静电纺丝法制备PLLA/PCL、PLLA/PHBV组织工程支架的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
组织工程支架是组织工程研究的重要内容之一。目前,静电纺丝已广泛应用于组织工程支架的研究。本文采用静电纺丝技术作为制备支架材料的方法,优化纺丝工艺条件,制备出了仿细胞外基质结构的多孔网状组织工程支架材料。所制备的电纺纳米纤维支架材料具有孔隙率高、比表面积大、均一性好、长径比大等优点,能够从纳米尺度上模仿天然胞外基质,可作为细胞生长的多孔支架,促进细胞的迁移和增殖。
     本文选取聚乳酸、聚己内酯、聚羟基丁酸戊酸共聚酯、透明质酸为支架材料。利用静电纺丝、等离子体改性等技术制备了复合纳米支架。较为系统地测试了其用于组织工程支架的各种性能:通过扫描电镜(SEM)、差热分析(DSC)、动态力学性能(DMA)、宽角X射线(WAXD)和接触角对支架结构与形态、力学性能、结晶性能及亲水性进行了表征;通过加酶在缓冲溶液中的降解,研究了其降解性能;将体外培养的真皮成纤维细胞接种至材料表面,用扫描电镜观察成纤细胞在材料表面的生长情况。具体研究结果如下:
     1.以二氯甲烷/DMF(60:40)为溶剂,制备了PHBV、PLLA、PHBV/PLLA的电纺超细纤维;同时平行讨论了以氯仿/DMF(60:40)为溶剂制备PLLA、PCL、PLLA/PCL电纺纤维膜的工艺过程。研究发现:以氯仿/DMF(60:40)、二氯甲烷/DMF(60:40)适合做PLLA、PHBV、PCL及其混合物的溶剂,所制备的纤维直径均一且呈相互连通的多孔网状结构。
     2.电纺过程中,纤维的高分子链产生一定的排列和高度取向,但由于纤维的固化速度快,高分子链来不及进行规整排列而形成结晶,因此,DSC和XRD的结果都显示,PLLA、PCL静电纺纤维毡的结晶度要比相应的膜低。对于PHBV纤维毡而言,在静电纺丝过程中,由于其结晶速度较快,溶剂快速挥发使结晶受阻现象未出现,所以结晶度不降反升。
     3.在加酶降解的过程中,不同比例的PHBV、PCL与PLLA电纺纤维膜在脂肪酶、脂肪酶(猪胰)中降解速度明显加快,降解速度远远快于未加酶及普通膜的降解速度。所得电纺膜中随着所含聚乳酸的比例增加,降解速度明显加快,这是因为PCL、PHBV降解过程产生的小分子酸也能间接催化聚乳酸降解。降解过程中电纺纤维膜的失重率和吸水率与降解时间而增加。
     4.对PLLA/PCL(60:40)的电纺膜通过三种气体对其进行低温等离子体改性,研究比较发现,改性后的膜接触角较之前有明显降低,表明材料的亲水性增强。将改性后的支架材料接枝透明质酸,采用MTT法和扫描电镜研究成纤维细胞在改性前后材料表面的生长和增值情况,评价改性后PLLA/PCL(60:40)电纺纤维支架的相容性。结果表明:改性接枝支架细胞增值能力得到显著提高,预示在组织工程支架领域将有着良好的应用前景。
Scaffold plays an important role in tissue engineering strategies. The scaffolds were widely applied for different tissue engineering via an electrospinning technique at present.The paper gives a systematic study of the preparation of tissue engineering scaffolds by electrospining. The results showed that the electrospinning nanoscaffolds mimicked Extrocelluar Matrix (ECM) well, with high porosity, well interconnected, and high surface-to-volume ratio that was suitable for cell growth.
     The PLLA, PCL, PHBV, hyaluronic acid (HA) were choosed as tissue engineering scaffold materials. The composite nanoscaffolds were prepared by electrospining and plasma technique. The structure, morphology, storage modulus and loss factor properties, crystallization property and hydrophilicity of the electrospun fibers were characterized by scanning electron microscopy(SEM), dynamic mechanical properties(DMA), thermal analysis (DSC), wide angle X-ray diffraction(WAXD) and contact angle. Degradation behaviors were investigated during the enzymatic degradation in PBS aqueous for different time. Dermal fibroblasts were seeded on the electrospun scaffold and the cells in material growth situation were evaluated by SEM. The fiber mats were tested for tissue engineering scaffold applications. The main results wered listed as follows:
     1. PHBV, PLLA, PLLA/PHBV electrospun ultra-fine fibers were prepared by using dichloroethane/DMF (60:40) as solvent systems. PLLA, PCL, PLLA/PCL electrospun fibers were prepared by chloroform/DMF(60:40) . The result indicated that the fibers were smooth and uniform with the interwoven and porous morphology. All of them were suitable for the solvent of PLLA, PHBV, PCL and the mixture for electrospining.
     2. Although the electrospining process results in alignment and orientation of the polymer chains within the fiber to a great extent, crystallation structure can not be developed very well due to the quick solidification of the fibers. Thus, the crystallinity of PCL and PLLA fibrous mats was lower than that of the corresponding films according to DSC and WXAD results. The phenomenon of the blocked crystallization did not occur because of the fast crystallization rate in the process of electrospinning. So the crystallinity of PHBV was increased after electrospinning.
     3. Degradation velocity of different proportion of PLLA/PCL and PLLA/PHBV fibrous membrane were greatly accelerated with the addition of enzyme, which were far faster than that of PCL and PHBV fibrous membrane without enzyme. With an increase in the proportion of polylactic acid (PLLA), the degradation speed was obviously speeded up. It is because small molecule acid produced in the course of PCL and PHBV degradation had indirectly catalyzed the degradation of polylactic acid. Weight-loss ratio and water absorption rate of the fibrous membrane were proportionally increased with the degradation time.
     4. The PLLA/PCL (60:40) nanofibers were treated by three different gases in the low-temperature plasma. The results showed,water contact angle of the films reduced significantly after plasma treatments, and the hydrophilic of composite scaffolds were enhanced. PLLA/PCL (60:40) nanofibers were prepared by electrospining technology and haluronic acid was grafted on the surface ultra-thin fibers after the low-tempature plasma treatment.Dermal fibroblasts were seeded on the electrospun scaffold and the cell proliferation was also evaluated by MTT method and SEM. It can be concluded that the cell affinity of the PLLA/PCL (60:40) fibers were greatly improved by haluronic acid grafting. And it may have great potential applications of tissue engineering scaffold.
引文
[1] Langer R, Vacanti J P. Tissue engineering[J].Science, 1993, 260, 920-921
    [2]Lanza R,Chick W.Pfindples of tissue engi-neering[M]. Austin: RG: andes Company, 1997,12,1-9
    
    [3] Lang H,Mertens T H,Gerlack K L. Reimplantation of homologous cultured blast-like cells for improvement of hone regeneration[J].Int.J.Oral Maxi.Surg, 1989, 18,244-241
    
    [4] Wakitani S,Kummra T,Horooka A. Repair of rabbit articular surfaces with Allo graft chondrocytes em bedded in collagen ges[J]. J.Bone Joint Surg, 1989, 71-74
    
    [5]Tal D,0ma T G,et al ."Designer" Scaffolds for Tissue Engineering and Regeeration[J]. Israel Journal of Chemistry, 2005, 45, 487-494
    
    [6] Wang A Y,Leong S,Liang Y C. Immobilization of Growth Factors on Collagen Scaffolds Mediated by Polyanionic Collagen Mimetic Peptides and ItsEffect on Endothelial Cell Morphogenesis[J]. Biomacromolecules, 2008, 9, 2929-2936
    
    [7]Bitar M, Brown R A, Salih V. Effect of Cell Density on Osteoblastic Differentiation and Matrix Degradation of Biomimetic Dense Collagen Scaffolds[J]. Biomacromolecules, 2008, 9, 129-135
    
    [8]Perk Y S, Gao,S J, Arshad, Mohamed M S. Porous collagen-apatite nanocomposite foams as bone regeneration scaffolds[J]. Biomaterials , 2008, 29, 4300-4305
    
    [9]Wanbach B A,Cheung H, Josephson G D. Novel Textile Chitosan Scaffolds Promote Spreading, Proliferation and Differentiation of Osteoblasts[J]. Laryngoscope, 2000,110,2008-2020
    
    [10] Van S J , Pieper J,Buma P, et al. Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro [J]. Biomaterials, 2001,22,2359-2369
    
    [11] Zhang Q Q,Yao K,Liu L,et al. Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications[J]. Anif Cells Blood Substit Immobil Biotechnol, 1999, 27, 245-253
    [12]Patrick G,Anne-Marie S, Darwin P,et al. Bone turnover and type I collagen C-telopeptide isomerization in adult osteogenesis imperfecta:Associations with collagen gene mutations[J]. Bone, 2009, 44, 461-466
    
    [13] Willers C, Chen J, Wood D,et al. Biodegradable Interpolyelectrolyte Complexes Based onMethoxy Poly(ethylene glycol)-b-poly(r,L-glutamic acid) and Chitosan [J].Tissue Eng, 2005,11, 1065-1076
    
    [14]Franceshi L,Grigolo B,Roseti L,et al.Biomacromolecules Electrostatic Self- Assembly on 3-Dimensional Tissue Engineering Scaffold[J]. Bioled Mater Res A, 2005, 75, 612-622
    
    [15] Masuoka K, Asazuma T, Ishihara M,et al. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold[J]. Biomed Mater Res B Appl Biomter, 2005, 75, 177-184
    
    [16] Lee CR, Breinan HA,Nehrer S,et al. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold[J]. Tissue Eng, 2000, 6, 555-565
    
    [17] Dan N, Raul M, Chantal A,et al. Regulation of material properties in electrospun scaffolds:Role of cross-linking and fiber tertiary structure[J].Acta Biomaterialia, 2009,5,518-529
    
    [18]Liao S,Wang W, Uo M,et al. A three-layered nano-carbonated hydroxyapatite/ collagen/PLGA composite membrane for guided tissue regeneration[J]. Biomaterials, 2005, 26, 7564-7571
    
    [19]Yan J,Li X,Liu L,et al.Suture-reinforced electrospun polydioxanone-elastin small-diameter tubes for use in vascular tissue engineering:A feasibility study[J]. Artif Cells Blood Substit Immobil Biotechnol, 2006, 34, 27-39
    
    [20] Park S H,Park S R,Chung S I,et al. Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles[J]. Artif organs, 2005, 29, 838-845
    
    [21] Yamane S,Iwasaki N,Majima T, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering[J]. Biomaterials, 2005, 26, 611-619
    [22]Li Z,Zhang M J. Inactivation of Biological Agents Using Neutral Oxone- ChlorideSolutions [J]. Biomed Mater Res A, 2005, 75, 485-493
    [23]Shi D H,Cai D Z,Zhou C R,et al. Polymers for tissue engineering,medical devices, and regenerative medicine. Concise general review of recent studies[M]. Chin Med J(Engl), 2005,118,1436-1443
    
    [24] Liu H F, Yin Y J, Yao K D. Influence of the concentrations of hyaluronic acid on the properties and biocompatibility of Cs-Gel-HA membranes[J]. Biomaterials 2004, 25, 3523-3530
    
    [25] Denlinger J L,Mofty A A,Balazs E A. Replacement of the liq2uid vitreous with sodium hyaluronate in monkeys[J]. Exp EyeRes,2004 ,30 ,1012-117.
    [26] Clark R A F. Cutaneous tissue repair:basic biologic consideration [J ]. J Am Acad Dermat, 2005, 13, 7012-7025.
    
    [27]Jan A,Johansson T H,Merja H. Build-up of Collagen and Hyaluronic Acid Polyelectrolyte Multilayers[J]. Biomacromolecules, 2005, 6, 1353-1359
    [28] Vittorio C, Andrea F, Anna T. Synthesis and Partial Characterization of Hydrogels Obtained via Glutaraldehyde Crosslinking of Acetylated Chitosan and of Hyaluronan Derivatives [J]. Biomacromolecules, 2003, 4, 1045-1054
    [29] Piotr K, Gregory S,Tapani V. Construction of Viscoelastic Biocompatible Films via the Layer-by-Layer Assembly of Hyaluronan and Phosphorylcholine-Modified Chitosan[J]. Biomacromolecules, 2007, 8, 3169-3176
    
    [30]Mano J F,Sousa R A,Luciano F,et al.Bioner,biodegradable and injectable polymeric matrixcomposities for hard tissue replacement,state of the art and recent developments [J]. Composites Science and Tevhnology,2004,64,789-817
    [31]Elena L,Federica V,Anna T. Porous hydroxyapatite/gelatine scaffolds with ice-designedchannel-like porosity for biomedical applications[J].Acta Biomaterialia, 2008,4, 1620-1626
    
    [32] Duan B, Wang M, W, Zhou Y. Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV nanocomposite microspheres for bone tissue engineering applications[J]. Applied Surface Science, 2008, 255,529-533
    
    [33]Wang X D, Wang Y J. Drug distribution within poly(e-caprolactone) microspheres and in vitro release[J]. Journal of materials processing technology, 2009, 209, 348-354
    [34]Zalfen A M, Nizet D, Jerome C. Controlled release of drugs from multi-component biomaterials[J]. Acta Biomaterialia, 2008, 4, 1788-1796
    [35] Rohner D,Hutmacher D W,See P et al. Individually CAD-CAM tech-nique esigned,bioresorbable 3-dimensional polycapmlaetone frame work for experimental reconstruction of craniofacial defect sinthepig[J]. Mund Kiefer Gesichtschir, 2005, 6,162-167.
    [36]Molpoceres J,Aberturas MR,Guzman M. Biodegradable nanoparticlos as a delivery system for cyclospo rine Preparation and characterization[J]. Microencapsul, 2002, 17,599-614.
    [37] Zein I,Hutmacher D W,Tan K C,et al.Fused deposition mod eling of novel scaffold architectures for tissue engineering applications[J]. Biomaterials, 2002, 23, 1169-1185.
    [38] Youngmee J,Min S P,Jin W L. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly (L-lactide-co-3-caprolactone) [J]. Biomaterials, 2008,29, 4630-4636
    [39] Sarah G,Grainne M, Enda O C. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold[J]. Acta Biomaterials, 2008,4,1734-1744
    [40] Pisstner H, Stallforth H,Gutwald R,et al.Poly(L-lactide):a long-term degradation study in vivo.Part II.Physico-mechanical behavior of implants[J]. Biomaterials, 1994,15,439
    [41] Cui Y J, Zhao X, Tang X Z. Novel micro-crosslinked poly(organophosphazenes) with improved mechanical properties and controllable degradation rate as potential biodegradable matrix[J]. Biomaterials, 2004, 25, 451-457
    [42] Hoi Y C, Kin T L,Tao X M. A potential material for tissue engineering:Silkworm silk/PLA[J]. Biocomposite Composites:Part B, 2008, 39, 1026-1033
    [43]Sarvesh K A,Naomi S D,Jemian P R. Micro-to Nanoscale Structure of Biocompatible PLA-PEO-PLA Hydrogels[J]. Langmuir, 2007, 23, 5039-5044
    [44]Cohn D,Hotovely S A.Designing biodegradablemultiblock PCL/PLA thermoplastic elastomers[J]. Biomaterials, 2005, 26, 2297-2305
    
    [45] Binna R,Wadcharawadee N,Prakash H.Kithva,Bionanohy droxyapatite/ Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Composites with Improved Particle Dispersion and Superior Mechanical Properties. Chem. Mater, 2008, 20, 2802-2808
    
    [46] Duan B, Wang M, Zhou W Y. Synthesis of Ca-P nanoparticles and fabrication of Ca-P/PHBV nanocomposite microspheres for bone tissue engineering applications[J]. Applied Surface Science, 2008, 255,529-533
    
    [47] Jenkins M J, Cao Y, Howell L. Miscibility in blends of poly (3-hydroxybutyrate -co-3-hydroxyvalerate) and poly(3-caprolactone) induced by melt blending in the presence of supercritical CO2[J]. Polymer, 2007, 48, 6304-6310
    
    [48]JunY S, Wu J, Li H Y. Macroporous poly(3-hydroxybutyrate-co-3- hydroxyvalerate) matrices for cartilage tissue engineering[J].European Polymer Journal, 2005, 41, 2443-2449
    
    [49]Zhao H G, Ma L, Gao C Y. Fabrication and properties of mineralized collagen-chitosan/hydroxyapatite scaffolds[J]. Polymers for advancted technologies, 2008,19,1590-1596
    
    [50] Andreia V,Giuliano F, Artur C P. Biodegradable Materials Based on Silk Fibroin and Keratin[J].Biomacromolecules, 2008, 9, 1299-1305
    
    [51]Jiang L Y,Li Y B, Wang X J.Preparation and properties of nanohydroxyapatite /chitosan/carboxymethyl cellulose composite scaffold.[J]. Polymers, 2008, 74, 680- 684
    
    [52] Elena L , Federica V , Anna T , Porous hydroxyapatite/gelatine scaffolds with ice-designed channel-like porosity for biomedical applications[J]. Acta Biomaterialia, 2008,4, 1620-1626
    
    [53] He G, Ji Z J, Shen J C. Electrostatic Self- Assembly on 3-Dimensional Tissue Engineering Scaffold[J]. Biomacromolecules, 2004, 5, 1933-1939
    
    [54] Sahoo S K., Amulya K. Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells[J]. Biomacromolecules, 2005, 6, 1132-1139
    [55]Yulia L, Janet Z, Shulamit L. Porous Polycaprolactone-Polystyrene Semi-interpenetrating Polymer Networks Synthesized within High Internal Phase Emulsions. Macromolecules, 2008, 41, 1469-1474
    [56] Vincenzo G Filippo C, Paola T. Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering[J]. Biomaterials, 2008, 29, 3662-3670
    [57] Liu Y F, Wang S P. Krouse J. Rapid aqueous photo- polymerization route to polymer and polymer-composite hydrogel 3D inverted colloidalcrystal scaffolds[J]. Journal of Biomedical Materials Research Part A, 2007, 83A, 1-9.
    [58]Zhang Y Z, Venugopal J, Huang Z M. Characterization of the Surface Biocompatibility of the Electrospun PCL-Collagen Nanofibers Using Fibroblasts[J]. Biomacromolecules, 2005, 6, 2583-2589
    [59] Syam P, Nukavarapu S,Kumbar G. Polyphosphazene/Nano- Hydroxyapatite Composite Microsphere Scaffolds for Bone Tissue Engineering[J]. Biomacromolecules, 2008,41,1818-1825
    [60] Luo K,Yin J B, Song Z J. Biodegradable Interpolyelectrolyte Complexes Based on Methoxy Poly(ethylene glycol)-b-poly(r,L-glutamic acid) and Chitosan[J]. Biomacromolecules, 2008,41, 2653-2661
    [61] Zhou Y S, Yang D Z, Chen X G. Electrospun Water-Soluble Carboxyethyl Chitosan/Poly(vinylalcohol) Nanofibrous Membrane as Potential Wound Dressingfor Skin Regeneration[J]. Biomacromolecules, 2008, 9, 349-354
    [62] Yun H S, Kim S E, HyunY T. Three-Dimensional Mesoporous -Giantporous Inorganic/Organic Composite Scaffolds for Tissue Engineering [J]. Chemistry of materials, 2007, 19, 6363-6366
    [63] Mara V R,Antonio J,Salinas J R C. Nanostructure of Bioactive Sol-Gel Glasses and Organic-Inorganic Hybrids[J]. Chem. Mater, 2005, 17, 1874-1879
    [64] Mikos A G,Thorsen A J,Czerwonk A ,et al. Preparation and characterization of poly (L-lactic acid)foam[J]. Biomaterials, 1994, 35, 1065-1077
    [65] Chen G P, Ushid A T,Ta T S. Preparation of poly (L-lactic acid) and poly (DL-lactic-co-glycolicacid) foams by use of ice microparticulates[J]. Biomaterials, 2001,22,2563-2567
    [66] Thomson R C, Yaszemski M J, Power J M, et al. Fabrication of biodegradable polymer scaffolds to engineer trabecular bone[J]. J Biomater Sci Polym Ed, 1995, 7,23-38
    
    [67] Tampieri A, Celotti G, Sprio S, et al. Porositygraded Hydrotoxyapatite Ceramics to Replace Natural Bone[ J]. Biomaterials, 2001, 22,1365-1370.
    
    [68] Mark B,Mohamed A,Cato T,et al. Tissue Engineered Micosphere-based Matrices for Bone Repair:Design and Evaluation[J]. Biomaterials, 2002, 23, 551-59.
    
    [69] Rina N, Jin H J,David L,et al. Porous 3-D Scaffolds from Regenerated Silk Fibroin[J]. Biomacromolecules, 2004, 5, 718-726
    
    [70]Williams J M,Adebisi A, Rachel M.Schek Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials, 2005,26,4817-4827
    
    [71] ParkaW B,Grifth L G.Miscibility and crystallization behavior of biodegradable blends of two aliphatic polyesters. Poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(3-caprolactone) [J]. Biomater sci-polym,E, 1998, 9, 89-110
    
    [72] LanzaR P,Langer R,Vacanti J P. Principles of Tissue Engineering. Second Edition [M]. The United States of America: Academic Press, 2000, 251-262
    
    [73] Lu L C, Susan J,Mikos. In vitro degradation of porous poly(L-lactic acid) foams [J]. Biomaterials, 2000, 21, 1595-1605
    
    [74]Mooney D J,Mazzoni C L,Breuer C,et al. Stabilized Polyglycolic Acid Fiber-based Tubes for Tissue Engineering [J]. Biomaterials, 1996, 17,11524
    
    [75] Formhals A. Process and apparatus for preparing artificial threads: US. 1975, 504 P1.1934
    
    [76]Taylor G I. Process and apparatus for preparing artifical threads.US patent, 1975, 504,1934.
    
    [77]Baumgarten P K. Electrostatic spinning of acrylic microfibers. Journal of Colloid[J]. Interface Science, 1971, 36, 71-9.
    
    [78] Kim H W, Lee H H,Knowles J C. Electrospinning biomedical nanocomposite fibers of hydroxyapatie/poly(lactic-acid)for bone regeneration[J]. Journal of Biomedical Materials Research, 2006, 79, 643-649.
    
    [79]Li D P,Margaret W F. Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies[J]. Journal of Membrane Science,2006, 279, 354- 363
    
    [80]Dz E Y. Spinning cont inuous fibers for nanotechnology[J]. Science, 2004, 304,1917-1919
    
    [81]Fang X, Reneker D H. DNA fibers by electrospinning[J]. Joural of Macromolecular Science and physics,1997,B36,169-73
    
    [82] Taylor G I,Electrically D J. Polymeric Grafting of Acrylic Acid onto Poly (3-hydroxybutyrate-co-3-hydroxyvalerate): Surface Functionalization for Tissue Engineering Applications Proc R Soc[M]. London, 1969, 313A,453-75
    
    [83] Doshi J,Reneker D H. Eleectrospinning process and applications of electrospun fibers[J]. Journal of Electrostatics, 1995, 35,151-60
    
    [84] Tan S H, Inai R, Kotaki M, et al. Systematic parameter study for ultra-fine fiber fabrication via electrospinning[J]. Polymer, 2005, 46, 6128-6134
    
    [85] Bognitzki M,Czado W,Frese T,et al. Cell based bone tissue engineering in jaw defectsq. Advanced Materials, 2001, 13, 70.
    
    [86] Korakot S,Neeracha S, Prasit P. Bone scaffolds from electrospun fiber mats of poly(3-hydroxylbuty-rate),poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and their blend[J]. Polymer, 2007, 48, 1419-1427
    
    [88] Danielle N R, Robert E, Akins J. Culture on electrospun polyurethane scaffolds decreases atrial natriuretic peptide expression by cardiomyocytes in vitro[J]. Biomaterials, 2008,29, 4783-4791
    
    [89] Keith A B, Rob M,Irene C,et al. Development of biodegradable electrospun scaffolds for dermal replacement[J]. Biomaterials, 2008, 29, 3091-3104
    
    [90] Suk H P, Kim T G, Kim H C. Development of dual scale scaffolds via direct polymer melt deposition and electrospinning for applications in tissue regeneration[J]. Acta Biomaterialia, 2008,4 ,1198-1207
    
    [91] Keyur D, Kevin K. Effect of spinning temperature and blend ratios on electrospun chitosan/poly(acrylamide) blends fibers[J]. Polymer, 2008, 49, 4046- 4050.
    
    [92] Zhang Y Z, Venugopal J R, El-Turki A. Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering[J]. Biomaterials, 2008,29,4314-4322
    
    [93]Orawan S T,Uracha R,Supaphol P.Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside[J]. Polymer, 2008,49, 4239-4247
    
    [94]Laleh G M,Molamma P P, Mohammad M.Electrospun poly(3- caprolactone) /gelatin nanofibrous scaffolds for nerve tissue engineering[J]. Biomaterials, 2008, 29 , 4532-4539
    
    [95]Zhua Y B,Meng F L,Wey F O. Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone) (PLLC) nanofiber scaffold[J]. Biomaterials, 2007,28,861-868
    
    [96]Boudriot U,Dersch R,Greiner A,et al. Electrospinning Approaches toward scaffold engineering-a brief overview[J]. Artificial organs, 2006, 30,785-792.
    
    [97] Vohrer U, Muller M. Glow discharge t reatment forthe modification of textiles[J]. Surf Coat Tech, 1998 , 98,1128
    
    [98] Hocker H. Plasma treatment of textile fibers. Effects of metal ion-carbonyl interaction on miscibility and crystallization kinetic of poly(3- hydroxybutyrateco-3- hydroxyhexanoate)/lightly ionized PBS[J]. Pure Appl Chem, 2002 ,74, 423
    
    [99]Li R Z. Application of plasma technologies in fiber rein forced polymer composites:a review of recent development s[J]. Comp Part A, 1997, 28,73
    
    [100] Yang F, Wolke J G C, Jansen J A. Biomimetic calcium phosphate coating on electrospun poly (s-caprolactone) scaffolds for bone tissue engineering[J]. Chemical Engineering Journal, 2008,137,154-161
    
    [101] Ferreira B MP, Pinheiro L M P, Nascente P A P. Plasma surface treatments of poly(L-lactic acid) (PLLA) and poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) [J]. Materials Science and Engineering C, 2008 ,15,1-8
    
    [102]He W, Ma Z W, Thomas Y. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth[J]. Biomaterials, 2005,26,7606-7615
    [103]Risbud M.Tissue engineering:implications intreament of organ and tissue defects[J].Biogerontology,2001,2,117-125
    [104]Jenkins M J,Cao Y,Howell L.Miscibility in blends of poly(3-hydroxybutyrateco -3-hydroxyvalerate) and poly(3-caprolactone) induced by melt blending in the presence of supercritical CO_2[J].Polymer,2007,48,6304-6310
    [105]Youngmee J,Park M S,Jin W L.Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactideco -3-caprolactone)[J].Biomaterials,2008,29,4630-4636
    [106]Liu X H,Youngjun W,Ma P X.Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering[J].Biomaterials,2006,27,3980-3987
    [107]Queen P P,Puma S,Mikes A G.Electrospun Poly(E-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:Characterization of Scaffolds and Measurement of Cellular Infiltration[J].Biomacromolecules,2006,7,2796-2805
    [108]Chunmei L,Charu V,Hyoung J J.Electrospun silk-BMP-2 scaffolds for bone tissue engineering[J].Biomaterials,2006,27,3115-3124
    [109]Zong X H,Kim K,Fang D F.Structure and process relationship of electrospun nanofiber membranes[J].Polymer,2002,43,4403-4412
    [110]Deitel J M,Kleinmeyer J D,Harris D,et al.The effect of processing variables on the morphology of electrospun nanofibers and textiles[J].Polymer,2001,42,261-72.
    [111]Lee K H,Kim H Y,Khil MS,et al.Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning[J].Polymer,2003,44,1287-94.
    [112]Kim C H,Khil M S,Kim H Y,et al.Preparation and morphology of niobium oxide fibres by electrospinning[J].Biomater,2006,78B(2),283-290.
    [113]Li Z G;Lin H,Nariaki I.Study of enzymatic degradation of microbial copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3- hydroxylalkanoates [J].Polymer Degradation and Stability,2007,92,1708-1714
    [114]Erwin T H,Vinka K,Ra R,et al.Applications of life cycle assessment to Nature Works polylactide (PLA) production[J]. Polymer Degradation and Stability , 2003,80,403-419
    [115]Li S M.Grarren H. Synthesis, Properties,and Biodegradation of Poly(1,3-trimethylene carbonate) [J]. Macromolesules, 1991, 24, 1736-742.
    [116]Zhu K J. Comparison of the photochemical and thermal degradation of bisphenol-A polycarbonate and trimethylcyclohexane-polycarbonate[J]. Mater Sci Mate Med, 1991, 24(8), 17360.
    [117] He B,Bei J Z,Wang S G. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application[J]. Technology, 2003,14, 645-652.
    [118]Hoshino A, Isono Y. Microbial degradation of natural and of new synthetic polymers[J]. Biodegration, 2002,13,141-147.
    [119]Xiao Y Y,Arthur F T,Mak K Y. Comparative observation of accelerated degradation of poly(1-lactic acid) fibres in phosphate buffered saline and a dilute alkaline solution[J]. Polymer Degradation and Stability, 2002,75,45-53.
    [120] Horbett F,Schway M,Ralner B J. Hydrophilic-hydrophobic copolymers as cell substrates: Effect on 3T3 cell growth rates[J]. Colloid Interface Sci, 1985,104,28-39
    [121]WangX J,Li Y B,Wei J. Development of biomimetic nanohydroxyapatite (hexa-methlene adipamide)composites[J]. Biomaterials, 2002, 23,4787-4792.
    [122]Wang XH,Li DP,Wang W J,et al. Cross linked collagen/chitosan matrix for article lives[J]. Biomaterials, 2003, 24,3213-3221.
    [123]Sanjeeb K,Sahoo G,Amulya K. Characterization of Porous PLGA/PLA Microparticles as a Scaffold for Three Dimensional Growth of Breast Cancer Cells[J]. Biomacromolecules, 2005, 6,1132-1139
    [124]Yulia L, Janet Z, Shulamit L. Porous Polycaprolactone-Polystyrene Semi-interpenetrating Polymer Networks Synthesized within High Internal Phase Emulsions[J]. Macromolecules, 2008, 41,1469-1474
    [125]Kim B S,Mooney D J. Development of biocompatible synthetic extracellularm atrices for tissue engineering[J]. Trends in Biotechnology, 1998, 16,224-230
    [126]Youngmee J, Min Sung P, Jin W L. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-3- caprolactone). Biomaterials, 2008, 29,4630-4636
    
    [127] Sarah G, Grainne M. Human coronary artery smooth muscle cell response to a novel PLA textile/fibrin gel composite scaffold[J].Acta Biomaterials, 2008, 4, 1734- 1744.
    
    [128]Kim C H,Khil M S,Kim H Y,et al. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation[J]. Biomed Mater Res B Appl Biomater, 2006, 78B(2), 283-290.
    
    [129] Bhattarai S R,Bhattarai N,Viswanathamurthi P, et al. Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity[J]. J Biomed Mater Res A, 2006, 78A(2), 247-257.
    
    [130]Zeng J, Chen X S, Xu X Y. Ultrafine fibers electrospun from biodegradable polymer. Journal of Applied Polymer Science, 2003, 89, 227- 231
    
    [131] Deitel J M, Kleinmeyer J D,Harris D,et al. The effect of processing varialables on the morphology of electrospun nanofibers and textiles[J].Polymer, 2001,42,261-72.
    
    [132]Lee KH,Kim HY, Khil M S,Ra YM,Lee DR. Characterization of nano-structured poly(s-caprolactone)nonwoven mats via electrospining. Polymer, 2003, 44, 1287-94.
    
    [133] Liu W,Reneker D H.Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing[J].Polym, Prepr,2000, 41,1193-1194.
    
    [134] Li SM, McCarthy S. Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide) [J]. Macromolecules, 1999, 32, 4454-16.
    
    [135] Heidemanna W,Jescheit S S,Ruffieux K,et al. pH-stabilization of pre- degraded PDLLA by an admixture of water-soluble sodiumhydrogenphosphate-results of anin vitro- and in vivo-study[J]. Biomaterials, 2002, 23, 3567-3574.
    
    [136] Tokiwa Y, Jarerat A. Biodegradation of poly(L-lactide) [J]. 2004, 26, 771-777.
    
    [137]ZengJ,ChenX S,Liang Q Z. Enzymatic degradation of Poly (L-lactide) and Poly(s-caprolactone) Electrospun Fibers[J]. Macromolecular Bioscience, 2004, 4, 1118-1125.
    
    [138] Shenton M J , Lovell H M C , Stevens G C. Plasma surface modification of poly (L-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion[J].J Phys D:Appl Phys,2001,34,2754
    [139]Chen H,Georges B.Modification of P oly(3-hydroxybutyrate-co-3- hydroxylvalerate)Film by Chemical Graft Copolymerization[J].J Appl Polym Sci,1999,72,16991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700