低浓度二氧化碳高效吸附剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳是造成温室效应的主要气体之一,但工业排放的二氧化碳大部分没有充分地回收,这既加快了温室效应的速度,又浪费了大量的二氧化碳资源。因此二氧化碳的回收再资源化具有重要的科学意义和应用价值。本文针对回收氮气中低浓度二氧化碳,采用常压固定床动态吸附装置,致力于开发出高效二氧化碳吸附剂,以达到充分回收二氧化碳的目的。
     论文的实验内容包括:
     一、分子筛吸附二氧化碳的研究:考察了多种分子筛吸附剂对二氧化碳的吸附性能。详细考察了气体流量、吸附温度、床层高度及预处理等吸附条件对穿透曲线、吸附量的影响。实验结果表明:5A分子筛经铝溶胶粘合剂加工成条形后对CO2的吸附性能最佳。适当增加床层高度、低温操作都有利于对CO2的吸附,但增大入口气流速不利于分子筛对CO2的吸附。对条形5A分子筛进行300℃下加热3h预处理,可以提高其对CO2的吸附速率;氮气载水预处理会造成其孔道的堵塞而导致CO2吸附容量下降。
     二、改性条形5A分子筛对二氧化碳的吸附研究:对条形5A分子筛进行负载金属离子改性处理,详细考察了金属浸渍剂种类、浓度等因素对条形5A分子筛吸附CO2性能的影响。实验结果表面:过渡金属离子Mn4+、Cr3+、Cu2+改性条形5A分子筛均不能提高二氧化碳的吸附量。
     三、对条形5A分子筛再生后性能的研究:考察了5A分子筛经多次循环使用的再生性能,并对其进行热重分析,发现条形5A分子筛除对CO:具有较高吸附量外,还能与CO2形成较强的吸附作用,需较高温度才能完全脱除。实验结果表明:重复使用6次,5A分子筛对CO2吸附容量无明显下降;加热再生法对5A分子筛有较好的再生效果,再生时间为180min时,5A分子筛在300℃下基本完成再生。
     四、介孔分子筛SBA-15的二氧化碳吸附性能的研究:实验选用SBA-15介孔分子筛为载体,以PEI对其进行氨基修饰,考察了浸渍剂浓度、吸附温度对二氧化碳吸附性能的影响。并对其进行XRD、FTIR和热重分析。实验结果表明PEI在介孔分子筛中的最佳配比为wt50%,最佳吸附温度为48℃。最后考察了PEI/SBA-15的再生性能。结果表明:SBA-15-PEI-50的再生条件较为简单,在100℃下,以100mL/min的流量通入高纯N2即可脱附。
CO2 is one of the main greenhouse gases, but the majority of industrial output of CO2 without adequate recovery, which not only accelerate the pace of the greenhouse effect, but also waste a lot of carbon resources. So best utilization of CO2 recycling is important for scientific significance and application value. The purpose of this study is to develop efficient adsorbens for low-concentration CO2 removal from N2 steam using fixed-bed reactor. The contents of the job are listed as follows:
     1. The investigation of molecular sieve of CO2 adsorption. The adsorption capacity of different types of adsorbents has been investigated. The effect of the gas flow rate, adsorption temperature, bed height and pretreatment on the adsorption breakthrough curve, adsorption capaeity are investigated. Results show that 5A molecular sieve which is molded by aluminum sol binder has the best adsorption properties of CO2. Appropriately increasing bed thickness and low temperature operation are both conducive to the absorption of CO2. But the increased flow rate is not conducive to the absorption of CO2. The CO2 adsorption rate increases while using 5A molecular sieve heated at 300℃for 3h. Pretreatment of nitrogen containing water will cause the pore blockage of 5A molecular sieve which lead to the decrease of CO2 adsorption capacity.
     2. The study on the modified 5 A molecular sieve of CO2 adsorption.5 A molecular sieve is treated by metal ions modifieation. Some factors which may affect the adsorption capacity such as the species and the concentration of metal salts are also investigated in the fixed-bed reactor. Results show that Cu4+, Mn3+, Cr2+ modification can cause the decline of the CO2 absorption capacity.
     3. The investigation of the regeneration of 5A molecular sieve. From theTG results, we find that 5A molecular sieves are good adsorbents with high capacity as well as strong bonding with CO2. Results also show that after recycling of 5A molecular sieve for 6 times, its CO2 adsorption capacity does not decrease significantly.5A molecular sieve has effective adsorption performance after heating regeneration for 180min at 300℃.
     4. The study on CO2 absorption capacity with SBA-15 mesoporous molecular sieve. SBA-15 mesoporous molecular sieve is used as support, then PEI amino modification is investigated. The concentration of PEI as well as modification temperature are studied as the factor of CO2 absorption capacity. XRD and TG results are analyzed. Results show that the best ratio of PEI is wt50%, the optimum temperature is 48℃. Finally, the regeneration of SBA-15-PEI-50 is investigated. Results show that its regeneration condition is simple, SBA-15-PEI-50 can be regenerated at 100℃with N2 flow rate of 100mL/min.
引文
[1]李建英.二氧化碳的回收和利用[J].石油化工环境保护,2004,27(2):40-44.
    [2]陈道远.变压吸附法脱除二氧化碳的研究[D].南京:南京工业大学化学工程学院,2003.
    [3]周泽兴,等.火电厂排放CO2的分离回收和固定技术的研究开发现状[J].环境科学进展,1996,9(3):19-24.
    [4]苏毅,胡亮,刘谋盛.气体膜分离技术及应用[J].石油与天然气化工,2001,30(3):113-116.
    [5]马倩倩,孙秀雅,孟波等.二氧化碳减排技术的研究进展[J].辽宁化工,2009,38(3):176-179.
    [6]钱伯章.CO2回收和捕集技术新进展[J].研究进展,2009,5:28-32.
    [7]任相坤,崔永君,步学朋.煤化工过程中的CO2排放及CCS技术的研究现状分析[J].神华科技,2009,7(2):68-72.
    [8]曲建升,曾静静,张志强.国际主要温室气体排放数据集比较分析研究[J].地球科学进展,2008,23(1):47-54.
    [9]田牧,安恩科.燃煤电站锅炉二氧化碳捕集封存技术经济性分析[J].锅炉技术,2009,40(3):36-40.
    [10]许世森,郜时旺.燃煤电厂二氧化碳捕集、利用与封存技术[J].上海节能,2009,9:8-13.
    [11]张丽君.二氧化碳捕集与地下埋存国际进展[J].国土资源情报,2007,(11):16-21.
    [12]房昕.温室气体二氧化碳的分离回收与综合利用[J].青海环境,2009,19(1):34-38.
    [13]李玉雪.吸附脱除二氧化碳中的微量苯的研究[D].大连:大连理工大学化工学院,2009.
    [14]周锦霞.脱除二氧化碳中微量乙烯:一络合吸附剂的研究[D].大连:大连理工大学,2006.
    [15]许阳,毛玉茹.能源洁净利用与CO2排放控制技术[J].能源工程,2002,(4):11-15.
    [16]周艳欣.吸附精馏法回收二氧化碳工艺[D].天津:天津大学,2004.
    [17]殷捷,陈玉成.CO2的资源化研究进展[J].环境科学动态,1999,4:20-23.
    [18]孙正平.工业废气二氧化碳的回收利用[J].中国高新技术企业,2009,13:88-89.
    [19]王震.甲烷/二氧化碳的吸附法分离[D].天津:天津大学理学院,2005.
    [20]李小森,鲁涛.二氧化碳分离技术在烟气分离中的发展现状[J].现代化工,2009,29(4):25-29.
    [21]张慧,任红伟等.燃煤电厂中CO2的捕集[J].南京信息工程大学学报,2009,1(2):129-133.
    [22]裴克毅,孙绍增等.全球变暖与二氧化碳减排[J].节能技术,2005,23(3):239-243.
    [23]孙正平.工业废气二氧化碳的回收利用[J].中国高新技术企业,2009,13:88-89.
    [23]Freund P. International collaboration on capture, storage and utilization of greenhousegases [J].Waste Management.1997,17(5):281-287.
    [24]Yang.R.T.吸附法气体分离[M].北京.化学工业出版社,1987.
    [25]梁其煜,李式模,邵皓平.变压吸附技术的发展[J].低温工程,1997(5):7-11.
    [26]Cheng-TungChou, Chao-YuhChen.Carbon dioxide recovery by vacuum swing adsorption, Separation and Purification Technology,2004,39:51-65.
    [27]韩跃斌,王一平,边守军等.变压吸附(PSA)空气分离工艺技术进展[J].低温工程,1999,24:36-42.
    [28]王志,董传明,吕强等.PVAm/PAN复合膜的制备及其对CO2/CH4的分离性能[J].化工学报,2003,54(8):1188-1191.
    [29]Cluadia S, William J. Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking [J].Journal of Membrane Science,1999,155:145-154.
    [30]Zhang J Y, Lu J J, Liu W M, Xue Q J, Separation of CO2 and CH4 through two types of polyimide membrane[J]. Thin Solid Films,1999,340:106-109.
    [31]韩永嘉,王树立,张鹏宇.CO2分离捕集技术的现状与进展[J].天然气工业,2009,29(12):79-82.
    [32]陆建刚,郑有飞等.复合吸收剂-膜吸收分离CO2[J].石油化工,2008,37(5):475-479.
    [33]Lu J, Zhang Y, Chen M. Performance of membrane-based amino acid salt and their composite solution in absorption of CO2[J].Chemical Engineering,2008,36(9):5-10.
    [34]裴克毅.火力发电厂CO2减排技术的研究[D].哈尔滨:哈尔滨工业大学,2005.
    [35]吴克明,黄松荣等.温室气体CO2的分离回收及其资源化[J].武汉科技大学学报(自然科学版),2001,24(4):365-369.
    [36]胡林.基于多孔介质的CO2吸脱附特性的实验研究[D].重庆:重庆大学动力工程学院,2009.
    [37]李莉,袁文辉等.二氧化碳的高温吸附剂及其吸附过程[J].化工进展,2006,25(8):2-4.
    [38]王重庆,刘晓勤.表面改性活性炭对CO2的吸附性能[J].南京化工大学学报,2000(2):63-65.
    [39]马正飞,姚虎卿,时均.活性炭的微结构与吸附C02的关系[J].南京化工大学学报,1998,20(3):6-9.
    [40]张健,张永春,柏巍等.新型CO2-PSA吸附剂的性能研究[J].低温与特气,2002,20(2):26-29.
    [41]Vyas S N,.Patwardhan S R. Bulk Separation and Purification of CH4/CO2 Mixutres on 4A/13X Molecular Sieves by using pressure Swing Adsorption[J].Separation Science and Technology, 1991,26(10-11):1419-1431.
    [42]Simone C, Carlos A, Alirio E. AdsorPtion Equilibrium of Methane, Cabron Dioxide, and Nitrogenon Zeolite 13X at High pressures[J].Journal of Chemical and Engineering Data,2004, 49(4):1095-1101.
    [43]Siriwardane R V, Shen M S, Fisher Edward P, James Losch.Adsorption of CO2 on Zeolites at Moderate Temperatures[J].Energy and Fuels,2005,19:1153-1159.
    [44]符锡理.活性碳和5A分子筛的吸附特性及其在真空获得中的作用[J].低温工程.1994(1):11-17.
    [45]苗茵等.内蒙古天然沸石的吸附、交换能力及热稳定性[J].内蒙古大学学报,1996,27(2):198-202.
    [46]Harlick P J, Tezel F H. Adsorption of carbon dioxide, methane and nitrogen:pure and binary mixture adsorption for ZSM-5 with SiO2/Al2O3 ratio of 280[J]. Purif. Technol,2003, 33:199-210.
    [47]Harlick P J, Tezel F H. Adsorption of carbon dioxide, methane and nitrogen:pure and binary mixture adsorption by ZSM-5 with SiO2/Al2O3 ratio of 30[J]. Sci. Technol,2002,37(1):33-60.
    [48]Li P, Tezel F H. Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite[J]. Microporous Mesoporous Mater,2007,98:94-101.
    [49]Rutherofrd S W. Adsoprtion dynamics of carbon dioxide on a carbon molecular sieve 5A[J].Cabron.2000, (38):1339-1350.
    [50]胡逢恺,碳分子筛的制法性质和用途[J].淮北煤师院学报,2001,22(2):80-82.
    [51]李德伏,王金渠,鲍钟英.变压吸附脱除乙烯中的CO2和O2[J].石油化工,2000,29(8):574-577.
    [52]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [53]陆安慧,郑经堂.用于分离CO2/CH4的分子筛型PAN-ACF的制备和性能[J].材料研究学报,2002,16(2):188-192.
    [54]吴政,崔成民,田树盛等.强碱性离子交换纤维对二氧化碳吸附的研究[J].劳动保护科学技术,1999,19(2):25-28.
    [55]梅华,陈道远,姚虎卿等.硅胶的二氧化碳吸附性能及其与微孔结构的关系[J].天然气化工,2004,29(5):12-15.
    [56]Song H K, Cho K W. Adsorption of carbon dioxide on the chemically modified silica adsorbents[J]Journal of Non-Crystalline Solids,1998,242:69-80.
    [57]Zhang Z X, Guan J, YE Z H.Separation of a Nitrogen-Carbon Dioxide Mixture by Rapid Pressure Swing Adsorption[J].Adsorption.1998,4:173-177.
    [58]Okunev A G, Sharonov V E. Aristov et al.Sorption of carbon dioxide from wet gases by K2CO3-in-porous matrix[J].Nature.2000,71(2):355-362.
    [59]Kresge C T, Leonowicz M E, Roth W J,et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359(22):357-710.
    [60]Xu X, Song C, Andresen J M, et al. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture [J]. Energy Fuels,2002, 16:1463-1469.
    [61]Xu X, Song C, Andresen J M, et al. Preparation and characterization of novel CO2"molecular basket"adsorbents based on polymer-modified mesoporous molecular sieve MCM-41[J]. Microporous Mesoporous Mater,2003,62:29-45.
    [62]Yue M B, Chun Y, Cao Y, et al. CO2 capture by as-prepared SBA-15 with an occluded organic template [J]. Adv Funct Mater,2006,16:1717-1722.
    [63]Yue M B, Sun L B, Cao Y, et al. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine [J]. Chem Eur J,2008,14:3442-3451.
    [64]Khatri RA, Chuang S S C, Soong Y,et al.Carbon dioxide capture by diamine-grafted SBA-15:A combined fourier transform infrared and mass spectrometry study[J].Ind Eng Chem Res,2005,44(10):3702-3708.
    [65]Ming B Y, Yuan Ch, Yi C, et al. CO2 Capture by asprepared SBA-15 with an occluded organic template [J]. Adv Funct Mater,2006,16(13):1717-1722.
    [66]赵会玲,胡军,汪建军等.介孔材料氨基表面修饰及其对CO2的吸附性能[J].物理化学学报,2007,23(6):801-806.
    [67]熊振湖,费学宁,池勇志.大气污染防治技术及工程应用[M].北京:机械工业出版社,2003.
    [68]赵毅,李守信编.有害气体控制工程[M].北京:化学工业出版社,2001:20-183.
    [69]胡将军.改性活性炭纤维对甲醛吸附性能的试验研究[D].武汉人学硕士学位论文,2003:11-12.
    [70]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.
    [71]Rolando Roque-Malherbe.Complementary approaeh to the volume filling theory of adsorption in zeolites[J]. Mieroporous and Mesoporous Materials,2000 (41):227-240.
    [72]Jale, Martin, Frank R, et al. Monte Carlo Simulation of sorption equilibria for nitrogen and oxygen on LiLSX zeolite[J].J.Phys.Chem,2000,104(22):5272-5280.
    [73]夏明珠,严莲荷,雷武等.二氧化碳的分离回收技术与综合利用[J].现代化工,1999,19(5):46-48.
    [74]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005:402-433.
    [75]姜兆波.高炉煤气中二氧化碳的分离回收研究[J].科技资讯,2007,9:37-40.
    [76]Tan Z, Gubbinsk E. Aborption in carbonmicropores at supercritical temperature [J]. J Phys Chem, 1990,94(5):6061-6069.
    [77]邹勇,吴肇亮,陆绍信等.微孔炭质吸附剂吸附贮存天然气的最佳孔径研究[J].石油与天然气化工,1997,26(1):15-16.
    [78]任岳荣.铝溶胶的结构、特性及其应用[J].无机盐工业,1989(1):30-33.
    [79]黄振兴编.活性炭技术基础[M].北京:兵器工业出版社,2006:429-430.
    [80]徐晓亮,赵兴祥,蒋文娟等.聚乙烯亚胺改性MCM-48的制备及其CO2吸附性能的研究[J].石油与天然气化工,2009,38(6):469473.
    [81]Wang L F, Ma L,Wang A Q,et al. CO2 Adsorption on SBA-15 Modified by Aminosilane [J]. Chin J Catal,2007,28(9):805-810.
    [82]Marler B, Oberhagemann U, Vortmann S, et al. Influence of the sorbate type on the XRD peak intensities of loaded MCM-41[J]. Microporous Mater,1996,6:375-383.
    [83]Hammond W, Prouzet E, Mahanti S D, et al. Structure factor for the periodic walls of mesoporous MCM-41 molecular sieves[J]. Microporous Mesoporous Mater,1999,27:19-25.
    [84]Sauer J, Marlow F, SchRth F. Simulation of powder diffraction patterns of modified ordered mesoporous materials [J]. Phys Chem Chem Phys,2001,3:5579-5584.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700