秸秆改良材料对沙质土壤理化性质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国农作物秸秆资源丰富,秸秆资源用途广泛,但如果不能有效利用,反而会成为巨大的污染源。另一方面,我国沙质土壤面积分布较广,沙质土壤具有结构性差、保水蓄水力弱、抗旱力差、养分含量少、保肥力差、土温变化快等特性,不利于农作物的生长,大多数沙质土壤属于肥力较差的土壤。可见,改良沙质土壤,提高沙质土壤肥力,是提升沙质土壤生产力的重要举措之一。本研究以同时解决这两方面的问题为设计思路,以秸秆作为主材,配以聚丙烯酰胺(PAM)和膨润土等功能材料,研究与开发秸秆沙质土壤改良材料,通过分析不·同配方改良材料对土壤理化性质的影响与效应,获得最佳秸秆沙质土壤改良材料配方及工艺参数,为实现农业秸秆资源高效利用提供科技支撑。
     本试验选择小麦、玉米、水稻、油菜等大宗秸秆为研究对象,秸秆经粉碎后,分别设计添加不同量的PAM和膨润土,形成系列配方的小麦、玉米、水稻、油菜秸秆改良材料,再利用盆栽试验,在沙质土壤上施用不同量的秸秆改良材料,经过3个月的培养试验,分别于第10d、30d、60d和90d取样分析土壤pH、容重、孔隙度、有机质、腐殖质、阳离子交换量等理化指标,考察不同秸秆改良材料对沙质土壤理化性质的作用效应,并由此来选择秸秆改良材料的最佳配方组合。
     结果表明:所设定的各配方秸秆(小麦、玉米、水稻、油菜)改良材料对沙质土壤的理化性质均有较为明显的影响效应。
     1、秸秆(小麦秸秆、玉米秸秆、水稻秸秆、油菜秸秆)改良材料相同施加量,不同配方时,随着PAM量的增大,沙质土壤的pH并没有显著的影响。
     2、添加秸秆(小麦秸秆、玉米秸秆、水稻秸秆、油菜秸秆)改良材料在相同施加量,不同配方时,PAM施用剂量越大,土壤容重呈明显减小趋势,土壤孔隙度逐渐增大。所有处理中在PAM含量越高(30‰时)时容重明显最小。随土培时间的增长,沙土容重先减少后增加,在土培60d时效果最佳。添加小麦、玉米、水稻、油菜秸秆改良材料后,土壤容重明显低于对照,孔隙度明显高于对照,差异均达到极显著(P<0.01),土壤容重分别较对照减少0.27g/cm3、0.26g/cm~3、0.25g/cm~3和0.22g/cm~3。汉秸秆改良材料剂量为10g.kg~(-1)、PAM含量为30%。,十培60d时土样容重最小,土壤结构改良效果最佳。4种秸秆改良材料中,小麦秸秆改良材料对沙质土壤容重的改良效果最佳,玉米秸秆改良材料次之,再次是水稻、油菜。
     3、添加秸秆(小麦秸秆、玉米秸秆、水稻秸秆、油菜秸秆)改良材料在相同施加量,不同配方时,PAM施用剂量越大,土壤有机质越大。设定的所有处理中在PAM含封越高(30‰时)时有机质最大。添加秸秆改良材料后,土壤有机质明显高于对照,差异极显著(P<0.01);随土培时间的增长,沙质土壤有机质先增加后减少,在土培60d时效果最仕。施入小麦、玉米、水稻、油菜秸秆改良材料的沙质土壤有机质含量在土培60d时最大,分别较对照提高31%、26%、25%和25%。当秸秆改良材料剂量为10g.kg~(-1)、PAM含量为30%o,土培60d时土壤有机质含量最高,土壤结构改良效果最佳。4种秸秆改良材料中,小麦秸秆改良材料对沙土有机质的改良效果最佳,玉米秸秆改良材料次之,再次是水稻、油菜。
     4、添加秸秆(小麦秸秆、玉米秸秆、水稻秸秆、油菜秸秆)改良材料在相同施加量,不同配方时,PAM施用剂量越大,土壤腐殖质越大。所有处理中在PAM含量越高(30‰时):时腐殖质最大。.添加秸秆改良材料后,土壤腐殖质明显高于对照,差异极显著(P<0.01);随土培时间的增长,,沙质土壤腐殖质先增加后减少,在土培60d时效果最佳。施入小麦、玉米、水稻和油菜秸秆改良材料的沙质土壤腐殖质含量在土培60d后,分别较对照提高55%、39%、34%和32%。当秸秆改良材料剂量为10g.kg~(-1)、PAM含量为30‰,土培60d时土壤腐殖质含量最高,土壤结构改良效果最佳。4种秸秆改良材料中,小麦秸秆改良材料对沙土腐殖质的改良效果最佳,玉米秸秆改良材料次之,再次是水稻、油菜。
     5、添加秸秆(小麦秸秆、玉米秸秆、水稻秸秆、油菜秸秆)改良材料在相同施加量,不同配方时,PAM施用剂量越大,土壤阳离子交换量越大。所有处理中在PAM含量越高(30.‰时)时阳离子交换量最大。添加秸秆改良材料后,土壤阳离子交换量明显高于对照,.差异极显著(P<0.01);随土培时间的增长,沙质土壤阳离子交换量先增加后减少,在土培60d时效果最佳。不同秸秆(玉米、小麦、水稻、油菜)改良材料施入沙质土壤60d后,即离子交换量分别较对照提高51%、33%、32%和31%。当秸秆改良材料剂量为10g.kg~(-1)、PAM含量为30‰,土培60d时土壤,阳离子交换量(CEC)最高,土壤结构改良效果最佳。4种秸秆改良材料中,小麦秸秆改良材料对沙土土壤阳离子交换量(CEC)的改良效果最佳,玉米秸秆改良材料次之,再次是水稻、油菜。
Crop straw is rich in resources, extensive in use, but if not effectively used, it will become a huge source of pollution. On the other hand, the area of sandy soil is wide of distribution, sandy soil has characteristics of weak structure, weak water-retention, weak drought resistance, less nutrients, weak fertility preserving, and rapid changes in soil temperature, which goes against to. crops, and most of the sandy soil is of poor fertility. Therefore, to modified and improve the fertility of sandy soil is one of the most important measures to improve the productivity of sandy soil. In this study,, the two problems are solved together as the designed idea, straw is set as the main material, add to polyacrylamide (PAM) and bentonite functional, research and develop the modified materials, analyze different formulations of modified materials to achieve the best formulation and technical parameters, to supply technical support of the straw highly used.
     In this test, wheat, corn, rice and rape straw is selected as the research objects, after being crushed, add different amounts of PAM and bentonite, forming series formula of wheat, corn, rice and rape straw modified materials, then different amount of straw modified materials are applied with pot experiment, after 3 months of culture test, physical and chemical index such as pH, bulk density, porosity, organic matter, humus, cation exchange capacity are analyzed at 10 days,30 days, 60 days and 90 days. The action effect of different straw modified materials and soil physical and chemical properties are studied, in order to select the best formula of modified materials.
     1. The same amount of straw modified material (maize straw, wheat straw, rice straw, rape straw) was applied but different formulation, with the increasing amount of PAM the effect on pH was not significant.
     2. Straw (maize straw, wheat straw, rice straw, rape straw) applied in the same amount of modified materials, different formulations, with more amount of PAM, bulk density decreased while soil porosity increased. Of all the treatment, when the content of PAM is 30‰, the bulk density is minimum. With the increase time of soil culture, sand bulk density first decreased then increased, the best effect was on the 60~(th) day.After adding straw modified material, soil bulk density significantly lower than the control, the porosity was significantly higher than the control, the differences were extremely significant (P<0.01). Bulk density of sandy soil reached minimum on the 60~(th) day after adding sweat straw、corn straw、rice straw and rape straw, was lowered 0.27g/cm~3、0.26g/cm~3、0.25g/cm~3 and 0.22g/cm~3.When the straw materials was10g.kg~(-1), the content of PAM was 30‰(for 10.3), bulk density of sandy soil reached minimum and the modified effect was best on the 60~(th) day. Among the four kinds of modified materials, the best one of improving the sandy soil bulk densiy is wheat straw, followed by maize straw, rice straw and rape straw.
     3. Straw (maize straw, wheat straw, rice straw, rape straw) applied in the same amount of modified materials, different formulations, with more amount of PAM, soil organic matter increased. Of all the treatment, when the content of PAM is30‰, the organic matter is maximal. After adding straw modified material, the organic matter was significantly higher than the control, the differences were extremely significant (P<0.01). With the increase time of soil culture, organic matter first increased then decreased, the best effect was on the 60~(th):day. Organic matter of sandy soil reached maximal on the 60~(th) day after adding sweat straw、corn straw、rice straw and rape straw,was higher than control with 31%、26%、25% and 25%. When the straw materials was 10g.kg~(-1),the content of PAM was 30‰(for 10.3), organic matter of sandy soil reached maximal and the modified effect was best on the 60~(th) day. Among the four kinds of modified materials, the best one of improving the sandy soil organic matter is wheat straw, followed by maize straw, rice straw and rape straw.
     4. Straw (maize straw, wheat straw, rice straw, rape straw) applied in the same amount of modified materials, different formulations, with more amount of PAM, soil humic substances increased. Of all the treatment, when the content of PAM is30‰, the humic substances is maximal. After adding straw modified material, the humic substances was significantly higher than the control, the differences were extremely significant (P<0.01). With the increase time of soil culture, humic substances first increased then decreased, the best effect was on the 60~(th) day. Humic substances of sandy soil reached maximal on the 60~(th) day after adding sweat straw、corn straw、rice straw and rape straw, was higher than control with 55%、39%、34% and 32%. When the straw materials was 10g.kg~(-1) the content of PAM was 30%o (for 10.3), humic substances of sandy soil reached maximal and the modified effect was best on the 60~(th) day. Among the four kinds of modified materials, the best one of improving the sandy soil humic substances is wheat straw, followed by maize straw, rice straw and rape straw.
     5. Straw (maize straw, wheat straw, rice straw, rape straw) applied in the same amount of modified materials, different formulations, with more amount of PAM, soil cation exchange capacity increased. Of all the treatment, when the content of PAM is 30‰, the cation exchange capacity is maximal. After adding straw modified material, the cation exchange capacity was significantly higher than the control, the differences were extremely significant (P<0.01). With the increase time of soil culture, cation exchange capacity first increased then decreased, the best effect was on the 60~(th) day. Cation exchange capacity of sandy soil reached maximal on the 60~(th) day after adding sweat straw、corn straw、rice straw and rape straw was higher than control with 51%、33%、32% and 31%. When the straw materials was 10g.kg~(-1), the content of PAM was 30‰(for 10.3), cation exchange capacity of sandy soil reached maximal and the modified effect was best on the 60~(th) day. Among the four kinds of modified materials, the best one of improving the sandy soil cation exchange capacity is wheat straw, followed by 'maize straw, rice straw and rape straw.
引文
[1]崔立莉,吴玉光,邹国元,等.膨润土对土壤肥力的影响[J].华业农学报.2004,19(2):76-80.
    [2]崔艳红,韩庆功.多种菌混合发酵秸秆生产蛋白强化饲料的条件实验[J].上海畜牧兽医通讯,2005,2:28-29.
    [3]崔海英,任树梅,刘东,等.聚丙烯酰胺对不同土壤坡地降雨产流产沙的影响研究[J].中国水土保持,2006,2:12-15.
    [4]陈渠昌,雷廷武,李瑞平.PAM对坡地降雨径流入渗和水力侵蚀的影响研究[J].水利学报,2006,37(11):1290-1296.
    [5]曹稳根,高贵珍,方雪梅,等.我国农作物秸秆资源及其利用现状[J].宿州学院学报,2007,6(12):110-113.
    [6]段佐亮.我国作物秸秆燃烧甲烷、氧化亚氮排放量变化趋势[J].农业环境保护,1995,14(3):111-116.
    [7]董英,郭绍辉,詹亚力.聚丙烯酰胺的土壤改良效应[J].高分子通报,2004,5(10):83-87.
    [8]归秀娥.我国耕地资源可持续利用面临的问题与对策[J].理论导刊,2008,7:102-103.
    [9]顾英武.TBPAM应用于防治水土流失的试验结果[J].广州化工,1997,25(3):63-66.
    [10]和继军,蔡强国,唐泽军.PAM控制土壤风蚀的风洞实验研究[J].水土保持学报,2007,21(2):20-22.
    [11]何腾兵,杨开琼,张俊,等.VAMA对土壤保肥供肥性能影响的研究[J].土壤通报,1997,28(6):257-260.
    [12]黄占斌,朱元骏,李茂松,等.保水剂聚丙烯酸钠不同施用方法对玉米生长和水分利用率的影响[J].沈阳农业大学学报,2004,35(5-6):576-579.
    [13]胡丽华.棉花施用膨润土的效应与技术[J].试验研究,1993,3:10-12.
    [14]胡代泽.我国农作物秸秆资源的利用现状与前景[J].资源开发与市场,2000,16(1):19-20.
    [15]介晓磊,唐玲玲.保水剂对土壤持水特性的影响[J].河南农业大学学报,2000,34(1):22-24.
    [16]刘东,任树梅,杨培岭.聚丙烯酰胺PAM对土壤水分蓄渗能力的影响[J].灌溉排水学报,2006,25(4):65-69.
    [17]刘丽香,吴承帧,洪伟,等.农作物秸秆综合利用的进展[J].亚热带农业研究,2006,2(1):74-80.
    [18]李新芸,江波.农作物秸秆综合利用现状及对策[J].研究开发,2006,2:16-17.
    [19]龙明杰,张宏伟,陈志良,等.高聚物对土壤结构改良的研究Ⅲ.聚丙烯酰胺对赤红壤的改良研究[J].土壤通报,2002,33(1):9-13.
    [20]李冬杰,杨培岭,李云开,等.抗旱节水剂在葡萄栽培上的应用试验研究[J].农业工程学报,2004,20(3):51-54.
    [21]李吉进,邹国元,王美菊,等.膨润十保氮增产效果研究[J].中国土壤与肥料J,2006,3:72-75.
    [22]李吉进,安文焕.施用膨润土对土壤含水量和有机质含量的影响[.1].华北农学报,2002,2:88-91.
    [23]廉洁,任万青,等.我国农业秸秆综合利用的现状与发展趋势[J].科技创业,2008,8:85-87
    [24]马友华.膨润土在土壤改良和肥料生产上的研究和应用[J].矿产保护利应用,1996,1:26-29.
    [25]马毅杰.膨润土资源性质及其利用[J].土壤学进展,1994,2:22-28.
    [26]米志峰.秸秆还田技术的现状与发展[J].农业产业化,2006.
    [27]皮广洁.农业环境监测原理与应用[M].成都科技大学出版社,1998.
    [28]宋蕺苞.浙江省秸秆资源及其品质调查研究[J].土壤肥料,1995,2:23-26.
    [29]桑以琳.土壤学与农作学[M].中国农业出版社,2005,23-54.
    [30]孙健.纤维素原料生产燃料酒精的技术发展[J].可再生资源,j2003,112(6):5-9
    [31]童潜明,孙数高,等.膨润土肥料的增效作用的研究[J].湖南农业科学,1996,545:4.
    [32]唐泽军,雷廷武,赵小勇,等.PAM改善黄土水土环境及对玉米生长影响的田间试验研究[J].农业工程学报,2006,22(4):216-219.
    [33]褚丽妹,谭国栋,凡久彬,等.聚丙烯酰胺对沙化草场土壤颗粒组成的改良效果[J].中国农学通报,2007,23(5):483-486.
    [34]王文山,王维敏,张镜清.用砂滤管法研究农作物残体在土壤中的腐解[J].土壤通报,1984.6:28-30.
    [35]王秋华.我国农村作物秸秆资源化调查研究[J].农村生态环境,1994,10(4):67-71.
    [36]王晶莹,贺占彪,阎伟义.膨润土吸水保肥能力初探[J].内蒙古林业科技,2007,33(2):11-14.
    [37]王志玉,刘作新,蔡崇光,等.两种农用高吸水树脂的制备工艺及其土壤保水效果[J].农业工程学报,2004,20(6):64-67.
    [38]王君厚.近50年来我国沙化土地动态变化分析[J].林业资源管理,2008,2:23-27.
    [39]汪海波,秦元萍,余康.我国农作物秸秆资源的分布、利用与开发策略[J].国土与自然资源研究,2008,2:92-93.
    [40]夏卫生,雷廷武,刘纪根.PAM防治水土流失的研究现状及评述[J].土壤通报,2002,33(1):78-80.
    [41]夏海江,肇普兴.PAM对土壤物理性质影响的试验研究[J].东北水利水电,1999,7:7-9.
    [42]许晓平,汪有科,冯浩.土壤改良剂改土培肥增产效应研究综述[J].中国农学通报,2007, 9:331-333.
    [43]小彬,蔡典雄.土壤调理剂PAM的农用研究和应用[J].植物营养与肥料学报,2000,6(4):457-463.
    [44]易杰祥,刘国道,孙水芬,等.膨润土的土壤改良效果及其对作物生长的影响[J].安徽农业学,2006,34(10):2209-2212.
    [45]员学锋,吴普特,冯浩.聚丙烯酰PAM的改土及增产效应[J].水土保持研究,2002,9(2):55-58.
    [46]员学锋.PAM的保土、保肥及作物增产效应研究[D].西北农林科技大学大学硕士论文,2003.
    [47]杨游.秸秆资源的开发现状与趋势[J].饲料资源开发,2006,4.
    [48]于晓光,宋国献.聚丙烯酰胺增强砂土保水性试验研究[J].中国水土保持,2003,5:26-27.
    [49]张淑芬.坡耕地施用聚丙烯酰胺防治水土流失试验研究[J].水土保持科技情报,2001,2:18-19.
    [50]张金桃,周传云.农作物秸秆能源利用现状与前景[J].酿酒科技,2007,34(4):12-15.
    [51]张万儒.森林土壤分析方法[M].北京:中国标准出版社,1999.
    [52]张志国,徐琪.长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响[J].土壤学报,1998,35(3):384-391.
    [53]邹新禧.超强保水剂[M].北京:化学工业出版社,2002.
    [54]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用[J].资源科学,2003,4(7):62-67.
    [55]周雷.直燃发电秸秆派上大用场[J].循环经济,2006,1.
    [56]张镇翰.大力开发秸秆利用技术,促进农业经济发展-浅谈秸秆发电及秸秆制板技术[J].农机市场,2006,7.
    [57]张季平.干施+石膏增加降雨入渗量减少径流量与侵蚀量研究[J].内蒙古林业科技,2008,34(1):29-31.
    [58]朱列克.中国荒漠化和沙化动态研究[M].北京:中国农业出版社,2006,1-3.
    [59]朱增勇,聂凤英.中国的农作物秸秆资源及其在设施栽培中的应用前景[J].现代农业,2007,11:32-34.
    [60]钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用[J].资源科学,2003,25(3):62-67.
    [61]Aase J K, Bjorn berg D L, Sojka R E. Sprinkler irrigation runoff and erosion Control with polyacrylamide-laboratory tests[J]. Soil Sci. Soc. Am. J.1998,62:1681-1687.
    [62]Ben-Hurl M, Kerens R. Polymer effects on water infiltration and soil aggregation[J]. Soil Sci Am J,1997,61:565-570.
    [63]Entz R D. Inhibiting water infiltration with polyacrylamide and surfactants Applications for irrigated agriculture[J]. Journal of Soil and Water Conservation,2003,58(5):290-300.
    [64]Gregory J. Fundamentals of flocculation[J]. Critical Review sin Environmental Control,1989, 19:185-230.
    [65]Green V S, Stott D E, Norton L D, et al. Polyacrylamide molecular weight and charge effects on infiltration under simulated rainfall[J]. Soil Soc AmJ,2000,64:1786-1791.
    [66]Jenkins D S. The effects of plant cover and soil type on the loss of from labeled composing under field conditions[J]. Soil Sci,1997,28:424-434.
    [67]Kristian J Aase, David L, Bjorneberg, et al. Sprinkler irrigation run off and erosion control with polyacrylamide Lavoratory test [J]. Soil Sci Am J,1998,62:1681-1687.
    [68]Lentz R D, Shainberg 1, Sojka R E, et al. Preventing irrigation furrow erosion with small applications of polymers[J]. Soil Sci,1992,56:1926-1932.
    [69]Lentz R D, Sojka R E. Field results using polyacrylamide to manage furrow erosion[J]. Soil Sci, 1994,158:274-282.
    [70]Lentz R P, Sojka R E, Ross C W. Polymer charge and molecular weight effects on treated irrigation furrow processes [J]. International Tournal of Sediment Research,2000,15(4):17-30.
    [71]Lentz R D, Sojika R E. Field results using polyacrylamide to furrow erosion and infiltration[J].. Soil Sci,1994,158:247-282.
    [72]Lentz R D, Sojika R E. irrigation (agriculture) [M]. Mc Graw Hill Year book of Science & Technology. McGraw-Hill,1996:162-165.
    [73]Lentz R D, Sojika R E, Foerster J A. Estimating polyacrylamide concentration in irrigation water[J]. J of Envir quality,1996,25:101-1024.
    [74]Lentz R D, Sojka R E, Ross C W. Polymer charge and molecular Weight effects on treated irrigation furrow processes[J]. International Journal of Sediment Research,2000,15(1):17-30.
    [75]Lentz R D, Sojka R E, Foerster J A. Estimating polycrylamide concentration in irrigation water[J]. J of Envir Quality,1996,25:1015-1024.
    [76]Mike L N, Wilhelm W, Feaster C R.Soil physical characteristics of reduced tillage in a wheat fallow system[J]. Trans ASAE,1984,27:1724-1728.
    [77]Mahboubi A A, Lal R, Fusser N R. Twenty-eight years of tillage effects on two soils in Ohio[J]. Soil Sci Soc Am J,1993,57:506-512.
    [78]Roth C H, Meyer B, Freda J G. Derpsch R. Effect of mulch rates and systems on infilrtability and other soil physical properties of an Ox sol in Purina Brazil 1[J]. Soil Tillage Res,1988,11: 81-91.
    [79]Santos F L, Serralheiro R P. Improving Infiltration of Irrigated Mediterranean Soils with Polyacrylamide[J]. J Agric Engng Res,2000,76:83-90.
    [80]Shainberg I, Laflen J M, Bradford J M, et al. Hydraulic flow and water quality characteristics in
    rill erosion[J]. Soil Sci AmJ,1994,58:1007-1012.
    [81]Sirjacobs D, Shainberg I, Rapp I, et al. Polyacrylamide, Sediments and interrupted flow effects on rill erosion and intake rate[J]. Soil Sci AmJ,2000,64:1487-1495.
    [82]Sojka R E, Lentz R D, Rose C W, et al. PAM effect on infiltration in irrigated agriculture[J]. Soil Water Conserv,1998,53:325-331.
    [83]Sojka R E, Lentz R D, Westerman D T. Water and erosion management with multiple application of polyacrylamide in furrow irrigation[J]. Soil Sci Soc Am J,1998,62:1672-1680.
    [84]Sepaskhah A R, Bazrafshan A R, Jahromi, et al. Controlling runoff and erosion in sloping land with polyacrylamide under a rainfall simulator[J]. Biosystems Engineering,2006,93(4): 469-474.
    [85]Sheinberg I, Levy G J. Organic polymer sand soils eagling cultivated soils[J]. Soil Science, 1994,158(4):267-273.
    [86]Terry R E, Nelson S D. Effect of polyacrylamide and irrigation method on soil physical properties[J]. Soil Sci,1986,141:317-320.
    [87]TroutT J, Sojka R D, Lentz R D. Polyacrylamide affect on furrow erosion and infiltration[J]. Transactions of the ASABE.1995,38(3):761-765.
    [83]Wallace A, Wallace G A. Effect of polymeric soil conditioners on Emergence and growth of tomato, cotton, and lettuce seedlings[J]. Soil Sci,1986,141:313-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700