bradford M. M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal.Biochem.1976,72:248-254.
    [1]马卫兴,朱倩,朱鹏,等.褪色光度法测定透明质酸钠研究.淮海工学院学报(自然科学版),2009,18(1):50-53.
    [2]陈莲惠,刘绍璞,罗红群,等.碱性二苯基萘基甲烷染料褪色光度法测定透明质酸钠.分析化学,2004,32(8):1086-1089.
    [3]孙伟,高瑞芳,丁雅勤,等.藏红T作为电化学探针线扫极谱法测定透明质酸.分析化学,2006,34(9):1265-1268.
    [4]张伟丽,郭鲁东,张玉军,等.吡啰红B作为电化学探针线扫极谱法测定透明质酸.化学试剂,2009,31(7):531-534.
    [5]王祥洪,杨季冬.甲基紫共振瑞利散射光谱法测定透明质酸钠.理化检验-化学分册,2007,43(1):8-10.
    [6]陈莲惠,罗红群,刘绍璞,等.维多利亚蓝B共振瑞利散射光谱法测定透明质酸钠.光谱实验室,2005,22(3):547-510.
    [7]张世娜,王祥洪.共振瑞利散射法测定透明质酸.临床合理用药,2009,2(19): 80-81.
    [8]陈莲惠,刘绍璞,罗红群,等.夜蓝共振瑞利散射光谱法测定透明质酸钠.分析科学学报,2005,21(3):304-306.
    [9]李稳宏,李剑君,熊朝晖.透明质酸的制备方法.现代化工,1998,1:44-45.
    [10]刘绍璞,蒋治良,孔玲,等.[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱.中国科学(B辑),2002,45(6):616-624.
    [11]Xi C. X., Liu Z. F., Kong L. et al. Effects of interaction of folic acid with uranium (VI) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical application. Anal. Chim. Acta 2008,613:83-90.
    [1]Kawasaki Y., Ishiwata H., Yamada T. Determination method for sodium alginate in foods. Shokuhin Eiseigaku Zasshi 1998,39(5):297-302.
    [2]Sagalovich V. P., Kulikov Y. M., Mushnikova O. L., et al. Quantitative determination of sodium alginate. Otkrytiya Izobret 1991,31:182.
    [3]王祥洪,杨季冬,刘绍璞.碱性二苯基萘基甲烷染料褪色分光光度法测定藻酸钠.理化检验-化学分册,2007,43(10):810-814.
    [4]王祥洪,杨季冬,刘绍璞.碱性三苯甲烷染料褪色分光光度法测定藻酸钠.分析科学学报,2006,22(6):679-682.
    [5]Desille M., Allain N., Anger J.P., et al. Method for monitoring alginate released in biological fluids by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. B 2003,784:265-274.
    [6]杨季冬,王祥洪,刘忠芳,等.碱性二苯基萘基甲烷染料共振瑞利散射法测定藻酸钠.应用化学,2008,25(4):385-390.
    [7]王祥洪,杨季冬,田华荣.吖啶染料共振瑞利散射法测定藻酸钠.化学研究与应用,2008,20(9):1110-1114.
    [8]日本厚生省环境卫生及食品化学课.食品中添加剂分析方法.马尔骧,高鹤娟,戴莹,等.译.北京:中国标准出版社,1988,568-574.
    [9]耿立萍.藻酸钠对面条品质的改良作用.食品工业,1995,5:17-19.
    [1]陆海燕,宋美,史卫东.蒽酮光度法测定羧甲基纤维素钠.天津轻工业学院学报,1996,2:86-88.
    [2]Halliwell G., Sakajon M., Duhn T. Microcolorimetric Determination of soluble carbohydrates. Enzyme Microb Technol 1983,5(1):37 40.
    [3]Liu S. P., Chen S., Hu X. L., et al. Fluorescence quenching method for the determination of sodium carboxymethyl cellulose with acridine yellow or acridine orange. Spectrochimica Acta Part A 2006,64:817-822.
    [4]刘绍璞,孔玲,刘忠芳.乙基紫共振瑞利散射法测定羧甲基纤维素钠.西南师范大学学报(自然科学版),2006, 31(1):1-6
    [5]孔玲,刘绍璞,刘忠芳.硫酸耐尔蓝共振光散射法测定羧甲基纤维素钠.应用化学,2006,23(7):708-712.
    [6]刘绍璞,蒋治良,孔玲,等.[HgX2]n纳米微粒的吸收光谱、Rayleigh散射和共振Rayleigh散射光谱.中国科学(B辑),2002,45(6):616-624.
    [7]Xi C. X., Liu Z. F., Kong L. et al. Effects of interaction of folic acid with uranium (Ⅵ) and basic triphenylmethane dyes on resonance Rayleigh scattering spectra and their analytical application. Anal Chim Acta 2008,613:83-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700