油污土中降解柴油细菌的分离鉴定及降解能力的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油工业迅速发展,环境也面临污染问题。柴油是目前运输工具中使用最多的燃料之一,在其加工过程中,因其不合理的处置会导致土壤污染,使土壤环境严重破坏。在此形势下,修复工作也因此而开展。其中,微生物修复由于经济、有效并对环境破坏性小等优点,近年来发展尤为迅猛。本论文从北京通州区取土样,在实验室内制备长,宽,高均为1米的砂箱装置。之后模拟地下储油罐,人为进行历时一年的柴油污染,并从中均匀分布的各点取样,运用生物富集分离方法,得到4株降解柴油菌株。最后,以此土著菌为研究对象,研究柴油污染土壤的微生物修复。通过考虑菌株五个生长环境因素(温度、pH、氮、磷源营养元素、盐度),利用已筛选出的细菌对柴油污染土壤进行修复实验研究,主要成果如下:
     (1)通过直接分离、富集培养和纯化的方法,分离纯化得到4株以柴油为碳源进行生长的细菌:B-1、B-2、B-3、B-4;对其进行生理生化试验,结合16S rDNA全序列分析, 4株细菌鉴定结果为B-1为微杆菌属Microbacterium sp. B-2为短波单胞菌属Brevundimonas sp. B-3为Tetrathiobacter kashmirensis,B-4为假单胞菌属Pseudomonas sp.。其中,Tetrathiobacter kashmirensis是一株新确定的菌种,在柴油降解方面的研究还未有文献报道。B-4是典型的石油烃降解菌,已广泛用于石油烃降解。
     (2)室内摇床实验筛选得出B-3、B-4的最佳生长条件:温度25℃~30℃,pH值7~7.5,最适氮源NH4Cl,最适磷源K2HPO4或KH2PO4,盐浓度0.5%~5%。
     (3)两株菌对柴油的降解能力研究表明,B-3的降解能力优于B-4,柴油浓度低于0.378mg/g时,B-3的降解效率较低,浓度超过0.378mg/g后,降解效率随柴油浓度增加,B-3降解效率渐增强,达到60.98%。B-4的最适柴油浓度为0.252mg/g,其降解率为48.97%。当浓度超过这一范围,两株菌的降解率均下降。说明细菌自身有耐受范围,高浓度污染物,对细菌产生毒害,抑制微生物生长。
     (4)土体系的培养基情况,了解两株菌的降解性能。其整体降解率在30℃与35℃时降解效果好,B-3优于B-4。在低温范围20℃与25℃,实验进行15天左右时,B-3随温度升高,其降解率与其呈正相关,B-4同之。因此,在实际修复工程中,在15-20天左右时,为微生物补充营养物质,使其具充足营养发挥高效降解性能。
The rapid development in the oil industry today, the environment is also faced with serious pollution problems. Diesel is one of the most used fuel in transportation. And it causes soil contamination in the course of processing, unreasonable waste disposal as well as the accident occurred, particularly underground storage tank leakage. In this situation, the repair work carried out so many. Among them, microbiology-repaired was carried out in recent years., because of the economic, efficient and environment friendly advantages. In this paper, we took the soil sample from the Tongzhou district, Beijing. Simulated underground storage tank, preparde a length, width and height were one meter sand box device, then Man-made polluted the siol from diesel to last for one year. Take the soil sample from which top-down distribution of the points, use the bio-enrichment separation methods, the four diesel-degrading bacterial strain were taken. And then, study this bacterial strains, and the combination method of indoor shaking-flask in which five factors(temperature, pH, nitrogen, phosphorus source, salinity) were considered and the indoor Shaking- flasked experiment, and the main results are as follows:
     (1) The microbiology experiment was carried out to enrich, separate, screen and identify by means of molecular biology to indigenous dominant bacteria in the sand box, four diesel-degrading strains:B-1, B-2, B-3, B-4. then through morphological observation and 16S rDNA sequence analysis, the results showed these strains belong to Microbacterium sp. Brevundimonas sp., Tetrathiobacter kashmirensis, Pseudomonas sp. .This is also the first report about biodegrading diesel contaminated soil using strain B-3, and B-4 is Pseudomonas sp., a very typical of diesel-degrading bacteria. So in this paper, the study key is B-3, the B-4 as a frame of reference.
     (2) The indoor shaking-flask experiment showed that the two diesel-degrading bacteria B-3 and B-4 had the optimal growth and diesel degradation conditions: initial temperature is 25℃~30℃, pH is 7~7.5, optimal nitrogen source is NH4Cl, optimal phosphorus source is K2HPO4 or KH2PO4, the salinity is 0.5%~5%.
     (3) Under the optimum culture conditions, we studied degradation characteristics of strain B-3 and strain B-4. The degradation rate of strain B-3was obviously higher than that of strain B-4 for different initial diesel concentration. When the diesel fuel concentrations below 0.378mg/g, the degradation efficiency of strain B-3 is relatively low. When it more than 0.378mg/g, as the concentration increases, strain B-3 degradation efficiency gradually increase, up to 60.98%. Then strain B-4 optimal concentration in diesel is 0.252mg/g, the degradation rate is 48.97%. When the concentration exceeds this range, it has made them can not be tolerated. This two bacteria degradation rate decreased. It showed that bacteria themselves have the tolerance range of pollutants. Because of pollutants in high concentration, it would produced a toxic effect on the strains, inhibit the growth of bacterial.
     (4) The indoor simulation experiments of the degrading diesel oil contaminated soil. Especially in the soil medium, understanding the degrading performance of strain B-3 and strain B-4. The overall degradation rate of bacteria at the temperature of 30℃and 35℃, the degradation effect is good. B-3 was superior to B-4. When the low-temperature range is 20℃and 25℃, the experiment lasted for 15 days, as the temperature increased, the degradation rate of strain B-3 was positively correlated with temperature. B-4 was also the same with this. Therefore, in the actual restoration project, when it lasted for 15-20 days, to provide a micro-nutrient for bacterias. So that, with adequate nutrition, micro-organisms will play a high degradation.
引文
Agathe C., Charles M., Xavier N. Comparison of Randomly Amplified Polymorphic DNA with Amplified Fragment Length Polymorphism To Assess Genetic Diversity and Genetic Relatedness within Genospecies III of Pseudomonas syringae. Appl Environ Microbiol,1998,6(4):1180~1187
    Ahmed Rashad. Enhancement of Biodegradation of Petroleum-Based Compounds by Surfactant. The Catholic university of America,2001
    Audrew R, Autry. Bioremediation an effective semedial alternative for petroleum hydrocarbon-contamition soil. Environment Progress,1992,15(5):318~322
    Aurich H. Die oxidation aliphatischer Kohlenwasserstoffe durch bakterien. Math- Naturwi- ss Technik,1979,16(4):1~4
    Beilen J.B. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences. Evolution and regulation of the alk genes. Microbiology,2001, 14(7):1621~1630
    Benitez E, Melgar R, Nogales R. Estimating soil resilience to a toxic organic waste by measuring enzyme activities. Soil Biol Biochem, 2004, 36: 1615~1623
    Bezalel L., Hadar Y., and Cerniglia C.E. Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus pleurotus ostreatus. Appl. Environ. Microbiol., 1996,62(1): 292-295
    Burlage R.S. Emerging technologies and microprobes. Washington D C,1997
    Chaney R.L.,Li Y.M.,Angle J.S.,et al. Phytoremediation of soil metals. Curent Opinion in Biotechn -Ology,1997,14(8):279~284
    Cho J.S., and D.C. DiGiulio. Pneumatic Pumping Test for Soil Vacuum Extraction. Environ. Progress,1992,11(3):228~233
    Coates J D, Woodward J. Anaerobic degradation of pohycyclic aromatic hydrocarbons and alkanes in petroleumcontaminated marine harbor sediments. Appl Environ Microbiol , 1997, 63:3589-3593
    Cookson E W. Policing waterways for hydrocarbons. Sensor Review,1995,13(5):21~23
    Da Silva M.L.B. and Alvarez P.J.J. Enhanced anaerobic biodegradation of Benzene- Toluene-Ethylbenzene-Xylene-Ethanol mixtures in bioaugmented aquifer columns. Appl. Envir. Microbiol.,2004,70 (8): 4720~4726
    Davis J B, et al. Petroleun microbiology. New York,1967,276~280
    Demque D.E.,Biggar K.W.,Heroux J.A.. Land treatment of diesel contaminated sand. Canadian Geotechnical Journal,1997,34(3):421~431
    Ellis,Andrew W. Bioreactor design and piration. UK : Psychology Press,1997
    García-Gil J C, Plaza C, Soler-Rovira P, et al. Long-term effects of municipal solid waste compost application on soil enzyme activities and microbial biomass. Soil Biol Biochem, 2000, 32: 1907~1913
    Grishchenkov V G, Townsend R T. Degradation of petroleum hydrocarbons by facultative anaerobic bacteria uvder aerobic and anaerobic conditions. Process Biochemistry,2000,13(5): 889~896
    Heider J, Spormann A M, Beller H R, et al. Anaerobic bacterial metabolism of hydrocarbons. Fems Microbiol Rev,1998,2(2): 459~473
    Hogg D.S., Burden R.J., Riddel P.J. Hmcri R&D Conference. San Francisco,1992
    Ijah U.J.J.Waste Management,1998,18(7):293~299
    Ishige T., Tani A. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in. Acinetobacter sp.strain. M-1. Appl Environ Microbiol,2000, 16(6):3481~3486
    Ismail Saadoun.Isolation and characterization of bacteria from crude petroleum oil contaminated soil and their potential to degrade diesel fuel. Basic Microbiol,2002,42(6):420~428.
    Mark E.Zappi, Brad A. Rogers, Lynthia L. Teeter, Douglas Gunison, Bioslurry treatmeat of a
    Marsh T. L. Terminal restriction fragment length polyofmorphism (T~RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol,1999,2(3):323~327
    Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol,1999,2(4):317~322
    Muyzer G.,De Wall E. C.,Uitterlinden A. G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction~amplified genes coding for 16S rRNA. Appl Environ Microbiol,1993,5(9):695~700
    Oger et al. Effects of crop rotation and soil cover on alteration of the soil microflora generatedby the culture of transgenic plants producing opines. Molecular Ecology,2000,9(4): 881~890.
    Pascual J A, Hernández T, Garcia C, et al. Enzymatic activities in an arid soil amended with urbanorganic wastes: laboratory experiment. Bioresource Technology, 1998, 64: 131~138 Ratledge C. Applied science. London,1977,489~491
    Ratledge C. Degradation of aliphatic hydrocarbons in developments in biodegradation ofhydrocarbons. London: Applied Science,1978,12(4):49~53
    Rehm H J, Reiff I. Mechanism and occurrence of microbial oxidation of long-chain alkanes. Adv Bio Eng,1981,24(4):1241~1269
    Robert L R. Influence of salinity on bioremendiation of oil in soil. Environmental Pollution,1995,2(6):47~52
    Ross Derkey,Sudano Peter. Hazardous and Industrial Wastes-Proceedings of the Mid-Atlantic Industrial Waste Conference,1993:238~247
    Shiaris M.P. Seasonal biotransformation of naphthalene, phenanthtene and benzopyrene in surficial estharine sediments. Appl. Envir. Microbiol,1989,55(4):1391~1399
    Snaidr J.,Amann R.,Huber I.,et al. Phylogenetic Analysis and in Situ Identification of Bacteria in Activated Sludge. Appl. Environ. Microbiol,1997,63(7):2884~2896
    Soil Contaminated with Low Concentration of Total Petroleum Hydrocarbon, Journal of Haza- rdous materials, 1996, 46:1-12.
    Stefan W.,Arnold W.,et al. Dversity of uncultured microorganisms associated with the seagrass halophila stipulacea cstimated by restriction fragment length polymorphism analysis of PCR- Amplified 16SrRNA genes. Applied and Environment Microbiology,1996, 62(3):7667~71
    Sugiura K., Ishihara M., Schimauchi T.,et al.Physicochemical properties and biodegradability of crude oil. Environmental Science and Technology,,1997,3(1):45~51
    Tiedje J.M.,Asuming-Brempong S.,Nusslein K. et al. Opening the black box of soil microbial diversity. Appl Soil Ecol,1999,15(3):109~122
    Vanloocke R, et al. J Environmental Studies,1975,8(1):99~105
    Verstraete W R, et al. Modelling of the breakdown and the mobilization of hydrocarbon in unsaturated soil layers. Proceedings of the 3rd international biodegradation symposium,1976,14(4):99~112
    Watson J.S.,Jones D.M.,Swannell R.P.J. et al.Organic Geochemistry,2002,3(3):1153~1169.
    Wei Z.M., Zhao Y., Gu S.Y., et al. The effects of applying organic matter in wind blown soil on microbial biomass and enzyme activity. Journal of Northeast Agriculture University, 2003, 10(1):84~87
    Weiner J.M. and Lovley D.R. Rapid Benzene Degradation in Methanogenic Sediments from a Petroleum-Contaminated Aquifer. Appl. Envir. Microbiol, 1998, 64 (5): 1937~1939
    Widdle. The genome sequence of an anaerobic aromatic degrading denitrifying bacterium strain EbN1. Archives of Microbiology,2005,18(3):27~36
    Wriddhiman Ghosh,Angshuman Bagchi. Tetrathiobacter Kashmirensis gen. nov. , sp. nov., a no- vel mesophilic, neutrophilic, tetrathionate-oxidizing, facultatively chemolithotrophic be- taproteobacterium isolated from soil from a temperate orchard in Jammu and Kashmir,India. International Journal of Systematic and Evolutionary Microbiology,2005,(55):1779-1787
    Zobell, C.E. Action of microorganisms on hydrocarbons. Bacteriol,1964,10(4):14~19
    白洁,崔爱玲等.石油降解菌对石油烃的降解能力及影响因素研究.海洋湖沼通报,2007,(3):41~48
    白洁等.石油降解菌对石油烃的降解能力及影响因素研究.海洋湖沼通报,2007,13(4):41~48
    白威,黄钧,李毅军等.炼油废水中乳化态石油的生物处理可行性研究.应用与环境生物学报,1999,10(5):59~60
    蔡燕飞,廖宗文.土壤微生物生态学研究方法进展.土壤与环境,2002,11(2):167~171
    常志州,叶小梅,朱万宝等.连续添加与通气对污泥中石油降解量的影响.农业环境保护,1999,18(5):226~227,233
    陈国华.水体油污染治理.北京:化学工业出版社,2002,27
    崔玉霞,金洪钧等.微生物降解多环芳烃有机污染物分子遗传学研究进展.环境污染治理技术与设备,2001,2(6):16~23
    邓旺秋,潘超美,李泰辉等.油页岩废渣场植林修复过程中的土壤微生物生态.应用与环境生物学报, 2003, 9(5): 522~524
    丁克强,郑昭佩,孙铁晰,石油污染土壤的生物降解研究.生态学杂志,2001,20(4): 16~18
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社,2001
    冯晋阳.石油烃优良降解菌的筛选分离及其降解特性的研究: [硕士学位论文].西安:西安建筑科技大学,2004
    巩宗强,李培军,王新.利用植物油淋洗修复受多环芳烃污染的土壤.中国环境科学,2002,22(5):421~424
    顾传辉,陈桂珠.石油污染土壤生物修复.重庆环境科学,2001,23(2):42~45
    顾贵州等.石油降解菌株的筛选及鉴定.辽宁石油化工大学学报,2007,27(1):24~26
    韩如旸等.石油降解细菌的表型特性和系统发育分析.生物多样性,2002,10(2):202~207
    何良菊,李培杰,魏德洲等.石油烃微生物降解的营养平衡及降解机理.环境科学, 2004,25(1):90~94
    贾建丽.石油污染土壤微生物学特性与生物修复效应研究:[博士学位论文].北京:清华大学,2005
    贾三春.紫外分光光度法测定土壤中矿物油.甘肃环境研究与监测,1995,8(1):28~29
    姜昌亮,孙铁珩等.石油污染土壤长料堆式异位生物修复技术研究.应用生态学报, 2001,12(2):279~282
    李超敏等.高效降解石油细菌的分离鉴定及降解能力的研究.生物技术,2007,17(4):80~82
    李纪云,李丽,冯成武.超声提取——紫外分光光度法测定土壤中油含量.分析化学,2000,28(2):263~267
    李力,徐平.一株假单胞菌(Pseudomonas sp.)石油脱有机氮分析.生物工程学报,2008,(06):1080~1084
    李习武,刘志培.石油烃类的微生物降解.微生物学报,,2002, 42(6):764~767
    李秀艳,魏德洲,郑龙熙.含砷金精矿生物预氧化过程中细菌吸附的作用.东北大学学报(自然科学版),2000,21(6):641~643
    毛丽华.石油污染土壤生物通风堆肥修复研究:[博士学位论文].北京:中国地质大学(北京),2006
    闵航,谭玉龙,吴伟祥等.一株厌氧甲烷氧化菌菌株的分离、纯化和特征研究.浙江大学学报(农业与生命科学版),2002, 28(6):619~624
    任磊,黄廷林.石油污染土壤的生物修复技术.安全与环境学报,2001,1(2):50~54
    阮志勇.石油烃降解菌株的筛选、鉴定及其石油降解特性的初步研究: [硕士学位论文].北京:中国农业科学院,2006
    沈萍等.微生物学实验.北京:高等教育出版社,1999:28~31
    宋雪英等.矿物油污染土壤中芳烃组分的生物降解与微生物生长动态.环境科学,2004,25(3):115~119
    宋玉芳,区自清,孙铁衍等.土壤、植物样品中多环芳烃分析方法研究.应用生态学报,1995,6(1):92~96
    孙燕英.土壤中石油类污染物的化学氧化净化法研究:[硕士学位论文].北京:中国地质大学(北京),2007
    田胜艳等.海洋潮间带石油烃降解菌的筛选分离与降解特性.农业环境科学,2006,25(4):301~305.
    田贞乐,朱丽华,吴映辉等.气相色谱与紫外分光光度法评价石油烃类污染物的微生物降解过程.分析化学研究简报,2006,34(3):343~346
    王刚,于成德等.柴油降解细菌的分离及其降解能力初探.微生物学杂志,2005,25(2):51~53
    王国惠.环境工程微生物学.北京:化学出版社,2005,246~248
    王佳玲,余惠生,付时雨等.白腐菌漆酶的研究进展.微生物学通报,1998,25(4):233~236
    王景华,魏从如,刘凤奎.油田开发环境影响评价文集.北京:中国环境科学出版社,1989:45~60.
    魏德州,秦煜民. H2O2在石油污染土壤微生物治理过程中的作用.中国环境科学,1997,17(5):429~431
    魏德洲,周志付,林永波.生物技术在煤炭脱硫过程中的应用.岩石矿物学杂志,2001,20(4):467~470
    魏明宝.蒽生物降解及其动力学分析.环境科学与技术,2006,(12):9~13
    谢丹平,尹华.生物表面活性剂对菌XD-1降解原油的作用.暨南大学学报,2004,3(3):39~42
    辛玉峰,曲晓华.一株石油降解菌的筛选、分离纯化及降解性能分析.黑龙江农业科学,2008,12(1):17~18
    杨金凤.生物通风修复柴油污染土壤实验及柴油降解菌的降解性能研究:[博士学位论文]. 北京:中国地质大学(北京),2009
    姚伟静.高效除油微生物菌株的筛选及表面活性剂增强生物降解石油烃的研究:[硕士学位论文].重庆:重庆大学,2007
    张从,夏立江.污染土壤生物修复技术.北京:中国环境科学出版社,2000,246~247
    张辉,胡筱敏,李培军等.柴油降解菌的筛选及其降解特性.东北大学学报(自然科学版),2007,28(10):1493~1496
    张杰,刘永生.多环芳烃降解菌筛选及其降解特性.应用生态学报,2003,14(10):1783~1786
    夏梦,孙军德.石油降解菌降解条件优化研究.微生物学杂志,2008,16(2):74~76
    张兰英,刘娜等.现代环境微生物技术.北京:清华大学出版社,2005: 301
    张文娟,沈德中等.堆制处理过程中的多环芳烃降解.应用与环境生物学报,1999,5(6):605~609
    钟文辉,蔡祖聪.土壤微生物多样性研究方法.应用生态学报,2004,15(5):899~904
    周礼恺,郑巧英,宋妹.石油烃和酚类物质在土中的生物降解与土壤酶活性.应用生态学报,1990,1(2)149~155

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700