沼气发酵复合菌系及其在牛粪厌氧发酵中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以自然沼液为接种物,利用限制性培养技术,构建得到1组35℃下遗传稳定、产甲烷量高的沼气发酵复合菌系。利用16S rDNA克隆文库技术研究了该复合菌系的菌种组成多样性,并通过单因素试验和正交试验获得了该复合菌系的最佳培养条件。以该沼气发酵复合菌系为接种物,研究了在20L发酵体系中不同的接种量、物料浓度对沼气发酵的影响。同时,还对牛粪中不同N、P、K浓度对厌氧发酵产气的影响进行了研究。
     1、继代培养结果表明,该复合菌系经过26代的培养能够稳定产气,各代间的产气情况和产气量差别不大。以该复合菌系作为接种物,10%的接种量接种于TS为5%的100mL沼气培养装置中,最高日产气量为1.6m3·m-3·d-1,最高日产甲烷量可达1.5 m3·m-3·d-1。通过单因素试验和正交试验得出该复合菌系以牛粪为底物最佳的发酵条件为接种量5%,TS为10%,培养温度35℃,pH自然。
     2、利用16S rDNA克隆文库技术对复合菌系菌种组成多样性分析可知,该复合菌系中产甲烷古菌主要由甲烷袋状菌属(Methanoculleus sp.)、甲烷八叠球菌属(Methanosarcina mazeii)、产甲烷古菌(methanogenic archaeon)、广域古菌(Euryarchaeote)组成;细菌主要由消化球菌(Peptococcaceae bacterium)、拟杆菌属(Bacteroides sp.)、真杆菌(eubacterium)、纤维杆菌(Fibrobacteres bacterium)、假单胞菌属(Pseudomonas sp.)、梭菌属(Clostridium sp.)、氨基杆菌(Aminobacterium colombiense)、月形单胞菌属(Selenomonas sp.)及未培养细菌(Uncultured bacterium)组成,说明该复合菌系是由多种功能不同的微生物类群组成且具有很高的多样性。
     3、沼气发酵复合菌系在20L发酵体系中的试验结果表明,15%的接种量处理组总产气量最高,且总产甲烷量分别比5%、10%的处理组高37.4%和34.5%。5%的接种处理组的总产气量、总产甲烷量比对照提高3.1%和11.8%。综合考虑甲烷产生的时间、最高含量和总产甲烷量,放大培养的适宜接种量范围为15%。底物不同浓度试验表明TS为10%的底物浓度产气效果最好。
     4、初始发酵料液中氮、磷、钾含量对沼气发酵产气影响较大,在底物氮、磷、钾浓度的基础上提高1倍的处理总产气量分别比基础试验组、二倍添加量试验组、三倍添加量试验组高2.4%、78.2%、78.7%,总产甲烷量分别比基础试验组、二倍添加量试验组、三倍添加量试验组高7.3%、96.4%、99.6%,提高2倍和3倍的处理接种后12h后产气,但3d后产气停止,气体中甲烷含量极低。
A microbial community capable of biogas production with genetic stability was enriched from biogas slurry with the method of limited culture at 35℃. The microbial diversity was detected using 16S rDNA clone technology. The optimum cultural conditions of microbial community were investigated with the methods of single factor analysis and orthogonal test analysis. Effects of different quantities of inoculation, materiel concentrations on biogas production were investigated in the fermentation system of 20L. The effects of initial concentration of nitrogen, phosphorus and potassium increased to one, twice and trible times compared with control were researched on biogas production.
     The limited culture results showed that biogas production of each subculture was stabile after 26 subcultures, and the maximum daily biogas production and methane production was 1.6 m3·m-3·d-1 and 1.5 m3·m-3·d-1 under the condition of 100 mL volume of fermentation system, 5% total solid and 10% of inoculation of microbial community. The results of single factor analysis and orthogonal test analysis showed that the optimum cultural conditions of microbial community for biogas production using the cattle manure as the material were 5% of inoculation quantity, 10% of concentration of substrate,natural pH and temperature 35℃.
     The microbial diversity of microbial community was analyzed using 16S rDNA molecular clone technology. The results showed that archaebacteria group was composed with Methanoculleus sp., Methanosarcina mazeii, methanogenic archaeon, Euryarchaeote. Bacterial group was composed with Peptococcaceae bacterium, Bacteroides sp., Eubacterium, Fibrobacteres bacterium,Pseudomonas sp., Clostridium sp., Aminobacterium colombiense, Selenomonas sp. and uncultured bacterium. Therefore the microbial community was composed of different archaebacteria and eubacteria, it had a high microbial diversity.
     The results of experiment of diffrernt inoculum quantities showed that the biogas production of treatment of 15% inoculum (V/V) was the highest, and the total methane production was higher 37.4% and 34.5 % compared with treatments of 5% and 10% inoculum. Total biogas production and total methane production of 5% inoculum treatment were higher 3.1% and 11.8% compared with control. The optimum inoculation quantity of scale-up culture is 15% comprehensively considering the biogas production time, the maximum biogas production level, and the total production level of methane. At the same time, the treatment of 10% TS of substrate concentration was the optimum for biogas production.
     The initial concentration nitrogen, phosphorus, and potassium of feed solution significantly effected biogas production. The total biogas production of the treatment that the total content of nitrogen, phosphorus, and potassium were increased one time more than basic concentration was improved 2.4%, 78.2%, 78.7% compared with basic content treatment, two time treatment and three time treatment, respectively. Futhermore, the methane production of one time content treatment was increased 7.3%, 96.4% and 99.6% compared with other treatments, respectively. The some gas was producted in treatments of twice and trible times more than basis nitrogen, phosphorus, and potassium concentration after inoculated 12 hours, but the methane almost was not detected among the gas ingredients.
引文
[1]颜丽,刘膺虎,梅自力.我国大中型沼气工程现状及发展前景探讨[J].中国沼气,1996,14(1):19-22.
    [2]王伟东.木质纤维素快速分解复合菌系及有机肥微好养新工艺[D].北京:中国农业大学,2005.
    [3]王丽丽,梁俊爽,王忠江.黑龙江厌氧技术处理畜禽粪便现状及发展方向探讨[J].东北农业大学学报,2006,37(2):283-288.
    [4]刘元岐,王崇理,陈利君.新世纪的云南能源[M].昆明:云南人民出版社,2002.
    [5]蒋剑春.生物质能源应用研究现状与发展前景[J].林产化学与工业,2002,22(2):75-80.
    [6]石元春.发展生物质产业[J].农机科技推广,2005,4:4-6.
    [7]孙永明,袁振宏,孙振钧.中国生物质能源与生物质利用现状与展望[J].可再生能源,2006,(2):79-83.
    [8]田宜水.中国农业生物质能发展战略思考[J].中国能源,2006,28(9):22-24.
    [9]戴向荣,蒋立科,罗曼.发展农村生物质能的设想与建议[J].世界农业,2006,7:56-59.
    [10]周公乐.发展生物质能源,林业在行动——专访国家林业局植树造林司司长、国家林业局林木生物质能源办公室主任魏殿生[J].绿色中国,2006,1:36-39.
    [11] Zeeman G, Sutter K, Vens T, et al. Psychrophilic digestion of dairy cattle and pig manure: start-up procedures of batch, fed-batch, and CSTR-type [J]. Digesters Biological Wastes, 1988, 15-31.
    [12]刘建敏.农村家用沼气发酵工艺参数的优选研究[D].重庆:西南大学,2006.
    [13]匀姚燕.利用畜禽粪便为原料生产优质厌氧发酵液工艺条件的研究[D].河南:河南农业大学,2003.
    [14]徐曾符.沼气工艺学[M].北京:农业出版社,1981,7-8.
    [15] Hessami K, Mirakbar Y, Christensen H, et al. Anaerobic digestion of household organic waste to produce biogas [J]. Renewable Energy, 1996, 9(4):954-957.
    [16] Ahring BK, Angelidaki I, Johansen K. Anaerobic treatment of manure together with industrial waste [J]. Water science and technology, 1992, 25(7):311-318.
    [17] Robert DB, James GF. Methanogenesis [C]. In.: encyclopedia of life sciences. New York: Nature Publishing Group, 2001.
    [18]周德庆.微生物学教程(第二版)[M].北京:高等教育出版社,2002.
    [19] Zuru AA, Dangoggo SM. Adoption of thermogravimetric kinetic modls for kinetic analysis of biogas production [J]. Renewable Energy, 2004, 29(1):97-107.
    [20] Varani FT, Burford JJ. The conversion of feedlot wastes into pipeline gas [C]. In: Fuels from waste. New York: Academic Press, 1977, 87-104.
    [21] Henry M, Varaldo C. Anaerobic digestion treatment of chemical industry waste waters at the Cuise- Lamathoise plant of Societe Francaise Hoechst. In: Proceedings of the Fifth International Symposium of Anaerobic Digestion [C]. Italy: Anaerobic digestion. 1988, 1-480.
    [22] Wright AJ. Methane digesters: waste into energy [J]. Sun World, 1982, 6(2):8–34.
    [23] Hashimoto AG, Chen Y, Varel VH. Theoretical aspects of methane production: state-of-the-art[C]. In:Proceedings of the International Symposium in Livestock Waste. Texas: Livestock waste-a renewable resource, 1988, 86-90.
    [24] Stams AM. Metabolic interactions between anaerobic bacteria in methanogenic environments[J]. Antonie Van Leeuwenhoek, 1994, 66:271-294.
    [25] Xiu ZD, Stams AJM. Evidence for H2 and formate formation during syntrophic degradation of butyrate and propionate degradation[J]. Enviroment Microbilogy, 1995, 1:35-39.
    [26]赵由才,宋立杰.固体废弃物污染控制原理与资源化技术[M].北京:化学工业出版社,2002,482-503.
    [27]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004.
    [28]董玉平,王理鹏,等.国内外生物质能源开发利用技术[J].山东大学学报(工学版),2007,37(3):64-69.
    [29]颜丽,邓良伟,任颜笑.聚焦中德沼气产业发展现状[J].产业论坛新能源产业,2007,39-43.
    [30]倪慎军.政策支持法律保障德国沼气工程发电成气候—关于德国沼气发电技术应用的考察报告[J].河南农业,2005,(2):26-27.
    [31] Mata-Alvarez J, Cecchi F, Pavan P, et al. The performance of digesters treating the organic fraction of municipal solid wastes differently sorted [J]. Biological Wastes, 2000, 33:181-199.
    [32] Ghash S, Henry MP, Sajjad A et al. Pilot-Scale gasification of municipal solid wastes by high-rate and two-phase anaerobic digestion(TPAD) [J]. Water Science and Technology, 2000, 41(3):101-110.
    [33] Saint-Joly C, Desbois S, Lotti JP. Determinant impact of waste collection and composition on anaerobic digestion performance: industrial results [J]. Water Science and Technology, 2000, 41(3):291-297.
    [34] Meyer DJ. Making electricity from manure [J]. Biocycle, 2003, 44(1):52-55.
    [35] Kramer JM, Kuzel FJ. Farm-scale anaerobic digesters in the great larges states [J]. Biocycle, 2003, 44(2):58-61.
    [36] Sodikin E. Possibility of fusing biomass as renewable energy source in South Sumatra (A) Tropeulandwirt [J]. Beiheft, 2001, 73:131-135.
    [37] Wang KJ. Integrated anaerobic and aerobic treatment of sewage konink like biblio theek[J]. Den Haag, 1994, 1-32.
    [38] Lettinga G, et al. The application of anaerobic treatment to industrial pollution treatment[J]. Anaerobic Digestion, 1979, 167-186.
    [39] McCarty PL. Historical trends in the anaerobic treatment of dillute wastewater, In: Proc. of Sem inar/Workshop [J]. Anaerobic Treatment of Sewage, 1985, 3-16.
    [40]肖本益.UASB反应器的启动及厌氧颗粒污泥的特性研究[D].天津:轻工业学院,2002.
    [41]王怡,张引中.UASB常温预处理市政污水的试验研究[D].西安:西安建筑科技大学,2008.
    [42]钱晓吾,李江云,陈炜.农村户用低压盒式沼气压力表的研制[J].中国沼气,1994,4(12):15-18.
    [43]李涛.内循环膜生物反应器及其在污水回用处理中的应用研究[D].天津:天津大学,2004,12.
    [44] Speece RE. Anacrobic digestion of biomass[M]. USA: Elsevier Applied Science Pub, 1987.
    [45]张希衡.废水厌氧生物处理工程[C].北京:中国环境科学出版社,1996.
    [46]刘咏莲,曲福田,姜海.江苏省农村居民点用地整理潜力的评价分级[J].南京农业大学学报:社会科学版,2004,4(4):18-23.
    [47]赵洪,邓功成.pH值对沼气产气量的影响[J].安徽农业科学,2008,36(19):8216-8217,8330.
    [48] Chen RL. Shrinking-bed model for percolation process apple to dilute-acid pretreatment hydrolysis of cellulosic biomass [J]. Applied Biochemisty and Biotechnology, 1998, 70:37-50.
    [49] Rimkus PP, Ryan JM, Cook EJ. Full-scale thermophilicdigestion at the West-Southwest sewage treatment works Chicagol llinois [J]. Journal of Water Pollution Control Federation, 1982, 54: 1447-1457.
    [50] Ghost S, Taylor DC. Kraft-mill biosolids treatment by conventional and biphasic fermentation[J]. Water Science and Technology, 1999, 40(11-12):169-177.
    [51]卢旭珍.动植物生产废弃物厌氧消化工艺研究[D].陕西:西北农林科技大学,2004.
    [52]戴林.中国生物质能转换技术发展与评价(第一版)[M].北京:中国环境科学出版社,1998,1-20.
    [53]屠云璋.沼气产业2002年度发展报告[J].中国沼气,2003,21:11-20.
    [54]张朝晖,王虎,刘玉凤,等.户用沼气系统建设现状评析[J].杨凌职业技术学院学报,2003,3:34-37.
    [55]王学涛.新型高效户用沼气发酵装置试验研究[D].郑州:河南农业大学,2002.
    [56]方治华,柯益华,郝晓刚.UASB反应器处理制药废水及其颗粒污泥形成条件的研究[J].中国沼气,1991,9(3):1-50.
    [57]徐洁泉,胡伟,汤玉珍,等.低温和近中温猪粪液厌氧处理的装置比较研究[J].中国沼气,1997,15(2):7-130.
    [58]吴静,陆正禹,胡纪萃,等.新型高效内循环(IC)厌氧反应器[J].中国给排水,2001,17:26-29.
    [59]杨秀山,周孟津.上流式厌氧污泥床处理豆制品废水启动研究[J].中国沼气,1995,13(1):12-14.
    [60]陆清忠,邓功成,等.农村沼气池接种低温驯化沼气发酵微生物试验[J].现代农业科学,2009,5:268-271.
    [61]闵航,谭玉龙,吴伟祥,等.一个厌氧甲烷氧化菌菌株的分离、纯化和特征研究[J].浙江大学学报(农业与生命科学版),2002,28(6):619-624.
    [62] Bnaik S, Nnad IR. Eeffet of supplementation of rice straw with biogas residual sluyrr manure on the yield, poretin and mineral contents of oyster mushoorm [J]. Industrial Crops and Products, 2004, 20(3): 311-319.
    [63] Balasubrmanaian PR, Kasturi BR. Reeycling of cattle dung, biogas Plant-effluent and water hyacinth in Vemriculutre [J]. Bioresource Technology, 1995, 52(l):85-87.
    [64]杨贵明.沼气发酵肥料及其在蔬菜设施栽培中的应用[J].北方园艺,2004,6:24.
    [65]曾邦龙.上海市畜禽场粪污治理沼气工程及资源综合利用[J].中国沼气,2000,l8(3):31-33.
    [66]邓良伟.规模化猪场粪污处理模式[J].中国沼气,2001,19(1):29-33.
    [67]邱凌,王兰英,杨鹏.农村沼气工程动态发酵工艺的调控[J].可再生能源,2005,119:47-49.
    [68]高艳娇,赵树立,刘舰.两相厌氧工艺的研究进展[J].工业安全与环保,2006,32(1):24-25.
    [69]郭永福,郭维华.厌氧UASB反应器中新型三相分离器的实验研究[J].苏州科技学院学报(工程技术版),2003,16(12):29-31.
    [70]陈灏,唐小树.不经培养的农田土壤微生物种群构成及系统分类的初步研究[J].微生物学报,2002,42(4):478-483.
    [71] Lanthier M, Juteau P, Lepine F, et al. Desulfitobacterium hafniense is present in a high proportion within the biofilms of a high-performance pentachlorophenol-degrading, methanogenic fixed-film reactor [J]. American Society for Microbiology, 2005, 71(2):1058-1065.
    [72] Oved T, Shaviv A, Goldrath T, et al. Influence of effluent irrigation on community composition and function of ammonia-pxidizing bacteria in soil [J]. Applied and Environmental Microbiology, 2001, 67(8):3426.
    [73]杜静,常志州,王世梅,等.不同底物沼气干发酵启动阶段的产酸特征研究[J].江苏农业科学,2008,1:225-227.
    [74]周孟津.沼气发酵原理及工艺[J].太阳能,1993,3:20-22.
    [75]廖连华.一株厌氧中温纤维素分解菌的分离和鉴定[J].中国沼气,1986,3(11):211-216.
    [76]刘聿太,王大耜.产氢产乙酸菌与产甲烷菌互养培养物的分离[J].中国沼气,1987,5(3):8-11.
    [77]赵宇华,钱泽澎.硬脂酸降解菌与嗜氢产甲烷杆菌共培养物的研究[J].浙江大学学报(农业与生命科学版),1991,17(l):75-79.
    [78]李建政,刘枫,郭小宇,等.一株产氢产乙酸菌的生长条件及产乙酸特性[J].科技导报,2008,26(5):26-30.
    [79]李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性[J].微生物学报,2008,48(3):323-329.
    [80]李亚冰.兼性厌氧纤维素酶产生菌的筛选及在沼气发酵中的应用[D].河南:河北工业大学,2009.
    [81]单丽伟,冯贵颖,范三红.产甲烷菌研究进展[J].微生物学杂志,2003,23(6):42-46.
    [82]郝鲜俊,洪坚平,高文俊.产甲烷菌的研究进展[J].贵州农业科学,2007,35(1):111-113.
    [83]孙征,周宇光,东秀珠.一个甲烷杆菌新种的描述和系统分类学研究[J].微生物学报,2001,3(41):265-269.
    [84] Simankova MV, Kotsyurbenko OR, Lueders T, et al. Isolationand characterization of new strains of methan ogens from coldterrestrial habitats[J]. System Applied Microbiology, 2003, 26(2):8-312.
    [85] Ma K, Liu X, Dong X. Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55:325-329.
    [86] Kendall MM, Liu SM, Stetter KO, et al. Methanoeoceuaeolicus sp. nov., a mesophilic, methanogenic arehaeon from shallow and deep marine sedimens[J]. Int JSyst Evol Microblol, 2006, 56(7):1525-1529.
    [87]崔晓光.沼气池中产甲烷菌的分离鉴定及其分布的研究[D].辽宁:大连理工大学,2007.
    [88] Boopath R. Isolation and characterization of a methanogenic bacterium from swine manure[J]. Bioresource Technology, 1996, 55(3), 231-235.
    [89] Amann RI, Ludwig W, Schleifer KH. Phylogenetic identification and insitudetection of individual microbial cells without cultivation[J]. Microbiological Reviews, 1995, 59(1):143-169.
    [90] Dimitar K, Damien J, et al. Influence of environmental Conditions on methanogenic compositions in anaerobic biogas reactors [J]. Applied and Environmental Microbiology, 2005, 71:331-338.
    [91] Wiwat J, Nimaradee B, Supapon C. Use of analtemative aichaea-specific probe for methanogen detection [J]. Journal of Microbiological Methods, 2005, 61:95-104.
    [92] Nercessian O, Bienvenu N, Moreira D, et al Diversity of functional genes of methanogens, methanotrophs and sulfate reducers in deep-sea hydrothermal environments [J]. Environment on Microbiology, 2005, 7(1):118-1321.
    [93]刘芳,叶思源.黄河三角洲湿地土壤微生物群落结构分析[J].应用与环境生物学报,2007,13(5):691-696.
    [94]王刘阳,尹小波,胡国全.分子生物学技术在产甲烷古菌研究中的应用[J].中国沼气,2008,26(1):19-24.
    [95] Muyzer G, Dewaal EC, Uitterlinden AG. Profiling of compex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chainreaction-amplified genes coding for 16S rRNA [J]. Applied Environment Microbiology, 1993, 59(3):695-700.
    [96] Chiaki K, Lina L, Jin T, et al. Molecular analyses of the sediment of the 11000- m deep Mariana Trench [J]. Extremophiles, 1997, 1(3):117-123.
    [97] Borneman J, Skroch PW, O’Sullivan KM, et al. Molecular microbial diversity of an agricultural soil in Wisconsin [J]. Applied Environment Microbiology, 1996, 62(6):1935 -1943.
    [98]张倩茹,周启星,陈锡时,等.微生物分子生态学技术在污水处理系统中的应用[J].生态学杂志,2003,22(3):49-53.
    [99]邢德峰,任南琪.应用DGGE研究微生物群落时的常见问题分析[J].微生物学报,2006,46(2):331-335.
    [100] Petra M, Lars M. Molecular approach to the characterization of fungal communities: methods forDNA extraction, PCR amplication and DGGE analysis of painted art objects [J]. FEMS Microbiology Letters 195, 2001, 169-173.
    [101] Holben WE, Feris KP, Kettunen A, et al. GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis [J]. Applied environment microbiology, 2004, 70(4):2263-2270.
    [102] Burr MD, Clark SJ, Spear CR, et al. Denaturing gradient gel electrophoresis can rapidly display the bacterial diversity contained in 16S rDNA clone libraries [J]. Microbial Ecology, 2006, 51 (4):479-486.
    [103] Hiraishi A, Iwasaki M, Shinjo, H. Terminal restriction Pattem analysis of 16S rRNA genes for the characterization of bacterial communities of activated sludge [J]. Journal of Bioscience and Bioengineering. 2000, 2:148-156.
    [104] Lueders T, Friedrich MW. Evaluation of PCR amplification bias by terminal restricti on fragment length polymorphism analysis of small-subunit rRNA and mcrA genes by using defined template mixtures of methanogenic purecultures and soil DNA extracts[J].Applied Environment Microbiology,2003, 69(1):320-326.
    [105]师晓爽.农村户用沼气池发酵微生物群落结构的分子分析[D].武汉:华中师范大学,2007.
    [106]王刘阳.沼气发酵微生物区系变化及产甲烷古菌群落结构分析[D].北京:中国农业科学院,2008.
    [107] Lee DH, Zo YG, Kim SJ. Nonradioactive method to study genetic Profiles of natural bacterial-communities by PCR-single strand conformation polymorphism [J]. Applied Environment Microbiology, 1996, 62:3112-3120.
    [108]余利岩,姚天爵.微生物生态学研究方法的新进展[J].微生物学通报,2001,28(1):89-93.
    [109]周岭.有机废弃物厌氧发酵特性的研究[D].哈尔滨:东北农业大学,2003.
    [110]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [111]陈世和,陈建华,王十分.微生物生理学原理[M].上海:同济大学出版社,1992,354.
    [112]周孟津,张榕林,蔺金印.沼气实用技术[M].北京:化学工业出版社,2004,34-38.
    [113]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003,121-128.
    [114]吴满昌,孙可伟,李如燕,等.不同反应温度的城市生活垃圾厌氧发酵研究[J].化学与生物工程,2005,9:28-30.
    [115]李想.农业废弃物干法厌氧发酵关键参数优化研究[D].北京:中国农业科学院.农业环境与可持续发展研究所,2007.
    [116] Chae KJ, Jang AM, Yim SK, et al. The e?ects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure [J]. Bioresource Technology, 2007, 99(1):1-6.
    [117]苏瑞荣.沼气发酵与生态农业[J].菏泽学院学报,2007,29(9):104-107.
    [118] Inanc B, Matsui S, Ide S, Propionic acid accumulation in anaerobic digestion of carbonhydrates: an investigation on the role of hydrogen gas [J]. Water Science and Technology, 1999, 40(1):93-100.
    [119] Lay JJ, Lee YJ, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste [J]. Water Research, 1999, 33(11):2579-2586.
    [120]孙进杰,赵丽兰.沼气正常发酵工艺条件[J].农村能源,2000,4:20-21.
    [121]张全国.沼气技术及其应用[M].北京:化学工艺出版社,2005.
    [122]邱凌,王兰英,杨鹏.农村沼气工程动态发酵工艺的调控[J].可再生能源,2005,23(3):201-204.
    [123]丁学智,赵亚伟.规范土地开发整理工作实现耕地总量动态平衡[J].科技情报开发与经济,2001,11(1):11-12.
    [124] Lee SR, Cho NK, Maeng WJ. Using the pressure of biogas created during anaerobic digestion as the source of mixing power [J]. Journal of Fermentation and Bioengineering.1995, 80(4):415-417.
    [125]何荣玉,刘晓风.沼气发酵外源添加物的研究进展[J].中国沼气,2007,25(5):8-10.
    [126] Flamant JC, Beranger C, Gibon A. Animal production and land use sustainability an approach from the farm diversity at territory level [J]. Livestock Production Science, 1999, 61:275-286.
    [127] Gerber P, Chilonda P, Franceschini G, et al. Geographical determinants and environmental implications of livestock production intensification in Asia [J]. Bioresource Technology, 2005, 96:263-276.
    [128] Gerber PJ, Carsjens GJ, Pak-uthai T, et al. Decision support for spatially targeted livestock policies: Diverse examples from Uganda and Thailand [J]. Agricultural Systems, 2008, 96:37-51.
    [129]李帷,李艳霞,张丰松,等.东北三省畜禽养殖时空分布特征及粪便养分环境影响研究[J].农业环境科学学报,2007,26(6):2350-2357.
    [130]王方浩,马文奇,窦争霞,等.中国畜禽粪便产生量估算及环境效应[J].中国环境学,2006,26(5):614-617.
    [131]王辉,董元华,张绪美.集约化养殖畜禽粪便农用对土壤次生盐渍化的影响评估[J].环境科学,2009,29(1):183-188.
    [132] Stams AJM. Metabolic interactions between anaerobic bacteria in methanogenic environments [J]. Antonie Van Leeuwenhoek, 1994, 66:271-294.
    [133] Simankova MV, Kotsyurbenk OR, Lueders T, et al. Isolation and characterization of new strains of methanogens from cold terrestrial habitats [J]. System atic and Applied Microbiology, 2003, 26:312-318.
    [134] Ma K, Liu X, Dong X. Methanobacterium beijingense sp. nov., A novel methanogen isolated from anaerobic digesters [J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55:325-329.
    [135] Kendall MM, Sie PLM, Stetter KO, et al. Methanoeoceuaeolicus sp. nov, a mesophilic, methanogenic arehaeon from shallow and deep marine sedimens, Int [J]. Syst Evol Microblol, 2006, 56 (7): 1525-1529.
    [136]张翔,刘金盾.接种物特性对牛粪高温厌氧发酵的影响[J].农机化研究,2007,6:86-89.
    [137]潘云霞.牛粪厌氧发酵特性的研究[C].哈尔滨:东北农业大学,2004.
    [138] Forster-Carneiro T, Pe′rez M. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: Focusing on the inoculum sources [J]. Bioresource Technology, 2007, 98:3195-3203.
    [139] Akila G, Chandra TS. Performance of an UASB reactor treating synthetic wastewater at low-temperature using cold-adapted seed slurry[J]. Process Biochemistry, 2007, 42:466-471.
    [140]何绍江,冯新梅.奶牛粪沼气池中三株产甲烷菌的分离和基本特征[J].华中农业大学学报,1994,13(1):59-63.
    [141]潘云锋,李文哲.物料浓度对畜粪厌氧消化的影响[J].农机化研究,2008,1:193-199.
    [142]潘云霞,潘云锋,李文哲.不同阶段沼液作发酵接种物对牛粪产气的影响[J].农机化研究,2005,1:202-204.
    [143]马传杰,花日茂,郭亮.接种量对牛粪厌氧干发酵的影响[J].家畜生态学报,2008,29(5):81-84.
    [144] Khursheed K, Rebecca H. Anaerobic digestion of animal waste: Waste strength versus impact of mixing [J].Bioresource Technology, 2005, 96:1771-1781.
    [145] Mohammad AS, Nidal M. Start-up of an UASB-septic tank for community treatment of strong domestic sewage [J]. Bioresource Technology, 2008, 99:7758-7766.
    [146] Sigrid K, Hans O, Thomas J. Biogas production with horse dung in solid-phase digestion systems [J].Bioresource Technology, 2008, 99:1280-1292.
    [147] Herbert HP, Liu HF. Effect of pH hydrogen production from glucose by a mixed culture [J]. Bioresource Technology, 2002, 82:87-93.
    [148]刘德江,高桂丽,朱妍梅,等.猪粪、牛粪、羊粪沼气发酵比较试验[J].塔里木大学学报,2005,17(2):10-12.
    [149]夏国俊.农村能源开发建设与标准规范实用手册[K].北京:北大方正电子出版社,2002,675.
    [150] Amamm RI, Ludwig W, Schleifer KH. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiology and Molecular Biology Reviews, 1995, 59:143-169.
    [151]杨生玉,王刚,沈永红.微生物生理学[M].北京:化学工业出版社,2007.
    [152] Pace NR. A molecular view of microbial diversity and the biosphere [J].Science, 1997, 276 (5313):734-740.
    [153]萨姆布鲁克J,拉塞尔DW.分子克隆实验指南[M].北京:科学出版社,2002.
    [154].Sambrook J, Russell DW.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    [155].李永明,赵玉琪,陈巍,等.实用分子生物学方法手册[M].北京:科学出版社,1998.
    [156].奥斯伯F,布伦特R,金斯顿RE,等.精编分子生物学实验指南[M].北京:科学出版社,1998.
    [157] Zhu H, Qu F, Zhu LH. Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride [J]. Nucleic Acids Research, 1993, 21:5279-5280.
    [158] Karita S, Nakayama K, Goto M, et al. A novel cellulolytic, anaerobic, and thermophilic bacterium, Moorella sp. strain F21 [J], Bioscience, 2003, 67(1):183-185
    [159] Stahl D, Amann R. Development and application of nucleic acids probes in bacterial systematics [J]. Nucleic Acid Techniques in Bacterial Systematics, 1991, 205-248.
    [160]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T.分子克隆试验指南第二版[M].北京:科学出版社,1995,55-56. [ 161] Romond C.The taxonomy of the peptococcaceae[J].Infection. 1980, 2:153-154.
    [162] Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest [J]. Nature, 2006, 444:1027-1031.
    [163] Zindel U, Freudenberg W, Rieth M, et al. Eubacterium acidaminophilum sp. nov, a versatile amino acid- degrading anaerobe producing or utilizing H2 or formate [J]. Arch Microbiol, 1988, 150:254-266.
    [164]刘金胜.厌氧纤维分解菌的分离、筛选及与农药相关性研究[D].湖南:湖南农业大学,2005.
    [165]陈敏,郭鹏,宋晓岗.选育高效降解木质素优势混合菌的研究[J].中国造纸,1998,3:40-45.
    [166]凌代文.梭菌属的一个新种—产气梭菌[J].生物学报,1993,33 (1):1-6.
    [167]李永峰,任南琪,杨传平.一株属厌氧菌的分子鉴定与产氢特性[J].太阳能学报,2006,27(2):208-211.
    [168] Cameron JA, Molly CR, David LV. Pure-Culture Growth of Fermentative Bacteria, Facilitated by H2 Removal: Bioenergetics and H2 Production [J] Applied Environment Microbiology. 2006, 72(2):1079-1085.
    [169]武心镇,高玉霞,欧海龙,等.奶牛瘤胃中反刍兽月形单胞菌的分离鉴定[J].动物医学进展,2008,29(10):25-28.
    [170] Aden HA, Bryant MP. Doetsch RNA study of bacterial species from the rumen which produce ammonia from a protein hydrolysate [J].Applied Microbioloy, 1961, 9(2):175.
    [171] Oba M, Allen MS. Dose-response effects of in trauminal infusion of propionate on feeding behaviorof lactating cows in early or mid lactation [J]. Dairy Science, 2003, 86(9):2922-2931.
    [172]朱晨光,许政,宋任涛.产甲烷古菌[J].生命的化学,2009,29(1):129-133.
    [173]刘晓凤.一株嗜盐产甲烷菌的分离、生物学特性、系统发育分析及产甲烷活性污泥利用CO的初步研究[D].四川大学,2006.
    [174]马光庭,Gerhard G.甲酸甲烷杆菌和甲烷八叠球菌的分离和特性[J].广西农业大学学报,1994,13(3):267-277.
    [175]赵斌,何绍红.微生物学实验[M].北京:北京科学出版社,2002.
    [176] Balchw E, Fox GE, Magrum J, et al. Methanogens: Reevaluation of an unique biological group [J]. Microbiological Reviews, 1979, 43:260-296.
    [177]钱泽澍,闵航.沼气发酵微生物学[J].杭州:浙江科学技术出版社,1986.
    [178] Maria V, Oleg R. Isolationand charaeterization of new strains of methanogens from cold terrestrial habitats [J].Systematic and Applied Microbiology, 2003, 26(2):312-318.
    [179]付新来,谭世荣,谭宗久.利用微生物发酵生产沼气的效果及技术[J].江西农业科技,2003(2):8-9.
    [180]李兴杰.沼气发酵技术的研究[J].农业与技术,1998,18(3):20-21.
    [181]成喜雨,苏志国,庄国强.沼气发酵过程研究进展[J].过程工程学报,2008,8(3):607-615.
    [182] Deng LW, Chen ZA, Gong JJ, et al. Comparison of biogas plant between China and Germany [J]. Renewable Energy Resources, 2008, 26(1):110-114.
    [183] Moller HB, Sommer SG, Ahring BK. Methane productivity of manure, straw and solid f ractions of manure [J]. Biomass and Bioenergy, 2004, 26(5):485-495.
    [184]张婷,杨立,王永泽,等.不同接种物厌氧发酵产沼气效果的比较[J].新能源及工艺,2008(4):30-33.
    [185]刘海庆,李文哲,王忠江.中、高温酸化两相厌氧发酵处理牛粪的试验[J].东北农业大学学报,2007,38(6) :809-813.
    [186]张翔,余建峰.不同接种物对牛粪高温厌氧发酵的影响[J].广西师范大学学报(自然科学版),2007,25(1):78-81.
    [187]张波.厌氧发酵反应器设计与试验研究[D].哈尔滨:东北农业大学,2006.
    [188] Vavilin Y, Rytov S, Kotsyurbenko O, et al. Modelling low-temperature methane production from cattle manure by acclimated microbial community [J]. Bioresource Technology, 1998, 63, 159-171.
    [189] Ince O, Anderson G, Kasapgil B. Composition of the microbial population in a membrane anaerobic reactor system during start-up [J]. Water Research, 1997, 31 (1):1-10.
    [190]郑元景,杨海林,蔺金印.有机废料厌氧发酵技术[M].化学工业出版社,1998,6-40.
    [191] Angelidaki L,Ahring BK. Themorphilic anaeboric digestion of Livestock Waste: the Effect of Ammonia [J].Applied Microbiology and Biotechnology, 1994, 38(3):560-564.
    [192] Sterling MC,Lacey RE,Engler CR,et al. Effects of Ammonia Nitrogen on H2 and CH4 Production During Anaerobic Digestion of Dairy Cattle Manure [J]. Bioresource Technology 2001, 77(1):9-18.
    [193]蒙杰,王敦球.沼气发酵微生物菌群的研究现状[J].广西农学报,2007,22(4):46-49.
    [194]周岭,李文哲,石长青.厌氧发酵接种物的特性研究[J].农机化研究,2004,3:152-156.
    [195]胡纪萃,顾夏声.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社,2003,12-41.
    [196]刘德江,张富年,邱桃玉,等.牛粪不同发酵浓度对沼气中甲烷及硫化氢含量[J].中国沼气,2008,26(5):18-20.
    [197]朱宗强,成官文,梁斌.农业有机废弃物沼气发酵潜力的试验研究[J].农机化研究,2009(2):150-152.
    [198]占义清.秸秆作为沼气发酵原料应用新技术[J].可再生能源,2007,25(4):100-101.
    [199]杨朝晖.高浓度有机废水(养猪场废水)处理技术的研究[D].湖南省长沙市:湖南大学,2002.
    [200]张涵,李文哲.微量金属元素添加频率对牛粪厌氧发酵特性的影响[J].东北农业学学报,2006,37(2):202-205.
    [201]韩瑞丽,井文倩,李同树.通过营养调控减少畜禽氮磷排泄及其污染[J].畜禽业,2002(1):24-25.
    [202]张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005,11(6):822-829.
    [203] Nicholson FA, Chambers, BJ, Williams JR, et al. Heavy metal contentsof livestock feeds and animal manures in England and Wales [J]. Bioresource Technology, 1999, 70:23-31.
    [204]许洪伟.不同温度牛鸡混合粪厌氧发酵性能的研究[D].哈尔滨:东北农业大学,2007.
    [205]赵一章.产甲烷细菌及研究方法[M].成都:成教科技大学出版社,1997:182-199.
    [206]蒙杰,王敦球.沼气发酵微生物菌群的研究现状[J].广西农学报,2007,22(4):46-49.
    [207]胡家骏,周群英.环境工程微生物学[M].北京:高等教育出版社,1988,91-100.
    [208]余建峰.不同接种物对牛粪高温厌氧发酵过程的影响[D].郑州:郑州大学硕士学位论文,2006.
    [209]杨鹏可,周静,胡梦.偏低温沼气发酵促进剂的初步研究[J].酿酒科技,2008(4):101-104.
    [210]刘敏,陈滢,任南琪.利用不同类型种泥启动生物制氢反应器的试验研究[J].四川大学学报(工程科学版),2009,41(1):86-90
    [211]宋珍霞,王里奥,黄川,等.复合微生物制剂对化粪池污泥厌氧消化效果的影响[J].中国给水排水,2009,25(19):20-23.
    [212]任南琪.厌氧生物技术原理与应用[M].北京:化学工业出版社,2004,25.
    [213]冯孝善.沼气发酵前期各细菌生理群的研究[J].浙江农业大学学报,1982,8(1):55-63.
    [214]龚革,王修垣.九株嗜热产甲烷菌的特性微[J].生物学报,1997,37(5):378-384.
    [215]刘晓凤,徐恒.一株产甲烷菌的生物学特性及系统发育分析的研究[J].四川大学学报(自然科学版),2006,43(3):661-666.
    [216] Keyser M, Witthuhn RC, Lamprecht C, et al. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules [J]. Systematic and Applied Microbiology, 2006, 29(1):77-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700