新型旋流高温空气燃烧器的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温空气燃烧(High temperature air combustion,HTAC)是一种采用高预热空气在超低氧浓度条件下的先进燃烧技术,它具有很低的NO_X(热力型)排放特性,并且通过采用高效的蓄热陶瓷材料极限回收燃烧后的烟气中的余热来加热进入炉膛内的空气,从而大幅度地节约了能量。高温空气燃烧技术在过去20年里得到了迅速发展,在钢铁冶金、玻璃、陶瓷、水泥等行业的工业炉中具有广阔的应用前景,被誉为21世纪最有发展前景的燃烧技术之一。高温空气燃烧技术在气体燃料的应用上可节能30%~70%,氮氧化物排放可控制在40~70mg/m~3之间,已取得了良好的经济效益和环境效益。
     研究表明燃料和空气喷嘴的特殊布置方式及其射流在炉内引起的流场回流、燃料和气体成分间的混合、扩散等影响燃烧的稳定性、温度分布以及局部NO_X的生成。在高温空气燃烧技术中,设计合理的燃烧器可以降低氮氧化物的排放。如何调整燃烧器结构参数和操作参数,使得燃料在低氧氛围中进行燃烧,以降低氮氧化物排放,减少对环境的污染是实现高温空气燃烧的关键。
     本论文以工业炉的高温空气燃烧技术应用为背景,对一个新型轴向旋流式单烧嘴(HCAS burner)燃烧室内的高温空气燃烧特性以及氮氧化物排放进行了数值研究。采用数值模拟的方法研究了燃烧器结构参数和操作参数对燃烧特性和氮氧化物排放的影响。其中湍流采用Reynolds应力模型,气相燃烧模拟采用β函数形式的PDF燃烧模型,采用离散坐标法模拟辐射换热过程,NO_X模型为热力型与快速型。通过数值模拟,得到一下结论:
     首先,对预热空气采用旋转射流相比于直射流对降低NO_X生成量有着明显效果。对于HCAS型燃烧器,燃气的内直流使其具有一定的射流刚性,预热空气外旋流部分埘内、外侧气流的卷吸作用则使得流场捌有较好的回流、整体混合特性。在一定程度上,预热空气采用旋转射流可获得较好的流场、温度场、氧气浓度场和较低的氮氧化物排放。出口烟气中NO_X的摩尔分数由35.2×10~(-4)%降低到12.3×10~(-4)%,降低幅度达到200%左右。
     其次,研究和探索了喷嘴结构对高温空气燃烧特性的影响。随着肋片旋转角度的增加,燃烧室中的高温区移向入口,火焰长度缩短,宽度增大;NO_X排放量先减小,后增大。在此基础上,进一步分析了肋片伸展长度和空气燃气射流速度比对燃烧性能和NO_X排放的影响。通过几组数据的模拟结果比较,得出当肋片旋转角度为180°,肋片长度伸展因子为2时的较好的燃烧特性以及较低NO_X排放量。
     最后,在燃烧器结构参数不变的情况下,改变燃烧的操作参数,分别对预热空气温度、过量空气系数和空气含氧量等因素对对高温空气燃烧特性的影响进行了详细的数值模拟,分析和总结了在不同操作参数下高温空气燃烧的具体特点。
     研究结果为高温空气燃烧器设计提供了一定的理论参考。
High Temperature Air Combustion (HTAC) is an advanced combustion technology developed for the industrial furnaces since 80s, 20~(th) century and has been applied successfully to the field of steel, glass, ceramic heating furnace. By recovering maximally the waste heat of the flue gas for the heating of the combustion air to approach or exceed the ignition point of the fuel, the fuel can be burnt at a super low oxygen level with a stable flame. HTAC conserves 30% to70% of the energy for gas combustion and emits very low nitrogen oxide pollutant, 40~70mg/m~3.
     It's shown that the burner design plays important role in keeping the steady combustion and low NOx generation if the jets of the fuel and air could produce a reasonable recirculation in the furnace. The interaction of the jets determines the distribution of the local oxygen, temperature, the mixing of the fuel and air, which determines the local production of the thermal NOx. Therefore, it's very important to achieve low NOx emission by keeping the combustion of the fuel in a low oxygen atmosphere through a reasonable arrangement of the burner parameters and operation parameters.
     The objective of the thesis is to carry out a numerical simualton of the high temperation air combustion of natural gas in an industrial furnace with a swirling burner. A Homocentric Axial Swirling (HCAS) Burner was designed and the burner geometric parameters and operation parameters were intensively studied on how these parameters influenced the combustion process and the final NO eimission. The Reynolds Stress Model was used to calculate the flow field and PDF (Probability Density Function) combustion model based on aβfunction was selected to simulate the gas combustion. The radiation was simulated by a Discrete Ordinates method. The NOx was simulated by thermal NOx model based on the modified Zeldovich reaction model. The software FLUENT was used to carry out the simulation. The following conclusions can be drawn from the simulation results.
     First, the results show that the swirling injection of preheated air reduces NOx emission obviously when compared to direct injection of preheated air. For HCAS burner, the central jet of gas has rigidity characteristics, while the external swirling jets of the preheated air enhances the mixing of the gases and induces a good recirculation flow field in the furnace and leads to a better low oxygen distribution and low temperature field, resulting a low NO generation. The final NO mole fraction decreases from 35.2ppm to 12.3 ppm when a swirling burner was used.
     Second, the effect of the burener configuration was studied. The maximum temperature region will move toward the burner inlet, flame length will decrease and flame width will increase with the increase of the spiral angle of the swirling fin.The NOx emission will first decrease, then increase with the increase of the spiral angle of the swirling fin. Therefore by regulating the spiral angle of the swirling fin, NOx emission can be reduced. The simulated results showed that when the spiral angle of the swirling fin is 180°, the dimentionless stretch factor of fin length is 2, the better combustion characteristics as well as lower NOx emissions were achieved.
     Finally, when the burner structure parameters were fixed, the effect of the operation parameters was studied. Results were discussed and analyzed for the combustion character and NOx emission at different inlet preheated air temperature, excess air coefficient and oxygen concentration.
     The results and conclusion drawn from this thesis can provide useful references for engineering application of HTAC burner design.
引文
1.H.Tsuji,A.K.Gupta,T.Hasegawa.High temperature air combustion,Energy conservation to pollution reduction[M].New York:CRC Press,2003.
    2.Gyung-Min Choi,Masashi Katsuki.Advanced low NOx combustion using highly preheated air[J].Energy Conversion and Mnaagement,2001,42:639-652.
    3.T.Hasegawa.High temperature air combustion contribution to energy saving and pollutant reduction in industrial furnace[C].The proceedings of high temperature air combustion,Beijing,1999.
    4.Gupta A K.Flame characteristics with high temperature air combustion[C].The 38~(th)Aerospace sciences meeting and exhibit,Reno,2000.
    5.Wlodzimierz Blasiak.Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air[J].Energy,2005,30:385-398
    6.OU Jian-ping,MA Ai-chun,ZHAN Shun-hua,etc.Dynamic simulation on effect of flame arrangement on thermal process of regenerative reheating furnace[J].Journal of central south university of technology,2007,14(2):243-247.
    7.刘久明,吴道洪.蓄热燃烧技术在西钢二轧加热炉上的应用[J].工业加热,2005,34(1):34-35.
    8.国务院令第369号,排污费征收使用管理方法[S].中国,2003.
    9.苏亚欣,毛玉如,徐璋.燃煤氮氧化物排放控制技术[M].北京:化学工业出版社,2005.
    10.刘孜.关于我国NOx污染指标及控制措施等有关问题的探讨.北京城市大气污染防治学术研讨论文选集,2000.
    11.中国能源发展战略与政策研究课题组.中国能源发展战略与政策研究[M].北京:经济科学出版社,2004.
    12.杨飚.氮氧化物减排技术与烟气脱硝工程[M].北京:冶金工业出版社,2007.
    13.Ventola A,La Vista C.Enviroment as investment by the use of HRS system[C].The 4~(th)International Symposium on High Temperature Air Combustion and Gasification,Rome,2001.
    14.Nakamura T,Nakamachi I.Development of low NOx regenerative burner SS stem[J].KAGAKU KOGAKU RONBUNSHU,2000,26(2):221-226.
    15.Flamme M,Brune M,Konold U,et al.Optimization of the energy efficiency of industrial furnaces(ETA)[C].The 4~(th) International Symposium on High Temperature Air Combustion and Gasification,Rome,2001.
    16.Bruce C,Robertson T,Newby J N.A review of the development and commercial application of the LNI technique[C].The 4~(th) International Symposium on High Temperature Air Combustion and Gasification,Rome,2001.
    17.徐旭常,由长福,李宇红,等.高温空气燃烧技术的国际发展动态[J].工业加热,2003,32(1):1-7.
    18.李宇红,祁海鹰,苑皎,等.预热温度影响甲烷高温空气燃烧特性的数值分析[J].工程热物理学报,2001,3:257-260.
    19.朱彤,朱尚龙,曹甄俊.高温空气燃烧NOx排放特性的试验研究[J].工程热物理学报,2006,27(5):894-896.
    20.朱彤,刘敏飞,饶文涛.低NOx高温空气燃烧技术[J].热能动力工程,2001, 16(3):328-330,321.
    21.周孑民,萧泽强,杨卫宏,等.高温空气资源的开发与应用[J].冶金能源,2000,19(4):40-44.
    22.武立云,刘立群,赵淑珍,等.减少燃气工业炉NOx污染的技术和实践[J].工业加热,1999,4:5-8.
    23.徐华,武立云,马重芳.进一步提高高温空气燃烧余热回收率[J].工业加热,2002,3:1-4.
    24.刘赵森,马重芳,王亲猛,等.逆向式高温蓄热空气燃烧过程的数值研究[J].工业炉,2002,24(2):1-4.
    25.饶文涛,杜军,张鹤声,等.蓄热燃烧机理的实验及数值模拟研究[J].工业加热,2001(5):4-6,11.
    26.侯长连,胡和平,董为民,等.我国高效蓄热式工业炉的现状及其发展[C].//2000年全国工业炉暨电热学术会议.天津:工业炉出版社,2000,7:8-83.
    27.刘日新,刘广林.蓄热燃烧技术及其在冶金工业炉中的应用[J].工业炉,2000,22(2):29-32.
    28.吴道洪.高温空气燃烧技术的研究与应用[J].钢铁,2002,37:692-693.
    29.杜军,饶文涛,李朝祥,等.陶瓷蓄热体阻力特性的实验研究[J].工业炉,2002,24(1):6-9.
    30.李伟,祁海鹰,李宇红,等.蜂窝陶瓷体的稳态传热特性和最佳换向时间,2000年全国工业炉暨电热学术会议.天津:工业炉出版社,2000,3:66-372.
    31.武立云,刘立群,赵淑珍,等.减少燃气工业炉NOx污染的技术和实践[J].工业加热,1999(4):5-8
    32.Masashi Katsuki,Toshiaki Hasegawa.The science and technology of combustion in highly preheated air[C].The 27th international symposium on combustion,Colorado,1998.
    33.A.K.Gupta.High temperature air combustion technology[R].The 18~(th) international symposium on combustion processes,Ustron,2003.
    34.A.K.Gupta.Thermal characteristics of gaseous fuel flames using high temperature air [J].Journal of Engineering for Gas Tuebines and Power,2004,126(1):9-19.
    35.A.K.Gupta,Li Z.Effect of fuel property on the structure of highly preheat air flames [C].Proceeding of International Joint Power Generation Conference,Denver,1997:189-196
    36.A.K.Gupta.Effect of air preheated temperature and oxygen concentration on flame structure and emission[J].Journal of Energy Resources Technology,1999,121(3):209-216.
    37.蒋绍坚,彭好义,艾元方,等.高温低氧气氛中气体燃烧的火焰特性[J].中南工业大学学报,2000,31(3):228-231.
    38.蒋绍坚,彭好义,汪洋洋,等.高温低氧空气燃烧火焰观察实验研究[J].冶金能源,2000,19(3):14-18,42.
    39.Yang Weihong,Blasiak W.Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air[J].Energy,2005,30(2/4):385-398.
    40.Jianwei Yuan,Ichiro Naruse.Effects of air dilution on highly preheated air combustion in a regenerative furnace[J].Energy & Fuels,1999,13(1):99-104.
    41.Kasahara M,Hasegawa T.Characteristics of high temperature air combustion[C].Proceeding of the 34~(th) Japanese Combustion Symposium,1996:642-644.
    42.Shimada T,Akiyama T,Mitsui K.et al.Time-resolved temperature profiling of flames with highly preheated/low oxygen concerteation air in an industrial size furnace[J].Journal of Engineering for Gas Turbines and Power,2005,127(3):464-471.
    43.M.Nishimura,T.Suzuki,R.Nakanishi,etc.Low-NOx combustion under high preheated air temperature condition in an industrial furnace[J].Energy conversion and managerment,1997,38:1353-1363.
    44.Choi G M,Katsuki M.Advanced low NOx combustion using highly preheated air[J].Energy Conversion and Managerment,2001,42(5):639-652.
    45.He Rong,Suda T,Takafuji M.Analysis of low NO emission in high temperature air combustion for pulverized coal[J].Fuel,2004,83(9):1133-1141.
    46.Weihong Yang,Wlodzmierz Blasiak.Mathermatical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism[J].Fuel processing technology,2005,86:943-957.
    47.祁海鹰,李宇红,由长福,等.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术,2002,(80):17-22
    48.朱彤,朱尚龙,曹甄俊,等.烧嘴结构及运行参数对高温空气燃烧NOx排放的试验研究[C].中国工程热物理学会燃烧学学术会议论文集.北京,2005,818-822.
    49.钟水库,马宪国,郑国耀,等.高温贫氧燃烧过程中NOx排放的特点[J].动力工程,2003,23(4):2582-2585.
    50.Dugue J,Louedin O,Leroux B,et al.Ultra low NOx Oxy-combustion system with adjustable flame length and heat transfer profile.In:ENEA of Italy,eds.4th International Symposium on High Temperature Air Combustion and Gasification,Rome,2001.
    51.Nishimura M,Suzuki T,Nakanishi R.et al.Low-NOx combustion under high preheated air temperature condition in an industrial furnace[J].Energy Conversion and Management,1997,38(10-13):1153-1163.
    52.郑暐,朱尚龙,朱彤.高温空气烧嘴参数对NOx排放影响的试验研究[J].动力工程.2007,27(2):287-291.
    53.Michael Flamme,Low NOx combustion technologies for high temperature application,Energy Conversion and Managerment,2001
    54.Hasegawa T,Tanaka R.High temperature air combustion-revolution in combustion technology(part Ⅰ:New findings on high temperature air combustion)[J].JSME International Journal,Series B,1998,41(4):1079-1084.
    55.YUAN J,NARUSE I.Effects of air dilution on highly preheated air combustion in a regenerative furnace[J].Energy & Fuels,1999,38(10-13):1061-1071.
    56.ITO Y,YOSHIKAWA K,SHIMO N.Effects of different kinds of dilution gases on the combustion with highly preheated,oxygen-deficient air[J].B Hen/Transactions of the Japan Society of Mechaniacl Engineers(Part B),2003,69(1);107-114.
    57.Simon Lille,Wlodzimierz Blasiak,Marcin Jewartowski.Experimental study of the fuel jet combustion in high temperature and low oxygen content exhaust gases[J].Energy,2005,30:373-384.
    58.A.Parente,C.Galletti,L.Tognotti.Effect of the combustion model and kinetic mechanism on the MILD combustion in an industrial burner fed with hydrogen enriched fuels[J].International Journal of Hydrogen Energy,2008,33:7553-7564.
    59.Anna Ponzio,Sivalingam Senthoorselvan,Weihong Yang,etc.Ignition of single coal particles in high-temperature oxidizers with various oxygen concentrations[J].Fuel,2008,87:974-987.
    60.N.Schaffel,M.Mancini,A.Szlek,etc.Mathematical modeling of MILD combustion of pulverized coal[J].Combustion and Flame,2009,156:1771-1784.
    61.Marco Mancini,Patrick Schwoppe,Roman Weber,etc.On mathematical modeling of flameless combustion[J].Combustion and Flame,2007,150:54-59.
    62.Gupta A K,Bolz S,Hasegawa T.Effect of air preheat temperature and oxygen concentration on flame structure and emissions[J].Journal of Energy Resources Technology.1999,121,209-216.
    63.Girardi G,Giammartini S.Numerical and experimental study of Mild combustion of different fuels and burners[C].In:Yoshikawa K.eds.5th International Symposium on High Temperature Air Combustion and Gasification.Yokohama:Tokyo Institute of Technology,2002,D201-D219.
    64.K.W.Lee,D.H.Choi.Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model[J].International Journal of Heat and Mass Transfer,2009,52:1412-1420.
    65.K.W.Lee,D.H.Choi.Numerical study on high-temperature diluted air combustion for the turbulent jet flame in crossflow using an unsteady flamelet model[J].International Journal of Heat and Mass Transfer,2009,52:5740-5750.
    66.B.B.Dally,E.Riesmeier,N.Peters.Effect of fuel mixture on moderate and intense low oxygen dilution combustion[J].Combustion and Flame,2004(137):418-431.
    67.Ishii T,Zang C,Hino Y,et al.The numerical and experimental study of non-premixed combustion flames in regenerative furnaces[J].Journal of Heat Transfer,2000,122(2):287-293.
    68.Ishii T,Zang C,Sugiyama S.Numerical simulation of highly preheated air combustion in an industry furnace[J].Journal of Energy Resource Technology,2000,120(1):276-284.
    69.Mancini M,Weber R.Formation and destruction of Nitrogen oxides in combustion of natural gas with temperature air[C].In:Yoshikawa K.eds.5~(th) International Symposium on High Temperature Air Combustion and Gasification.Yokohama:Tokyo Institute of Technology,2002,D501-508.
    70.Bolletini U,Mancini M,Orsino S,et al.Simulation of nature gas combustion in high temperature air for an industrial burner[C].In:ENEA of Italy,eds.4~(th) International Symposium on High Temperature Air Combustion and Gasification,Rome,2001.
    71.Orsino S,Weber R,Bolletini U.Numerical simulation of combustion of nature gas with high temperature air[J].Combustion Sci and Tech,2002,168:1-34.
    72.祁海鹰,李宇红,由长福,等.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术,2002,8:17-22.
    73.李宇红,祁海鹰,张宏武.甲烷预混燃烧火焰的详细数值模拟[J].工程热物理学报,2002,23(1):119-122.
    74.饶文涛,杜军,张鹤声,等.蓄热燃烧机理的实验及数值模拟研究[J].工业加热,2001(5):4-6,11.
    75.李伟,祁海鹰,李宇红,等.几何结构与高温空气燃烧特性的关系[J].能动力工程[J],2002,6:14-16.
    76.朱彤,李晓萍,吴家正.炉膛结构对炉内NOx生成的影响[J].工业炉,2004,26(6):1-5.
    77.刘照森,王秀丽,于海源,等.国内高温空气燃烧技术发展现状和趋势[J].北京工业大学学报,2006,32(7):613-621.
    78.吴道洪.高温空气燃烧技术的研究与应用[J].钢铁,2002(37):691-695。
    79.王爱华,蔡九菊,王连勇,等.高温空气燃烧技术进展与应用[J].中国冶金,2006,16(8):1-11.
    80.Weinberg F,Combustion Temperature:The future?[J].Nature,1971,(210):223-239.
    81.王关晴,程乐明,骆仲泱,等.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程,2007,27(1):82-84.
    82.Gupta A K,Li Z.Effect of fuel property on the structure of highly preheated air flames[C].Proceeding of International Joint Power Generation Conference,Denver,1997:189-196.
    83.霍然.工程燃烧概论[M].合肥:中国科技大学出版社,2001.
    84.王文丽,周力行,李荣先.燃料环缝进口的丙烷-空气旋流扩散燃烧的LES-EBU和RANS-SOM模拟的比较[J].化工学报,2006,57(10):2278-2282.
    85.王文丽,周力行,李荣先.环缝燃料进口的丙烷-空气旋流扩散燃烧数值模拟[J].中国电机工程学报,2006,26(9):45-49.
    86.程勇,汪军,蔡小舒.旋流燃烧室中NO排放的数值计算[J].上海理工大学学报,2004,26(6):524-528.
    87.周力行,陈兴隆,张健.旋流数对湍流燃烧中NO生成影响的研究[J].工程热物理学报,2002,23(5):637-640.
    88.陈兴隆,周力行,张健.旋流扩散燃烧中旋流数对热NO生成的影响[J].工程热物理学报,2002,23(5):637-640.
    89.胡乐元,罗永浩,周力行.燃料中心进入的旋流燃烧数值模拟[J].动力工程,2007,27(1):99-102,144.
    90.赵坚行.燃烧的数值模拟[M].北京:科学出版社,2002.
    91.AEA Technology Engineering Software Ltd.CFX4.4 Server Manual.Harwell,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700