微尺度下含能材料的燃烧与推进原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研制高性能的固体化学微推进器,本文主要研究了微尺度下固体含能材料的燃烧特性及机理,微推进器的作功特性及其结构设计。
     利用高速摄影技术研究了B/KNO3在微细石英管中燃烧时,燃速随圆管管径、燃烧室压强、圆管壁厚及管壁热传导系数的变化;建立了微细圆管内固体含能材料的燃烧传热模型,分析了圆管管径、壁厚及管壁热传导系数对热损失和燃烧稳定性的影响机理和规律。研究表明:圆管管径越小、燃烧室压强越小、管壁热传导系数越大,燃烧越不稳定;管壁热传导系数较小时,燃速随壁厚增加而增大;管壁热传导系数较大时,燃速随壁厚增加而减小;当壁厚增加到一定值时,壁厚对燃烧影响趋于稳定。
     基于单摆原理测试分析了不同推进剂的作功性能随微推进器单元药室直径的变化规律。研究表明:相同药剂时,推力、冲量均随药室直径增加而增大;相同药室直径时,斯蒂酚酸铅类的推力较大、冲量较小,硝酸肼镍类的推力较小、冲量较大。
     建立了微推力计算模型,分析了微喷管结构对推进性能的影响。0.1MPa环境压强下,微喷管存在一个最佳的出口扩张比;真空环境中,推力随出口扩张比增加而不断增大。
     建立了化学微推进器阵列单元燃烧传热的数学物理模型和热应力有限元模型,计算分析了微推进阵列药室的结构和力学性能。结果表明:药室材料热传导系数越小、药剂燃烧时间越短,阵列集成度越高;药室孔边处热应力及变形量最大,是结构中最薄弱的环节;药室直径越大、药室单元间距越小、燃气温度越高、作用时间越长,阵列结构中热应力及变形量就越大,越易造成结构的破坏。
In order to development high performance solid chemical micro-thruster, characteristics and mechanisms of solid energetic materials combustion in microscale as well as work characteristics and structure design of micro-thruster were investigated by this dissertation.
     Change of Burning rate of B/KNO3 varied with tube diameters, combustor pressures, wall thicknesses and wall thermal conductivities in microscale quartz tubes were obtained by the high-speed photography. Based on the mechanisms of combustion and thermal conduction, a model describing the process of combustion and thermal conduction of solid energetic materials burnt in a microtube was established. With the help of this model, effects and mechanisms of micro-tube dimensions, wall thicknesses and wall thermal conductivities on thermal loss and combustion stability were obtained by numerical simulation. Results show the stability was decreased with decreasing tube diameters, combustor pressures, and increased with decreasing wall thermal conductivities. When wall thermal conductivity was smaller, buring rate was increased with increasing wall thicknesses. In contrary, buring rate was decreased with increasing wall thickness. However, when the wall thickness reach a certain value, effects of wall thicknesses on combustion tended to stability.
     Change laws of work performance of different propellants varied with different chamber diameters were tested and analyzed by Simple Pendulum Principle. Results show thrust and impulse were increased with increasing chamber diameters in the same propellant. Lead styphnate species had large thrust and impulse, and nickel hydrazine nitrate species had small thrust and impulse in the same chamber diameters.
     A model describing thrust of micro-thruster was established, and effects of micro-nozzle structures on performance of micro-thruster were obtained by calculation. Results show micro-nozzle had a optimal exit expansion ratio under 0.1 MPa pressure. Thrust was increased with increasing exit expansion ratio of micro-nozzle in vacuo.
     A one-dimensional finite difference model describing the process of combustion and thermal conduction, as well as finite element model of micro-thruster array were established respectively. With the help of these methods, structures and mechanical Properties of micro-thruster cell were analyzed by numerical calculation and simulation. Results show larger heat conductivity, longer combustion time led to less micro-thruster cells on a same area.
     The maximum value of equivalent thermal stress and thermal deformation were located on edge of chamber hole, which were the brittle parts on micro-thruster chamber. Due to the thermal stress and thermal deformation, the structure of array are more easily damaged with the increasing combustion gas temperature, action time and chamber diameters, and decreasing cell spacing.
引文
[1]史铁林,钟飞,何涛.微机电系统及其应用.湖北工业大学学报[J],2005,20(5):1~5
    [2]林忠华,胡国清,刘文艳等.微机电系统的发展及其应用[J].纳米技术与精密工程,2004,6(6):117~123
    [3]余丹铭,梁利华,许杨剑.微电子机械技术的研究和发展趋势[J].电子机械工程,2005,21(1):5~9
    [4]徐丰,潘剑锋,薛宏等.基于MEMS的微动力系统的发展动态[J].机械与电子,2007,6:3~6
    [5]匡龙,卫尧,吴建.微动力机电系统研究开发以及面临的问题[J].河南科技大学学报(自然科学版),2004,25(5):25~29
    [6]Yang W M, Chou S K, Shu C 1, et al. Microscale combustion research for application to microthermo-photovoltaic systems [J]. Energy Conversion and Management,2003,44(16): 2625~2634
    [7]尤政,林杨,张高飞.基于微机电系统的微推进发展新趋势[J].中国航天,2005,6:12~15
    [8]Epstein A H, Senturia S D. Macro power from micro machinery[J]. Science,1997,26: 1211.
    [9]Kelvin Fu. Design and fabrication of a silicon based MEMS rotary engine[C]. Proceedings of 2001 ASME International Mechanical Engineering Congress and Exposition, New York, NY,2001:11~16
    [10]黄俊,潘剑锋,唐维新等.微热光电系统中柱型燃烧室的试验[J].农业机械学报,2006,37(3):119~122
    [11]潘剑锋,李德桃,杨文明等.微热光电系统燃烧器的研究[J].中国机械工程,2005,16(6):527~529
    [12]王哲津,石荣,王连卫.微型直接甲醇燃料电池研究进展[J].节能环保,2006,8:26~28
    [13]林才顺,王新东,王淑燕等.微型直接甲醇燃料电池的研究现状及进展[J].湿法冶金,2007,26(1):22~24
    [14]马立志,沈瑞琪,叶迎华.国外几种新型微化学推力器[J].上海航天,2003,3:39-43
    [15]David H, Siegfried W, Ronald B, et al. Digital micropropullsion[J]. Sensors and Actuators A Physical,2000,80(2):143~154
    [16]尤政,张高飞,任大海.MEMS微推进技术的研究[J].纳米技术与精密工程,2004, 2(2):98~105
    [17]Daniel W Youngner, Son Thai Lu, Edgar Choueiri, et al. MEMS megapixel microthruster arrays for small satellite stationkeeping[C].14th Annual AIAA/USU Conference on Small Satellites, Logan, Utah,2001:1~8
    [18]尤政,张高飞.基于MEMS的微推进系统的研究现状与展望[J].微细加工技术,2004.1:1~8
    [19]徐超.MEMS固体微推进器的设计与制备[D].长沙:国防科学技术大学,2006
    [20]李兆泽.MEMS固体微推进器的设计与制作[D].长沙:国防科学技术大学,2006
    [21]马立志.化学微推力器装药及其推力性能研究[D].南京:南京理工大学,2003
    [22]尤政,张高飞,林杨等.MEMS固体化学推进器设计与建模研究[J].光学精密工程,2005,13(2):117~126
    [23]Davy H. Some researches on flame[J]. Transactions of the Royal Society of London, 1817,107:45~76
    [24]黄显峰,赵黛青,张春林等.微尺度扩散火焰特性的数值解析[J].工热物理学报,2005,26(5):883~886
    [25]Waitz I A, Gauba G, Tzeng Y S T. Combustors for micro-gas turbine engines ASME[J]. Journal of Fluids Engineering,1998,120:109~117
    [26]刘茂省,杨卫娟,周俊虎等.H2/空气预混燃烧模拟计算和散热的研究[J].燃烧科学与技术,2008,14(3):259~264
    [27]张永生,周俊虎,杨卫娟等.T型微细管道内氢气空气预混燃烧实验研究[J].中国电机工程学报,2005,25(21):128~131
    [28]李军伟,钟北京.微细直管内甲烷/氧气燃烧的实验和数值模拟[J].清华大学学报(自然科学版),2007,47(8):1370~1374
    [29]Li Junwei, Zhong Beijing. Experimental investigation on heat loss and combustion in methane/oxygen micro-tube combustor[J]. Applied Thermal Engineering,2008,28:707~716
    [30]Pan J F, Huang J, Li D T. Effects of major parameters on micro-combustion for thermophotovoltaic energy conversion[J]. Applied Thermal Engineering,2007,27: 1089~1095
    [31]Veeraragavan A, Cadou C. Experimental investigation of influence of heat recirculation on temperature distribution and burning velocity in a simulated micro-burner[C].45th AIAA Aerospace Sciences Meeting and Exhibit, Aamerica,2007
    [32]Timothy T Leach, Christopher P Cadou, The role of structural heat exchange and heat loss in the design of efficient silicon micro-combustors[J]. Proceedings of the Combustion Institute,2005,30:2437~2444
    [33]Norton D G, Vlachos D G. Combustion characteristics and flame stability at the microscale:a CFD study of premixed methane/air mixtures[J]. Chemical Engineering Science, 2003,58:4871~4882
    [34]张永生,周俊虎,杨卫娟等.微燃烧稳定性分析和微细管道燃烧实验研究[J].浙江大学学报(工学版),2006,40(7):1178~1182
    [35]蒋利桥,赵黛青,汪小憨.微尺度甲烷扩散火焰及其熄灭特性[J].燃烧科学与技术,2007,13(2):183~186
    [36]Vlachos D G, Schmidt L D, Aris R. Ignition and extinction of flames near surfaces: Combustion of H2 in air[J]. Combustion Flame,1993,95:313~335
    [37]Vlachos D G, Schmidt L D, Aris R.Ignition and extinction of flames near surfaces: Combustion of CH4 in air[J]. A.I.Ch.E.Journal,1994,40(6):1005~1017
    [38]王子庚.激光点火过程中介质效应研究[D].南京:南京理工大学,2007
    [39]祝明水,龙新平,蒋小华等.B/KNO3燃烧性能参数计算[J].兵工学报,2005,26(3):320~322
    [40]祝明水,何碧,蒋明等.B/KNO3药柱燃烧速度的初步研究[J].含能材料,2008,16(2):204~206
    [41]周俊虎,汪洋,杨卫娟等.燃烧器材料的热物理性质对微尺度催化燃烧的影响[J].中国电机工程学报,2010,30(5):11~16
    [42]刘志刚,赵耀华.微型管内流动特性的实验研究[J].工程热物理学报,2005,26(5):835~837
    [43]张颖,王蔚,田丽等.微流动的尺寸效应[J].微纳电子技术,2008,45(1):33~37
    [44]王秋军,徐红玉,宋亚勤等.微尺度热传导理论及金属薄膜的短脉冲激光加热[J].微纳电子技术,2003,11:18~23
    [45]胡艳,叶迎华,沈瑞琪.激光点火过程的一维有限差分模拟[J].激光技术,2001,25(5):331~334
    [46]温秉权,黄勇.非金属材料手册[M].北京:电子工业出版社,2006
    [47]Jinsong Hua, Meng Wu, Kurichi Kumar. Numerical simulation of the combustion of hydrogen-air mixture in micro-scaled chambers.Part I:Fundamental study[J]. Chemical Engineering Science,2005,60:3497~3506
    [48]王沫然,陈泽敬,李志信.微喷管内流动和换热的数值模拟与分析[J].微纳电子技术,2003,7:61~64
    [49]叶迎华,沈瑞琪,肖贵林等.微化学推力器推力测试技术研究[J].火工品,2006,1:25~28
    [50]琚春光,刘宇.塞式喷管推力模型的建立与实验验证[J].航空学报,2007,28(4): 821~826
    [51]陆昌根,邵山.三维不可压缩N-S方程的紧致有限差分和Fourier谱方法[J].河海大学学报,2001,29(4):63~67
    [52]萨顿,比布拉兹.火箭发动机基础[M].北京:科学出版社,2003
    [53]董师颜,张兆良.固体火箭发动机原理[M].北京:北京理工大学出版社,1996
    [54]Sutton G P. Rocket propulsion elements an introduction to the engineering of rockets, sixthed[C]. Wiley/interscience, New York,1992
    [55]Lewis D H, Janson S W, Cohen R B, et al. Digital micro propulsion[C]. The 12th IEEE Int Conf on Micro Electro Mechanical Systems,1999,517~522
    [56]张高飞,尤政,胡松启等.基于MEMS的固体推进器阵列[J].清华大学学报(自然科学版),2004,44(11):1489~1492
    [57]Evgenii B, Rudnyi, Tamara Bechtold, et al. Solid propellant microthuruster:theory of operation and modeling strategy[C]. Nanotech 2002-at the edge of revolution AIAA paper 2002~5735, Houston, USA,2002
    [58]Rossi C, Esteve D.Micropyotechnics, a new technology for marking energetic Microsystems:review and prospective[J]. Sensors and Actuators A,2005,120:297~310
    [59]Makino E, Shibata T, Yamada Y. Micromaching of fine ceramics by photolithography [J]. Sensors and Actuators A,1999,75(3):278~288
    [60]Tamara Bechtold, Evgenii B, Rudnyi, et al. Automatic order reduction of thermo-electric modle for micro-ignition unit[C]. Simulation of Semiconductor Processes and Devices,2002
    [61]陈义良,张孝春,孙慈等.燃烧原理[M].北京:航空工业出版社,1992
    [62]王伯羲,冯增国,杨荣杰.火药燃烧理论[M].北京:北京理工大学出版社,1997
    [63]周霖,刘鸿明,徐更光.炸药激光起爆过程的准三维有限差分数值模拟[J].火炸药学报,2004,27(1):16~19
    [64]张杏芬.国外火炸药用原材料性能手册[M].北京:兵器工业出版社,1991
    [65]何赞.微推进器结构与制作工艺研究[D].南京:南京理工大学,2008
    [66]刘国栋,罗福,王贵兵.飞秒激光辐射下硅薄膜的非傅里叶能量输运研[J].高压物理学报,2007,21(2):183~187
    [67]智友海,史向平,刘永寿等.SMA管接头系统的蠕变及热应力分析[J].强度与环境,2009,36(3):59~64
    [68]Polyakov A, Bartek M, Burghartz J N. Area-Selective adhesive bonding using photosensitive BCB for WLCSP applications [J]. Journal of Electronic Packaging,2005,127: 7-11
    [69]龙激波,李念平.外墙保温结构的热应力损坏分析[J].建筑热能通风空调,2008,
    27(2):81~98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700