甲烷单加氧酶及其模型配合物研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲烷单加氧酶(MMO)是甲烷利用菌在代谢过程中的一种重要酶系。作为生物体中唯一能够在常温常压下实现甲烷的选择性氧化的酶,MMO为探索甲烷的催化氧化提供了理想的催化剂模型。并且,MMO是一种非专一性的、具有广泛应用前景的工业生物催化剂,能催化C_1—C_20各种取代烃的羟基化反应与C2—C10各种取代烯烃的环氧化反应。另外,MMO在医药与工业方面亦有很重要的应用前景。MMO的优越性使它成为研究热点所在。本文就MMO及其化学模拟研究做一系统评述。
     本文首先介绍了MMO的来源、结构、光谱性质和作用。MMO有两种存在形式:颗粒性甲烷单加氧酶(pMMO)和可溶性甲烷单加氧酶(sMMO)。目前研究主要集中在sMMO方面。它由羟基化酶(MMOH)、调节蛋白(MMOB)和还原蛋白(MMOR)三部分构成。MMOH是MMO的关键组分,含a、β和y三个亚基。MMOH活性部位位于。亚基α为一含有羧基桥联的双铁核中心,是分子氧O2的活化与烃类C-H的羟基化反应发生地方。
     以MMO活性中心为依据,可以合成贴近MMO结构的小分子模型配合物,这对于认识天然MMO的复杂结构、功能、催化机制继而认识生命现象具有重要意义。同时,对工业上开发用于烃类选择氧化的仿生催化剂具有重要意义。因此,MMO及模拟物的研究已成为生命科学与化学研究中富有挑战性、非常活跃的前沿课题。在这方面S.J.Lippard、L. Que,Jr、M.Suzuki等领导的实验室取得了许多开创性的研究成果。
     MMO的化学模拟研究可以分为结构模拟与功能模拟两个方面。在对MMOH活性部位的结构模拟研究中,许多配体成功地运用于合成双铁核配合物之中,例如H2hbab、Biphme、XOK、tmen等。结构模拟工作的重点在于模拟MMO结构参数、光谱参数和催化过程中所特有的中间体方面,例如对中间体P与Q的模拟,P被认为有Fe2TM(μ-O2)结构,而Q则含有Fe2TM(μ-O)2核。Kitajima等1990年用单铁核化合物Fen{HB(3,5-iPr2Pz)3(O2CR)}(CH3CN)与O2反应生成了Fe2m(μ-1,2—O2)结构的化合物。Y.Dong等用[Fe2L(O2C6H5)]X2(L=HPTB、N-Et-HPTB、HPTP)与O2反应模拟MMOH-P结构,Suzuki等亦用[Fe2L(RCO2)(L=Tpdp、
    
    MeTtpdp、Me上tpdp)与 o。反应对 P进行模拟。这些研究得到了许多重要结论:
    首先,金属中心配位不饱和将有利于OZ的键合;其次,立体因素与电子因素也影
    响双氧加合物的稳定性。例如采用新型桥配体HZXDK,由于其中富含梭酸基,在
    合成 Fez’‘赚拟物方面具有较大优势,其双铁核配合物比上述含 N多的配体,能
    够更好地再现MMO及y的活性部位。含不同XDK的双铁核配合物
    m、氏B皿K)彼成功地应用于与OZ反应而模拟MMOHI中。含有
    Fe。…-O)。、Fe。…-O)o-OH)和Fe。…-O)…-H3Oz)核的报道也较多,所使用的配体多
    为TPA及其衍生配体。首例具有Fe。V-Oh及Fe。…-O)…-OH)核的模型配合物分
    别为[F*2’‘’…-O)ZWMC。-TPA](CIO。)2与 FCZty-O)…-O切(6-M*。-TpA)(CIO4)3。
    【Fe”‘FeI*…-O)。(5-Me3-TpA)](CIO。)3与 FC’nF*‘*…-O)2(-Me-TpA)2(CIO4)可以作为
    MMOH-Q与 RNR RZ-X两种反应活性中间体的模拟。
     在MMO功能模拟方面,有许多种含Fe配合物被应用于催化烷烃羟基化反应
    中,这方面研究较为系统、深入的属Fe厂PA)系统。Fe(TP)系统催化烃类氧化反
    应受诸多条件限制,配合物中Fe的价态、氧化剂的种类、氧化剂加入量及加入方
    式、配体立体结构等均对反应结果有很大的影响,使得此类体系十分复杂,同时
    也十分丰富。这方面的研究多是涉及反应机理,而机理亦是寻找一种真正的氧化
    中间体,常见的中间体有Fe”二O与BuO·(用TBPH为氧化剂)等。该部分还讨
    论了H。O。为氧化剂的体系以及Fez模型配合物催化亚碘酞苯对烯烃环氧化反应的
    情形。我们实验室报道了一系列MMO的手性模型配合物,并在烯烃的不对称催
    化环氧化方面取得了一些令人鼓舞的成果。
Progress on Methane Monooxygenase and Its Model Complexes
    LiuYi
    Abstract: Methane monooxygenase(MMO) is one of the most important enzymes during the metabolism of methantrophs. It is the only enzyme that can realize the selective oxidation of methane at the ordinary temperature and pressure and supply the ideal model for selective, partial oxidation of methane. Meanwhile, as a non-special biocatalyst, MMO can catalyze hydroxylation of all kinds of alkanes from Cj to €20 and epoxidation of alkenes from €2 to Qoas well. In addition, it has wide potential application in medicine and industry. It is just its advantage that makes it a hot area in research works.
    There are two forms of MMO exist natrually. One is the particulate, membrane-bound (pMMO) form and the other is the soluble (sMMO) form. The later consists of three components such as MMOH, MMOB, and MMOR. MMOH is the most important component, which consists of three subunits a, P, and 7. The active site, located at the a-subunit, contains a carboxylate-bridged diiron core where the activition of O2 and hydroxylation of C-H bond take place.
    Based on the structure of active site of MMO, a lot of small molecule model complexes analog with different diiron cores have been synthesized for the purpose of understanding the structure and catalytic properties of MMO in biological oxidation, and further, the biological phenomena of life. The structural and functional mimicing of MMO with binuclear iron complexes have been an active frontier and a challenge in biology and chemistry. In this aspect, many creative research works have been done in the passed decade, especially those in the laboratories leaded by S. J. Lippard, L. Que, Jr., and M. Suzuki, and elsewhere.
    The researches on mimicing of MMO can be divided into structural and functional mimic. A great many dinuclear iron complexes have been synthesized for the structural mimics of MMOH with the ligands including F^Hbab, BiphMe, XDK, tmen, and so on. The mimic of the active intermediate, MMOH-P and -Q, during the catalytic process is always an important topic. MMOH-P is considered as an active intermediate with an Fei'^-Oi) core and Q with an Fe2IV(/*-O)2 core. The first
    
    
    
    MMOH-P intermediate analog, Fe2IH(a-l,2-O2), was obtained from the reaction of a mononuclear iron complex [FeI1{HB(3,5-iPr2Pz)3(O2CR)}(CH3CN) and O2 by N. Kitajima in 1990. MMOH-P mimics via [Fe2lIL(O2CC6H5)X2](L=HPTB, A^-Et-HPTB, or HPTP) with O2 and [Fe2"(RCO2)L](BF4)2 [L = tpdp, Me2-tpdp, or Me4-tpdp] with O2 have been also reported. Many useful conclusions can be drawn from these reactions. Firstly, the unsaturated coordination of metal center is favorable to the bonding of O2. Secondly, the steric and electronic factors also affect the stability of O2-adducts.
    A new ligand, H2XDK, has more advantages in synthesizing the Fe2H complexes due to it has more carboxylic groups than the ligands with N atoms. The diiron complexes with this ligand can reproduce nicely the active site of MMO and RNR. Recently, various diferric complexes with XDK, HPXDK, and HBXDK have been successfully applied to the reaction with O2 for mimicing MMOH-P. Many complexes with an Fe2C"-O)2, Fe2(/*-O)(//-OH), or Fe2(u-O)(^-Hs02) core have been reported with ligands of TPA and its derivatives. The first complex containing Fe2(?O)2 core is [Fe21'ICu-O)2(6-Me3-TPA)](ClO4)2 and the complex containing Fe2(yU-O)C?OH) is [Fe2Gu-O)Gu-OH)(6-Me3-TPA)](ClO4)3. The most close mimics of MMOH-Q and RNR R2-X maybe [FemFelv(/z-O)2(5-Me3-TPA)](ClO4)3 and [Fe10Felv(^-O)2(6-Me-TPA)]2 (C104)3 ?
    In the aspect of functional mimic of MMO, many diiron complexes have been used in the reaction of catalytic hydroxylation of alkanes. Among which the Fe(TPA) systems have been thoroughly investigated. There are many factors affect the catalytic activity of the hydroxylation of alkanes. This makes the catalyic system more complex and, in turn, more plenty. The research is focus on the reaction mechanism to find out the true oxidant. A free radical BuO- derived from BuOOH (TBHP) an
引文
[1] L. Que. Jr, Oxygen antivation at non-heme diiron active sites in biology: Lessons from model complexes, J. Chem. Soc., Dalton Trans, 1997, 3933-40
    [2] L. Que. Jr, Y. H. Dong, Modeling the oxygen activation chemistry of Methane Monooxygenase and Ribonucleotide reductase, Acc. Chem. Res., 1996, 29: 190-196
    [3] M. Marten, D. A. Kopp , M. H. Sazinsky , J. L. Blazyk , S. J. Lippard , Dioxygen activation and methane hydroxylation by soluble methahe monooxygenase. A tale of two irons and three proteins. Angew Chem. Int. Ed. 2001, 40: 2782-2807
    [4] H. Weihe, H. U. Gudel. Angular and Distance Dependence of the Magnetic Properties of Oxo-Bridged Iron(Ⅲ) Dimers. J Am Chem Soc 1997, 119, 6539-6543
    [5] B. J. Wallar, J. D. Lipscomb, Methane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle. Biochemistry 2000, 40, 2220-2233
    [6] G. T. Gassner and S. J. Lippard, Component Interactions in the Soluble Methane Monooxygenase System from Methylococcus capsulatus (Bath) Biochemstry 1999, 38, 12768-12785
    [7] S. L. Chang, B. J. Wallar, J. D. Lipscomb, and K. H. Mayo, Solution Structure of Component B from Methane Monooxygenase Derived through Heteronuclear NMR and Molecular Modeling. Biochemstry, 1999, 38, 5799-5812
    [8] Y. Jin and J. D. Lipscomb, Probing the Mechanism of C-H Activation: Oxidation of Methylcubane by Soluble Methane Monooxygenase from Methylosinus trichosporium OB3b. Biochemstry, 1999, 38, 6178-6186
    [9] K. E. Liu, A. M. Valentine, D. Wang, B. Huynh, D. E. Edmondson, A Salifoglou, and S. J. Lippard, Kinetic and Spectroscopic Characterization of Intermediates and Component Interactions in Reactions of Methane Monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 1995, 117, 10174-10185
    [10] Per E. M. Siegbahn and R. H. Crabtree, Mechanism of C-H Activation by Diiron Methane Monooxygenase: Quantum Chemical Studies. J Am Chem Soc 1997, 119,
    
    3103-3113
    [11] A. M. Valentine, B. Wilkinson, S. J. Lippard, et al. Tritated Chiral Alkanes as Substrates for Soluble Methane Monooxygenase from Methylococcus capsulatus (Bath): Probes for the Mechanism of Hydroxylation. J Am Chem Soc 1997, 119, 1818-1827
    [12] J. P. Willems, A. M. Valetine, S. J. Lippard, et al. Small Molecule Binding to the Mixed-valent Diiron Center of Methane Monooxygenase Hydroxylase from Methylococcus capsulatus (Bath) as Revealed by ENDOR Spectroscopy. J Am Chem Soc 1998, 120, 9410-9416
    [13] Per E. M. Siegbahn. Theoretical Model Studies of the Iron Dimer Complex of MMO and RNR Inorg. Chem. 1999, 38, 2880-2889
    [14] A. C. Rosenzweig, C. A. Frederick, S. J. Lippard, P. Nordlund, Crystal structure of a bacterial non-heam iron hydroxylase that catalyses the biological oxidation of methane, Nature, 1993, 366,537-543
    [15] R. Darydov, A. M. Valentine, S. J. Lippard, et al. An EPR study of the dinuclear iron site in the soluble methane monooxygenase from Methylococcus capsulatus(Bath) reduced by one electron at 77K: The effects of component interactions and the binding of small molecules to the diiron(III) center. Biochemistry, 1999,38,4188-4197.
    [16] D. A. Whittington and S. J. Lippard, Crystal Structures of the soluble methane monooxygenase Hydroxylase from Methylococcus capsulatus (Bath) Demonstrating Geometrical Variability at the Dinuclear Iron Active Site. J. Am. Chem. Soc 2001, 123, 827-838
    [17] H. Basch, K. Mogi, S. J. Lippard, et al. Mechanism of methane-methanol conversion reaction catalyzed by methane monooxygenase: A density functional study. J. Am. Chem. Soc., 1999,127: 7249.
    [18] B. J. Wallar, J. D. Lipscomb, Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev., 1996,96(7) , 2625-2657
    [19] L. Jeremy, C. Nesheim, K Kauffmann, E. Miuinck, J. D. Lipscomb, L. Que. Jr, An Fe2IVO2 diamond core structure for the key intermediate of methane monooxygenase. Science. 1997, 275, 515-
    
    
    [20] B. F. Gherman, B. D. Punietz, D. A. Whittington, S. J. Lippard, R. A. Friesner, Activation of the C-H bond of methane by intermediate Q of methane monooxygenase: A theoretical study. J. Am. Chem. Soc., 2001,123: 3836-7.
    [21] K. E. Liu, P. Wang, S. J. Lippard, et al. Spectroscopic detection of intermediates in the reaction of dioxygen with the reduced methane monooxygenase, hydroxylase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc., 1994, 116: 7465-7466
    [22] A. M. Valentime, D. Lee, S. J. Lippard, et al. Generation of a mixed-valent Fe(III)Fe(IV) form of intermediate Q in the reaction cycle of soluble methane monooxygenase: An analog of intermediate X in ribonucleotide redutase R2 assembly. J. Am. Chem. Soc., 1998,120,2190-1
    [23] B. J. Brazeau and J. D. Lipscomb. Kinetics and Activation Thermodynamics of methane monooxygenase: Q formation and Reaction with Substrates. Biochemistry, 2000, 39, 13503-13515
    [24] A. Stassinopoulo, G. Schulte, G. C. Papaefthymiou, J. P. Caradonna, Synthesis, structure and electronic characterization P of reactive diiron(II) 1,2-bis(2-hydroxybenzamido)benzene complexes as models for methane monoooxygenase. J. Am. Chem. Soc., 1991, 113, 8686-97
    [25] W. B. Tolman, S. Liu, S. J Lippard, Models of the reduced forms of polyiron-oxo proteins: An asymmetric, triply carboxylate bridged diiron(II) complex and its reaction with dioxygen. J. Am. Chem. Soc., 1991, 113, 152-164.
    [26] S. Herold, L. E. Pence, S. J. Lippard, Carboxylate-bridged diiron(II) complexes a new model for reduced methane monooxygenase hydroxylate and the R2 protein of RNR. J. Am. Chem. Soc., 1995, 117, 6134-35.
    [27] D. Lee, S. J. Lippard. Structural and functional models of the dioxyen-activating centers of non-heme diiron enzymes ribonucleotide reduclase and soluble methane monooxygenase. J. Am. Chem. Soc., 1998,120: 12153-4
    [28] D. Lee, S. J. Lippard. Oxidative N-dealkylation of carboxylate-bridged diiron(II) precursor complex by reaction with O2 affords the elusive {Fe2(μ-OH)(μ-O2CR)}3+ core of soluble methane monooxygenase hydroxylase. J. Am. Chem. Soc., 2000,123, 4611-2.
    
    
    [29] D. Couvains, R.A. Reynolds, and W.R. Dunham, Synthesis and characterization of a new class of asymmeric aqua-acetate bridged bimers, solid state molecular structures of the [M2(μ-H2O)(μ-OAc)2(OAc)3(py)2] anions(M=Mn(II), Fe(II), Co(II)): A structural model for the Fe2 site in methane monooxygenase. J. Am. Chem. Soc., 1995, 117,7570-1
    [30] K. Hagen, R. Lachicotte, Diiron(II) μ-aqua bis(μ-carboxylato) models of reduced dinuclear non-heme iron site in protein. J. Am. Chem. Soc.,1992, 114, 8741-2
    [31] S. J. Lippard. Oxo-Bridged polyiron centers in Biology and chemistry. Angew. Chem. Int. Ed. Engl 1988, 27, 344-48
    [32] N. Kitajima, N. Tamura, M. Tanaka, et al. Synthesis and molecular structures of diferroes complexes containing a bis(hydroxo) or a hydroxo carboxylate bridge. Inorg Chem. 1992, 31, 3342-3
    [33] E. I. Solomon. Geometric and Electronic Structure Contributions to Function in Bioinorganic Chemistry: Active Sites in Non-Heme Iron Enzymes. Inorg. Chem., 2001,40,3656-3669
    [34] N. Kitajima, H. Fukui, Y. Moro-oka. Synthetic Model for Dioxygen Binding Sites of Non-heme Iron Proteins: x-ray structure of Fe(OBz)(MeCN)(HB(3,5-iPr2Pz)3) and Resonance Raman Evidence for Reversible Formation of a Peroxo adduct. J. Am. Chem. Sec.. 1990, 112,6402-3
    [35] K. Kim, S. J. Lippard, Structure and Mossbauer spectrum of a (μ-1,2-peroxo) bis(μ-carboxyIato)diiron(III): Model for the peroxo intermediate in the methane monooxygenase hydroxylase reaction cycle. J. Am. Chem. Soc., 1996, 118: 4914-4915
    [36] E. I. Solomon, N. Kitajima, T. C. Brunold, et al. Spectroscopic study of [Fe2(O2) (OBz)2{HB(Pz)3}]: Nature of the μ-1,2-peroxide-Fe(III) bond and its possible relevance to O2 activation by non-heme iron enzymes. J. Am. Chem. Soc., 1998,120:5674-90
    [37] Y. H. Dong, S. Menage, L. Que. Jr, Dioxygen binding to diferrous centers models for diiron-oxoproteins. J. Am. Chem. Soc.,1993, 115, 1851-59
    [38] A. L. Feig and S. J. Lippard, Reactions of Non-Heme Iron(II) Centers with Dioxygen in Biology and Chemistry. Chem Rew., 1994, 94, 759-805
    
    
    [39] M. Suzuki, Reactivity of diiron(II) complexes with molecular oxygen. Pure Appl. Chem., 1998, 70,955-60.
    [40] M. Suzuki, T. Ookubo, T. Sato, et al. cis-μ-1,2-Peroxo diiron complex: Structure and reversible oxygenation. J. Am. Chem. Soc., 1996, 118: 701-2
    [41] S. Menage, Y. Zang, L. Que. Jr, Structure and Reactivity of a Bis(μ-acetato-O,O')diiron(II) Complex [Fe2(O2CCH3) 2(TPA)2] (BPh4) 2. A Model for the Diferrous Core of Ribonucleotide Reductase. J. Am. Chem. Soc., 1992, 114,7786-7792
    [42] A. L. Feig and S. J. Lippard. Mechanistic studies of the reaction of dioxygen with dinuclear iron(II) compounds to form (μ-peroxo)diiron(III) complexes. J. Am. Chem. Soc., 1994,116,8410-1
    [43] T. J. Mixoguchi, S. J. Lippard. Structural and spectroscopic comparisions between (μ-oxo)-and (μ-hydroxo)bis(μ-carboxylato)diiron(III) complexes that contain all oxygen-donor ligand. Inorg. Chem., 1999, 38,4098-4013.
    [44] S. R. Watton, S. J. Lippard, A Masschelein, J Rebek Jr, et al. Synthesis, structure and reactivity of (μ-oxo)bis(μ-carboxylato)diiron(III) complexes of a dinucleating dicaboxylate ligand stable models for nonheme diiron protein cores. J. Am. Chem. Soc., 1994, 116,5196-5205
    [45] S. Herold, S. J. Lippard, Carboxylate-bridged diiron(III) complexes: Synthesis, characterization, and O2 reactivity of models for the reduced diiron center in methane monooxygenase and ribonudeotide reductase. J. Am. Chem. Soc., 1997, 119, 145-56
    [46] D. D. Lecloux. S. J. Lippard. Modeling the diiron centers of nonheme iron enzymes preparation of steroically hindered diiron(II) tetracarboxylate complexes and their reactions with dioxygen. J. Am. Chem. Soc., 1998, 120, 9001-9014
    [47 D. D. Lecloux, S. J. Lippard, A. M. Barrios, et al. Modeling the Diiron Centers of Non-Heme Iron Enzymes Preparation of sterrically Hindered Diiron(II) tetracarboxylate complexes and Their Reaction with Dioxygen. Bioorg. Med. Chem., 1999. 7(5) : 763-72
    [48] Y. Zang, Y. H. Dong, L. Que. Jr, The first diferric complex with Fe2(μ-O)(μ-OH) core structure and reactivity of [Fe2(μ-O)(μ-OH)(6-TLA)2] (ClO4) 3. J. Am. Chem.
    
    Soc., 1994,116:36534
    [49] Y. Zang, Y. H. Dong, L. Que. Jr, The first bis(μ-oxo) diiron(III) complex structure and magnetic properties of [Fe2(μ-O)2(6-TLA)2] (ClO4) 2. J. Am. Chem. Soc., 1995, 117,1169-70
    [50] H. Zheng, Y. Zang, YH. Dong, L. Que. Jr, Complexes with Fe2III(μ-O)G(μ-OH), Fe2III(μ-O)2 and Fe3III(μ2-O)3] cores: Structure, spectroscopy, and core interconversions. J. Am. Chem. Soc 1999,121,2226
    [51] S. Poussereau, J. Guilhem, L. Tchertanov, et al, Synthesis structure and characterization of the new complex [L1(H2O)-Fe(μ-O)Fe(OH2) L1] 4+ [L1=N,N-Bis(1-methylimidazolyl-2-methyl-1,2-ethanediamine)] formation of the (μ-O)(μ-H3O2) complex upon deprotonation. Eur J. Inorg. Chem. 2001,1057-62.
    [52] E. C. Wikinson, Y. H. Dong, L Que. Jr. Modeling Hydrolysis at Dinuclear Iron Centers. J. Am. Chem. Soc., 1994, 116, 8394-5
    [53] Y. H. Dong. L. Que. Jr, Y. Zang, B. G. Fox, et al. A high-valent nonheme iron intermediate, structure and properties of [Fe2(μ-O)2(5-Me-TPA)2] (ClO4) 3. J. Am. Chem. Soc., 1995, 117,2778-92.
    [54] H-F Hsu, Y. H. Dong, L. Que. Jr., et al. Crystal structure of a synthetic high-valent complex with an Fe2(μ-O)2 diamond core. Implication for the core structures of methane monooxygenase intermediate Q and ribonucleotide reductase intermediate X. J. Am. Chem. Soc., 1999, 121,5230-7
    [55] Y. H. Dong, L. Que. Jr. Y. Zang, et al. Models for monheme diiron enzymes. Assembly of a high-valent Fe2(μ-O)2 diamond core from its peroxo precursor. J. Am. Chem. Soc., 1997, 119,12683-4
    [56] H. Zheng, L. Que. Jr, The flexble Fe2μ-O)2 dimond core: A terminal iron (IV)-oxo species generated from the oxidation of a bis(μ-oxo)diiron(III) complex. J. Am. Chem. Soc., 2000, 122, 3789-90.
    [57] S. V. Kryatov, V. R. Akimova, A kinetic study of the formation of a model high-valent diiron non-heme complex [FeIIIFeIV(μ-O)2(tpa)2] 3+ by cryogenic stopped-flow techniques. J. Chem. Soc., Dalton Trans., 1999, 3335-6.
    [58] S. V. Kryatov, V. L. MacMurdo, L. Que. Jr, et al. A mechanistic study of the reaction between a diiron(II) complex [Fe2II(μ-OH)2(6-Me3-TPA)22+ and O2 to
    
    form a diiron(III) peroxo complex. Inorg. Chem., 2001,40, 2220-8.
    [59] D. Lee, S. J. Lippard, J. D Bois, et al. Formation of Fe(III)Fe(IV) species from the Reaction between a Diiron(II) Complex and Dioxygen: Relevance to ribonucleotide reductase intermediate X. J. Am. Chem. Soc., 1999,121,9893-9894
    [60] C. Kim, Y. H. Dong, L. Que. Jr, Modeling nonheme diiron enzyme hydrocarbon hydroxylation and desaturation by a high-valent Fe2O2 diamond core. J. Am. Chem. Soc., 1997, 119, 3635-6
    [61] J. Kim, C. Kim, L Que. Jr., et al. Fe(TPA)-catalyzed alkane hydroxylation. Metal-based oxidation vs radical chain autoxidation. J. Am. Chem. Soc., 1996, 118,4373-9
    [62] I. W. C. E. Arends, K. U. Ingold, D. M. Wayner. A mechanistic probe for oxygen activation by metal complexes and hydroperoxides and its application to alkane functinalization by [FeIIICl2(tris(2-pyridinylmethyl)amine)]+BF4-. J. Am. Chem. Soc., 1995, 117,4710-1
    [63] P. A MacFaul, K.U. Ingold. L. Que. Jr, Aputative monooxygenase mimic which function via well-disguised free medical chemistry. J. Am. Chem. Soc. 1997, 119, 10594-8
    [64] H. Miyake, K. Chen, L. Que. Jr, Intermolecular trapping of a nonheme Fe(IV)=O intermediate, Inorg. Chem., 2001, 40, 13534-8.
    [65] K. Chen, L.Que. Jr, Evidence for the participation of a high-valent iron-oxo species in stereopecific alkane hydroxylation by a non-heme iron catalyst. J. Chem. Soc., Chem. Commun., 1999, 1375-6
    [66] K. Chen, L.Que. Jr. Sterospecific alkane hydroxylation by hon-heme iron catalyst: Mechanislic evidence for an Fe=O active species. J. Am. Chem. Soc. 2001, 123, 6327-137
    [67] K. Neimann, R. Neumann, R. H. Fish. Biomimetic oxidetion studies 11. Alkane functionalization in aqueous solution utilizing in situ formed [Fe2O(η-H2O)(η-OAc)(TPA)2] 3+ as an MMO model precatalyst embedded in surface-derivatized silica and contained in micelles. Inorg. Chem., 1999, 38, 575-80
    [68] A. Rabion, S. Chen, L. Wang, R. H. Fish. Biomimic oxidation studies 9.
    
    Mechanistic aspects of the oxidation of alcohols with functional active site methane monooxygenase enzyme model in aqueous solution. J. Am. Chem. Soc., 1995, 117, 12356-7
    [69] R. A. Leising, J. H. Kim, L Que, Jr. Alkane functionalization at (μ-oxo)diiron(III) centers. J Am. Chem. Soc., 1993, 115, 9524-30
    [70] R. A. Leising, L Que. Jr, Alkane functionalization by non-porphylin iron complexes mechanistic insights. Inorg. Chem. 1990,29: 2553-55
    [71] J. B. Vincent, J. C. Huffman, Modeling the iron sites of iron biomolecules: Synthesis and properties of Fe2O(OAc)2Cl2(bipy)2 and its use as an alkane activation catalyst. J. Am. Chem. Soc., 1988,110, 6898-6900
    [72] R. H. Fish, M. S. Konings, J. B. Vincent, et al. Biomimetic oxidation studies. 5. Mechanistic aspect of alkane functionalization with Fe, Fe2O, and Fe4O2 complexes in the presence of hydrogen perxide. Inorg. Chem., 1991, 30, 3002-6
    [73] S. Menage, J. M. Vincent, M. Fontecave, et al. Alkane oxidetion catalyzed by μ-oxo-bridged diferric complexes: A structure / reactivity correlation study. Inorg. Chem. 1993, 32: 4766-73
    [74] A. E. Shilov, A. A. Shteinman. Oxygen atom transfer into C-H bond in biological and model chemical systems mechanistic aspects. Acc. Chem. Res. 1999, 32: 763-71
    [75] R. M. Buchanan, S. Chen, R. H. Fish. Biomimetic oxidation studies, 8. Strueture of a new MMO active site model: [Fe2O(H2O)2(tris(1-methylimidazol-2-yl methyl)amine)2] 4+ and role of the aqua ligand in alkane functionalization reactons. Inorg Chem, 1994, 33, 3208-9
    [76] M. Kodera, H. Shimakoshi, and N. Kojikano. First example of a rigid (μ-oxo-di-μ-acetato)diiron(III) complex with 1,2-bis[2-di(2-pyridyl)methyl-6-pyridyl]ethane: its efficient catalysis for functionalization of alkanes. J. Chem. Soc. Chem. Commun., 1996,1737-8
    [77] S. Menage, J. M. Vincent, M. Fontcave. μ-Oxo-bridged diion(III) complexes and H2O2: Monooxygenase and catalase-like activities. J. Chem. Soc., Dalton Trans., 1994,2081.
    [78] T. Okuno, S. Ito, S. Ohba, et al.μ-Oxo-bridged diiron(III) complexes and
    
    hydrogen peroxide oxygenation and catalase-like activities. J. Chem. Soc., Dalton Trans., 1997, 3547-51
    [79] S. Nishino, H. Hosomi, Y. Nishida. Selective dioxygenation of cyclohexane catalyzed by H2O2 and dinuclear iron(III) complexes with μ-alkoxo bridges. J. Chem. Soc., Dalton Trans, 1999, 1509-13
    [80] M. C. White, A. G. Doye, A synthetically useful self-assembling MMO mimic system for catalytic alkene epoxidation with apueous H2O2. J. Am. Chem. Soc., 2001,1237: 194-5
    [81] F. C. Bradley, L.Que, Jr. A binuclear iron peroxide complex capable of olefin epoxidation. J. Am. Chem. Soc., 1986, 108: 5027-28
    [82] K. E. Kauffmann, C. Vpopesu. Y. H. Dong. Mossbauer evidence for antisymmetric exchange in a diferric synthetic complex and diferric methane monooxygenase. J. Am. Chem. Soc., 1998, 120: 8739
    [83] A. Starsinopoulos, J. P. Caradonna. Binuclear non-heme iron oxo transfer analogue reaction system: Observation and biological implications. J. Am. Chem. Soc., 1990,112:7071-3
    [84] S. Mukerjee, A. Stassinopoulos. lodosylbenzene oxidation of alkane, alkenes and sulfides catalyzed by binuclear non-heme iron system: comparison of.non-heme Iron Versus Heme Iron oxidation Pathway. J. Am. Chem. Soc., 1997, 119: 8097-8
    [85] N. Kitajima, H. Fukui, Y. Moro-oka et al. A model for methane monooxygenase: Dioxygen oxidation of alkanes by use of a μ-oxo binuclear iron complex. J. Chem. Soc., Chem. Commun. 1988,485-6
    [86] N. Kitajima, M. Ito, H. Fukui. Hydroxylation of alkanes and arenes using molecular oxygea J. Chem. Soc., Chem. Commun., 1991,102
    [87] M. Fontecave, B. Roy, Alkane oxidation by polynuclear non-heme iron complexes: An imidazole effect. J. Chem. Soc., Chem. Commun., 1991, 939-40
    [88] J. M. Vincent, S. B. Barbry, C. Pierre, et al. Selective oxidation of cyclohexane to cyclohexanol catalyzed by a μ-hydroxo diiron(II) complex and TBHP. J. Chem. Soc., Dalton Trans., 1999, 1993-14
    [89] C. Sheu, D. T. Sawyer, Activation of dioxygen by bis[(2-carboxy-6-carboxylato)
    
    pyridine]iron(Ⅱ) for the bromination (via BrCCI_3) and monooxygenation (viaphNHNHPh) of saturated hydrocarbons reaction mimic for methane monooxygenase proteins. J. Am. Chem. Soc., 1990, 112, 8212-4
    [90]Z. Wang, A. E. Martell, J. Reibenspies. The first systematic stability study of mononuclear and dinuclear iron(Ⅱ) and iron(Ⅲ) complexes incorporating a dinucleating macrocyclic ligand in aqueous solution. J. Chem. Soc., Dalton Trans.,1999, 2441-9
    [91]Z. Wang, A. E. Martell, J. H. Reibenspies, et al. Hydroxylation of alkanes by molecular oxygen with dinuclear Fe(Ⅱ) macrocyclic complexes as catalysts. J.Chem. Soc., Chem. Commun., 1998, 1523
    [92]Z. Wang, A. E. Martell, R. J. Motekaitis, et al. Dinuclear Fe(Ⅱ) macrocyclic complexes as catalycts for the oxidation of hydrocarbons by molecular oxygen. Inorg. Chim. Acta, 300-302, 378-83
    [93]魏俊发,俞贤达,金道森。甲烷单加氧酶的手性模型配合物及其催化反应研究。中国科学(B辑),1997,27,549-555
    [94]魏俊发,何地平,俞贤达,金道森。甲烷单加氧酶的化学模拟——酚氧双羧酸根桥联Fe_2(Ⅲ)和Mn_2(Ⅲ)配合物合成表征及催化性能。化学学报,1999,57,415-22
    [95]魏俊发,何地平,俞贤达。双铁核配合物模拟甲烷单加氧酶催化烃类的分子氧氧化。中国科学(B辑),1999,29,56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700