储层流体包裹体技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1984年Haszeldine等在Nature上发表文章指出流体包裹体在储层成岩作用和油气成藏期次研究中的重要应用以来,储层流体包裹体的研究在油气成藏等石油地质领域得到了广泛的应用,是当今石油、天然气研究领域的前沿方向和热点之一,国际石油大公司Conoco、Amoco和Exxon Mobil公司等都是这一技术的积极倡导者和应用者。本文以苏北盆地为例对此开展了深入的研究。
     论文首先提出适用于沉积盆地的储层流体包裹体的系统分类方案:根据流体包裹体的成因不同,结合包裹体的物理化学状态分为两大类:原生与次生流体包裹体;并指出区分原生、次生包裹体的八条原则;最后指出研究对象。
     在此基础上,针对苏北盆地的特定性综合采用紫外荧光光谱、红外光谱和拉曼光谱技术对储层流体包裹体进行了分析。研究表明,紫外荧光分析是识别盐水包裹体和烃类包裹体的一种新方法:盐水包裹体无荧光,烃类包裹体荧光随成熟度不同而变化;红外光谱分析表明,油气多期(次)充注其光谱特征存在较大不同,CH2a/CH3a值越低,油气成熟度越高;低温原位拉曼光谱技术分析结果表明:本区成岩流体的盐类型主要是NaCl,CaCl2型。同时,颗粒荧光指数(GOI)分析表明:高邮凹陷阜宁组不同含油级别储层GOI差异较大,总体上可以GOI=6%来划分储层含油指标。
     论文建立了储层流体包裹体PVT模拟方法,通过FIT软件模拟获得了不同成熟度烃类包裹体的油气组成。从模拟结果来看,随着成熟度增加,总体上甲烷含量增大,符合油气演化规律。
     论文利用流体包裹体势的概念剖析了高邮凹陷沙埝地区和富民地区的油气运移方向。结果显示,沙埝油田成藏期古流体势总体上表现为由西南向东北逐渐降低的趋势;富民油田成藏期流体势变剖面上总体表现为南高北低,层内油气运移方向总体由南向北。结合地层构造趋势及断层封堵性,推测出有利勘探区。
     论文利用石英微裂隙中的流体包裹体面(FIP)特征分析了高邮凹陷构造活动期次,探讨了构造活动与油气成藏的关系。结合构造演化史,最终确定出高邮凹陷深凹带阜宁组经历了4期构造运动,从早到晚依次与阜宁组沉积末期的吴堡构造运动、戴南组沉积时期的真武构造运动、三垛组沉积时期的三垛构造运动、盐城组沉积时期的盐城构造运动相对应。
From the article published on Nature in1984that wrote by Haszeldine etc. which announced the important application of fluid inclusions on the reservoir diagenesis and hydrocarbon reservoir ages, the studies on the fluid inclusions of the reservoir have getting an expensive application in the oil and gas research field, and it is becoming one of the hearty welcome questions and a deeply directions on petroleum and natural gas to study now, most of the international petroleum departments, such as the Conoco, the Amoco and the Exxon Mobil company etc., are the appliers and the urgers. The thesis opens a thorough research to this with Subei basin for the example.
     The thesis puts forward the system classification of fluid inclusions for the very first time which is applicable to the reservoir of deposition basin. According to the different genetic classification and considering the physical chemistry appearance of fluid inclusions under the standard conditions, it is divided into two major type:protogenesis and secondary fluid inclusions; Points out eight principles that living to distinguish:the cracks, the microfissure, the grain sizes, the appearance, the even temperature, the distribution, the volumetric efficiency and the host mineral; pointes out the research object also.
     On this foundation, the thesis have a synthesizes study aiming at the fluid inclusions of the reservoir, Subei basin, through by the ultraviolet spectrum, the infrared spectrum of and the Raman spectrum for the very first time. The research expresses the ultraviolet spectrum analysis is a new kind of methods that identifies from the saltwater inclusions to the hydrocarbon inclusions:the salt water inclusion without fluorescence but the hydrocarbons with the different fluorescence based on the diverse grade of maturity of the oil/gas; the infrared spectrum analysis shows the different characterizes of the diverse migrated time of the oil and gas, the more low of CH2/CH3is, the more high of oil matured degree; the low temperature Raman spectrum technique analysis results the main salt type of the reservoir is a NaCl and CaCl2.In the meantime, the grain fluorescence index number(GOI) analysis enunciates the difference of the reservoirs that with the different oil/gas display of the Gaoyou basin, and GOI=6%is a divide index sign.
     The thesis built up the PVT method for the reservoir fluid inclusions, through the software of FIT get the hydrocarbon compositions of the different matured degree of the hydrocarbon inclusions. The results show the increasing content of CH4with the matured degree of oil/gas in the reservoir which matching the rule of oil/gas evolutionary process.
     The thesis for the first time research the oil/gas migrate direction by the concept of streaming potential of fluid inclusion in the oil zone of Shanian and Fumin, Gaoyou basin. The results shows the reducing tendency from southwest to the northeast of the Shanian oil zone about the streaming potential on the whole of the oil/gas accumulation, the Fumin oil zone with the characters of the reducing tendency from the south to the north on the profile and the oil/gas migration with the tendency from south to the north on the whole. Considering the structural system and the fault plugging of the zone, judging the beneficial exploration area.
     For the first time, the thesis analyzes the tectonic movement to the Gaoyou sag through by the characters of the fluid inclusions plain(FIP), and discusses the relationships between the tectonic movement and the oil/gas accumulation. Considering the structural feature history, the author makes sure that the deep depression of Funing formation of Gaoyou sag get through fourth tectonic movement which matches the fourth tectonic movement:the WuBao in the end of the Funing formation depression, the ZhenWu in the Dainan formation depression, the SanDuo in the Sanduo formation deoression and the YanCheng in the Yancheng formation depression in proper sequence.
引文
[1]卢焕章,范宏瑞,倪陪,欧光习,张文淮.流体包裹体[M].北京:科学出版社,2004.137-146.
    [2]Van den Kerkhof, Ulrich FH. Fluid inclusion petrography[J].Lithos,2001,55:27-47.
    [3]Sterner S M, Bodnar R J. Synthetic fluid inclusions. VII. Reequilibration of fluid inclusions in quartz during laboratory simulated metamorphic burial and uplift[J]. Journal of Metamorphic Geology,1989,7:243-260.
    [4]Barker A J. Post-entrapment modification of fluid inclusions due to overpressure: Evidence from natural samples[J]. Journal of Metamorphic Geology,1995,13:737-750.
    [5]Olsen S N, Frry J M. A comparative fluid inclusion study of the Waterville and Sangerille formation, Southcentral Maine[J]. Contributions to Mineralogy and Petrology,1995,118:396-413.
    [6]Marshall D J. Cathodoluminescence of Geological Materials[M]. London:UnwinHyman, 1988:146.
    [7]Barker C E, Kopp O C. Luminescence microscopy and spectroscopy:Qualitative and quantitative applications[J].Socity of Economic Paleontologists and Mineralogists Short Course[J],1991,25:195.
    [8]Habermann D, Gotze J, Neuser R D,et al. The phenomenon of intrinsic cathodoluminescence:Case studies of quartz, calcite and apatite[J]. Zentralblattf Geologie and Palaeontologie,1999,12:1275-1284.
    [9]Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions[J]. Econ Geol,1988,83:197-202
    [10]KrugerY, Stoller P R, Frenz J M. Femtosecond lasers in fluid-inclusion analysis:Over comingmetastable phase states [J]. European Journal of Mineralogy,2007,19:693-706.
    [11]Goldstein R H, Reynolds T J. Systermatics of fluid inclusions in diagenetic minerals[J].Socity for Sedimentary Geology ShortCourse,1994,31:199.
    [12]Goldstein R H. Petrographic analysis of fluid inclusions. Fluid inclusions analysis and interpretation[J].Mineralogical Association of Canada, Short Course Series,2003,32: 9-53.
    [13]Chi Guoxiang, Lu Huanzhang. Validation and representation of fluid inclusion microthermometric data using the fluid inclusion assemblage(FIA) concept[J]. Acta Petrologica Sinica,2008,24(9):1945-1953.
    [14]Bodnar R J, ReynoldsT, Kuehn C A. Fluid inclusion systematics in epithermal systems[C]//Berger B R, Bethke PM, eds.Society of Economic Geologists, Reviews in Economic Geology,1985,2:73-97.
    [15]Diamond L W. Introduction to gas-bearing aqueous fluid inclusions[C]//Samson I, Anderson A, Marshall D, eds. Fluid Inclusions:Analysis and Interpretation. Mineralogical Association of Canada, Short Course,2003,32:101-159.
    [16]Pasteris J D, Wopenka B, Seitz J C. Practical aspects of quantitative laser Ramanmicroprobe spectroscopy for the study of fluid inclusions[J]. Contributions to Mineralogy and Petrology,1988,
    [17]Linnen R L, Keppler H, Sterner S M. In situmeasurements of the H2O:CO2 ratio in fluid inclusions by infrared spectroscopy [J]. The Canadian Mineralogistl,2004,42:1275-1282.
    [18]Rosasco G J, Roedder E, Simmons J H. Laser-excited Raman spectroscopy for Nondestructive partial analysis of individual phases in fluid inclusions in minerals[J]. Science,1975,190:557-560.
    [19]Rosasco G J, Roedder E. Applications of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phase in fluid inclusions in minerals[J]. Geochim. Cosmochim. Acta,1979,43:1907-1915.
    [20]Rosso K M and Bodnar R J. Microthermotric and Raman spectroscopic detection limits of CO2 in fliud inclusions and the Raman spectroscopic characterization of CO2[J]. Geochimica Cosmochimica Acta,1995,59(19):3961-3975.
    [21]Dhamelincourt P, Beny J M, Dubessy J, Poty B. Analyse dinclusions fluides la microsonde MOLEl'effect Raman[J]. Bull.Mineral.,1979,102:600-610 (in French with English abstract).
    [22]Beny C, Guilhaumou N, Tuoray J C. Native-suphurbearing fluid inclusions in the CO2-H2S-H2O-S system microthermometry and Raman microprobe (MOLE) analysis—thermochemical interpretations[J]. Chemical Geology,1982,37:113-127.
    [23]Touray J C, Guilhaumou N. Characteriration of H2S-bearing fluid inclusions[J]. Bull mineral,1984,107:81-188
    [24]Schrotter H W, Kl"ocner H W. Raman scattering cross- section in gases and liquids. In: Weber A. ed. Raman Spectroscopy of Gases and Liquids[J]. Berlin:Springer-Verlag, 1979,123-166.
    [25]Dubessy J, Poty B, Ramboz C. Advances in C O H N S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions[J]. Eur. J. Mineral.1989,1: 517-534.
    [26]Pasteris J D, Kuehn C A., Bodnar R J. Applications of the laser Raman microprobe RAMANOR U-1000 to hydrothermal ore deposits:Carlin as an example[J]. Econ. Geol,1986,81:915-930.
    [27]Burke E A J, Lustenhouwer W J. The application of a multichannel laser Raman microprobe (Microdil-28) to the analysis of fluid inclusions[J]. Chemical Geology, 1987,61:11-17.
    [28]Wopenka B, Pasteris J D. Raman intensities and detections limits of geochemically relevant gas mixtures for a laser Raman microprobe[J]. Anl. Chem.,1987,59: 2165-2170.
    [29]Wopenka B, Pasteris J D. Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy[J]. Appl. Spectrosc.1986, 40:144-151.
    [30]Seitz J C, Pasteris J D, Wopenka B. Characterization of CO2-CH4-H2O fluid inclusions by microthermometry and laser Raman microprobe spectroscopy: inferences for clathrate and fluid equilibria[J]. Geochim. Cosmochim. Acta,1987,51:1651-1664.
    [31]Pasteris J D, Wopenka B, Seitz J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions[J]. Geochim. Cosmochim. Acta,1988,52:979-988.
    [32]Kerkhof A M van den. The system CO2-CH4-N2 in fluid inclusions:theoretical modeling and geological applications.PhD Thesis, Vrije Universiteit Amsterdam, the Netherlands, 1988,1-206.
    [33]Dubessy J, Poty B, Ramboz C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions[J]. Eur. J. Mineral.1989,1: 517-534.
    [34]黄伟林,薛理辉,彭东涛.利用U—-1000型激光拉曼探针测定流体包裹体气体成分的研究.矿物学报,1990,10(1):1-7.
    [35]徐培苍,李如碧,王永强,王志海.地学中的拉曼光谱.西安:陕西科学技术出版社,1996.102-103.
    [36]张鼐,张大江,张水昌,张蒂嘉.在-170℃盐溶液阴离子拉曼特征及浓度定量分析.中国科学(D辑),2005,35(12):1165-1173.
    [37]陈晋阳,郑海飞,曾贻善.流体包裹体的喇曼光谱分析进展.矿物岩石地球化学通报,2002,21(2):133-138.
    [38]陈勇,周瑶琪,章大港.几种盐水溶液拉曼标准曲线的绘制.光散射学报,2002,14(4):216-223.
    [39]陈勇,周瑶琪,刘超英,颜世永,王强.CH4-H2O体系流体包裹体均一过程激光拉曼光谱定量分析.地学前缘,2005,12(4):592-596.
    [40]陈勇,周瑶琪.天然流体包裹体中甲烷水合物生成条件原位变温拉曼光谱研究.光谱学与光谱分析,2007,,27(8):1547-1550.
    [41]陈勇,周瑶琪,查明,林承焰,王强.CH4-H2O体系流体包裹体拉曼光谱定量分析与计算方法.地质论评,2007,53(6):814-823.
    [42]丁俊英,倪培,饶冰,周进,朱筱婷.显微激光拉曼光谱测定单个包裹体盐度的实验研究.地质论评,2004,50(2):203-209.
    [43]何谋春,张志坚.显微激光拉曼光谱在矿床中的应用[J].岩矿测试,2001,20(1):38-43.
    [44]吕新彪,姚书振,何谋春.成矿流体包裹体盐度的拉曼光谱测.地学前缘,2001,8(4):429-433.
    [45]倪培,Dubyssy J,丁俊英,王天刚,张婷.低温原位拉曼光谱技术在流体包裹体研究中的应用,地学前缘,2009,16(1):173-180.
    [46]徐培苍,李如碧,王永强,王志海.地学中的拉曼光谱[M].西安:陕西科学技术出版社,1996,102-103.
    [47]张鼐,张大江,王大锐,何忠华,马安来.塔里木盆地有机包裹体特征[J].地质科学,2002,37(增刊):113-120.
    [48]Linnen R L, Keppler H, Sterner S M. In situme asurements of the H2O:CO2 ratio in fluid inclusions by infrared spectroscopy[J]. The Canadian Mineralogistl,2004,42: 1275-1282.
    [49]Prionon J, Barres O. Semiquantitative FT- IR microanalysis limits:Evidence from synthetic hydrocarbon fluid inclusions in sylvite [J]. Geochimica et Cosmochimica Acta, 1990,54(3):509-518.
    [50]Pironon J, Thiery R, Teinturier s, et al. Water in petroleum inclusions:evidence from Raman and FT-IR measurements, PVT consequences [J], Journal of Geochemical Exploration,2000,69-70:663-668
    [51]邹育良,霍秋立,俞萱.油气包裹体的显微红外光谱测试技术及应用[J].矿物岩石地球化学通报,2006,25(1):105-108.
    [52]侯启军,冯子辉,邹玉良.松辽盆地齐家一古龙凹陷油气成藏期次研究[J].石油实验地质,2005,27(4):390-39.
    [53]冯乔,马硕鹏,樊爱萍.鄂尔多斯盆地上古生界储层流体包裹体特征及其地质意义[J].石油与天然气地质,2006,27(1):28-32.
    [54]邹育良,俞萱,李松花.利用显微-红外光谱法研究油气成藏期次[J].大庆石油地质与开发,2005,24(3):33-54.
    [55]Celik M, Karakaya N, TemelA.Clayminerals in hydrothermally altered volcanic rocks, Eastern Pontides, Turkey [J].ClaysClay Minerals,1999,47:708-717.
    [56]Wang Q,Zhao ZH, Bao Z W,et al.Geochemistry and petrogenesis of the Tongshankou and Yinzu Adakitic Intrusive Rocks and the associated porphyry copper-molybdenum mineralization in Southeast Hubei East China[J]. Resource Geology,2004,54:137-152.
    [57]Philippot P, Menez B,Simionovici A,etal. X-ray imaging of uranium in individual fluid inclusions[J].Terra Nova,2000,12:84-89.
    [58]Hayashi K, Iida A. Preliminary study on the chemicalmapping of individual fluid inclusion by synchrotron X-ray fluorescence microprobe[J]. Resource Geology,2001, 51:259-262.
    [59]Philippot P, Menez B, Chevallier P, etal. Absorption correction procedures for quantitative analysis of fluid inclusions using synchrotron radiation X-ray fluorescence[J].Chemical Geology,1998,144:121-136.
    [60]Heinrich C A, Ryan C G, Mernagh T P, etal. Segregation of or emetals between magmatic brine and vapor a fluid inclusion study using PIXE microanalysis [J].Economic Geology,1992,87:1566-1583.
    [61]W illiams P J, Dong G Y, Ryan C G, etal. Geochemistry of hypersaline fluid inclusions from the Starra (FeO)-Au-Cu Deposit, Cloncurry District. Queensland[J].Economic Geology.2001,96:875-883.
    [62]Kurosawa M, Shimano S, Ishii S,et al. Quantitative trace element analysis of single fluid inclusions by proton-induced X-ray emission (PIXE):Application to fluid inclusions in hydrothermal quartz[J].Geochimica et Cosmochimica Acta,2003,67:4337-4352.
    [63]Baker T, Achterberg V, Ryan E C G,etal. Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit[J].Geology,2004,32:117-120.
    [64]Mavrogenes J A, Berry A J, Newville M,et al. Copper speciation in vaporphase fluid inclusions from the Mole Granite, Australia[J].American Mineralogist,2002,87: 1360-1364.
    [65]Heinrich C A, Pettke T, Halter W E,et al. Quantitative multielement analysis of minerals, fluid and melt inclusionsby laser ablation inductively coupled plasma mass spectrometry[J]. Geochimica et Cosmochimica Acta,2003,67(18):3473-3496.
    [66]Russo R E, Mao X L, Borisov O V,et al. Influence of wave-length on fractionation in laser ablation ICP-MS[J] Journal of Analytical Atomic Spectrometry,2000, 15(9):1115-1120.
    [67]Horn E E, Tye C T. Analysis of fluid inclusions in minerals by VG laser ablation ICP-MS[C]//Pan-American CurrentResearch on Fluid Inclusions Conference Program and Abstracts.1989,2:32.
    [68]Gunther D, Frischknechrt, Schknechtr. Direct liquid ablation:A new calibration streategy for laser ablation ICP-MS microanalysis of solid and liquids. Fresenius[J].Journal of Chemistry,1997,359(4/5):390-393.
    [69]Moissette A, hepherd T J. henery S R. Calibration strategies forthe elemental analysis of individual aqueous fluid inclusions bylaser abation inductively coupled plasma mass spectrometry [J]. Journal of Analytical Atomic Spectrometry,1996,1(3):177-185.
    [70]Moritz R. Fluid salinities obtained by infrared microthermometry of opaque minerals: Implications for ore deposit modeling—Anote of caution [J] Journal of Geochemical Exploration,2006,89:284-287.
    [71]Mancano D P, Campbell A R. Microthermometry of enargitehosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit[J]. Geochimica et Cosmochimica Acta,1995,59:3909-3916.
    [72]Lders V, Reutel C. Possibilities and limits of infrared microscopy applied to studies of fluid inclusions in sulfides and other opaqueminerals[C]//Pan-American Conference on Research on Fluid Inclusions (PACROFI) VI, Madison, W isconsin, Program and Abstracts,1996:78-80.
    [73]Shannon E, Lindaas J K, CampbellA R. Nearinfrared observation and microthermometry of pyrite Hosted fluid inclusions[J]. Economic Geology,2002,97:603-618.
    [74]Kulis J. Trace Element Control on Near infrared Transparency of pyrite[M]. Unpublishedm thesis, Socorro, New Mexico Institute of Mining and Technology,1999: 271.
    [75]Pecher A. Experimrntal decrepetation and reequilibration of fluid inclusions in aynthetic quartz [J].Tectonophysics,1981,78:567-584.
    [76]Kerrich R. Some effects of tectonic recrystallization on fluid inclusions in vein quartz[J]. Contributions to Mineralogy and Petrology,1976,59:195-202.
    [77]Heinrich W, Gottschalk M.Metamorphic reactions between fluid inclusions and mineral hosts. I. Progress of the reaction calcite+ quartz=wollastonite+CO2 in naturalwollastonite-hosted fluid inclusions [J]. Contributions to Mineralogy and Petrology,1995,122:51-61.
    [78]Kleinefeld B, Bakker R J. Fluid inclusions asmicrochemical systems; evidence andmodelling of fluid host interactions in plagioclase[J].Journal of Metamorphic Geology,2002,20:845-858.
    [79]Mernagh T P, Heinrich C A, Mikucki E J. Temperature gradients recorded by fluid inclusions and hydrothermal alteration at the Mount Charlotte gold deposit, Kalgoorlie, Australia[J].The Canadian Mineralogist,2004,42:1383-1403.
    [80]Walderhaug O. A fluid inclusion study of quartz-cemented sandstones from off shore mid-Norway-possible evidence for continued quartz cementation during oil emplacement[J] Journal of Sedimentary Petrology,1990,60:203-210.
    [81]Leischner K, Welte D H, Littke R. Fluid inclusions and organic maturity parameters as calibration tools in basinmodelling[C]//DoreA G, Augusison JH, StewartD J,etal. Basin Modelling:Advances and Applications. National Petroleum Foundation SpecialPublication,1993,3:161-172.
    [82]Pagel M J, Braun J R, Disnar L,etal.The rmalhistory constraints from studies of organic matter, clay minerals, fluid inclusions, and apatite fission tracks at the Ardeche Paleo-Margin (BA1 Drill Hole, GPF Program), France [J].Journal of Sedimentary Re-search,1997,67:235-245.
    [83]刘德汉,肖贤明,田辉.含油气盆地中流体包裹体类型及其地质意义[J].石油与天然气地质,2008,29(4):491-501.
    [84]刘德汉,卢焕章,肖贤明.油气包裹体及其在石油勘探和开发中的应用[M].广州:广东科技出版社,2007.
    [85]Goldstein R H. Fluid inclusions in sedimentary and diagenetic system [J].Lithos,2001, 55:159-193.
    [86]Muze I A. Petroleum inclusions in sedimentary basins:Systermatic, analytical methods and applications [J].Lithos,2001,55:195-212.
    [87]Muze I A, Johansen H, Holm K,etal.The petroleum characteristics of the froy field and the rind discovery, Norwegian North Sea [J].Marine and Petroleum Geology,1999, 16:633-651.
    [88]Dutkiewicz A, Birger R, Roger B. Oil preserved in fluid inclusions in Archaean sandstones [J]. Nature,1998,395:885-887.
    [89]Bois C, Bouche P,Pelet R.Globalgeologic history and distribution of hydrocarbon reserves[J]. American Association of Petroleum Geologists Bulletin,1982, 66:1248-1270.
    [90]Hobson G D, Tiratsoo E N. Introduction to Petroleum Geology[M].Houston:Gulf Publishing Co.,1981.
    [91]Ungerer P. State of the art of research in kineticmodelling of oil formation and expulsion[J].Organic Geochemistry,1990,16:1-25.
    [92]Hunt J M. Petroleum Geochemistry and Geology[C]//Hunt JM. Freeman and Company.New York:W H Freeman and Company,1996,743.
    [93]Lewan M D. Experiments on the role ofwater in petroleum formation [J].Geochimica etCosmochimica Acta,1997,61:3691-3723.
    [94]Giggenbach W F.Relative importance of the rmodynamic and kinetic processes in governing the chemical and isotopic composition of carbon gases in high heat flow sedimentary basins[J].Geochimica et Cosmochimica Acta,1997.61:3763-3785.
    [95]Mango F D. The origin of light hydrocarbons in petroleum:A kinetic test of the steady-state catalytic hypothesis[J].Geochimica et.Cosmochimica Acta,1990,54: 1315-1323.
    [96]Ueno Y, Yamada K, Yoshida N.etal. Evidence from fluid inclusions form icrobialmethanogenesis in early Archaean era[J]. Nature,2006.440:516-518.
    [97]Buijs C J A,Goldstein R H, Hasiotis S T,etal. Preseervation of microborings as fluid inclusions[J].The Canadian Mineralo-gist,2004,42:1563-1581.
    [98]肖贤明,刘祖发,刘德汉,米敬奎,申家贵,宋之光.应用储层流体包裹体信息研究天然气气藏的成藏时间[J],科学通报,2002,47(12):957-962.
    [99]刘文斌,姚素平,胡文蠹,边立曾,流体包裹体的研究方法及应用[J],新疆石油地质,2003,24(3):264-269.
    [100]欧光习,李林强,孙玉梅.沉积盆地流体包裹体研究的理论与实践[J],矿物岩石地球化学通报,2006,25(1):1-11.
    [101]刘德汉.包裹体研究—盆地流体追踪的有力工具[J],地学前缘,1995,2(4):149-154.
    [102]王飞宇,金之钧.含油气盆地成藏期分析理论和新方法[J].地球科学进展,2002,17(5):754-762.
    [103]孙樯,谢鸿森,郭捷.含油气沉积盆地流体包裹体及应用[J].长春科技大学学报,2000,30(1):42-45.
    [104]高先志,陈发景.应用流体包裹体研究油气成藏期次[J].地学前缘,2002,7(4):548-554.
    [105]Bakker RJ. Raman spectra of fluid and crystal mixtures in the systems H2O-NaCl and H2O-MgCl2 at low temperatures. Applications to fluid inclusion research[J]. The Canadian Mineralogist,2004,42:1283-1314.
    [106]Burke E A J. Raman micro-spectrometry of fluid inclusions[J]. Lithos,2001,55(1-4): 139-158.
    [107]李儒峰,陈莉琼,李亚军等.苏北盆地高邮凹陷热史恢复与成藏期判识[J].地学前缘,2010,17(4):151-160.
    [108]唐焰,陈安定,冯武军.包裹体测温资料在苏北盆地高邮、金湖凹陷油气成藏期研究中的应用[J].石油天然气学报(江汉石油学院学报),2005,27(1):19-20.
    [109]张鼐,毛光剑,王汇彤.大分子烃类拉曼光谱特征及在烃包裹体研究中的意义[J].地球化学,2010,39(4):345-353.
    [110]李荣西,金奎励,廖永胜.有机包裹体显微傅立叶红外光谱和荧光光谱测定及其意义[J].地球化学,1998,27(3):243-249.
    [111]柳少波,顾家裕.流体包裹体成分研究方法及其在油气研究中的应用[J].石油勘探与开发,1997,24(3):29-35.
    [112]张义杰.准葛尔盆地断裂控油的流体地球化学证据[J],新疆石油地质,2003,24(2):100-107
    [113]杨爱玲,唐明明,任伟伟.单个油气包裹体的紫外-可见显微荧光光谱及色度研究[J].光学学报,2011,31(3):0318002-1-0318002-6.
    [114]郝雪峰,宗国洪,熊伟.陆相断陷盆地成藏组合体成藏模式探讨[J],油气地质与采收 率,2002,9(5):11-14
    [115]赵艳军,陈红汉.油包裹体荧光颜色及其成熟度关系[J].地球科学-中国地质大学学报,2008,33(1):92-95.
    [116]Pironon J, Barres.Q. Semi-quantitative FI-IR microanalysis limits:Evidence from synthetic hydrocarbon fluid inclusions in sylvite[J]. Geochem Cosmochim Acta 1990, (54):509-518.
    [117]Pironon J, Thiery R, Teinturier s, et al. Water in pet roleum inclusions:evidence from Raman and FT-IR measurements, PVT consequences [J], Journal of Geochemical Exploration,2000,69-70:663-668.
    [118]B.WoPenka.单个流体包裹体的傅里叶变换红外和喇曼显微光谱法分析[J].Geochimica et Cosmochimica Acta.1990,54:519-533.
    [119]盛英明,夏群科,郝艳涛.大别山双河超高压榴辉岩中的水-微区红外光谱分析[J].地球科学,2005,30(6):673-684.
    [120]孙青,曾贻善.单个流体包裹体成分无损分析进展[J].地球科学进展,2000,15(6):673-677.
    [121]孙青,翁诗甫,张煦.傅立叶变换红外光谱分析矿物有机包裹体的限制[J].地球科学,1998,(3):248-252.
    [122]朱永峰,曾贻善,古丽冰.太行山金矿成矿流体的成分-显微红外光谱研究[J],矿床地质,2000,19(3):265-269.
    [123]陈孔全,陆建林,张玺松辽盆地南部长岭断陷火山岩储层额特征玉勘探潜力[J],地质通报,2011,30(2-3):228-234.
    [124]Dubessy J, Audeoud D, Wilkins R and Kosztolanyi C. The use of the Raman microprobe mole in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions[J]. Chemical Geology,1982,37:137-150.
    [125]Dubessy J, Poty B, Ramboz C. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions[J]. Eur. J. Mineral.1989,1: 517-534.
    [126]Pasteris J D, Wopenka B, Seitz J C. Practical aspects of quantitative laser Raman microprobe spectroscopy for the study of fluid inclusions[J]. Geochim. Cosmochim. Acta,1988,52:979-988.
    [127]Wopenka B, Pasteris J D. Limitations to quantitative analysis of fluid inclusions in geological samples by laser Raman microprobe spectroscopy [J]. Appl. Spectrosc, 1986,40:144-151.
    [128]Wopenka B, Pasteris J D. Raman intensities and detections limits of geochemically relevant gas mixtures for a laser Raman microprobe[J]. Anl. Chem.,1987,59: 2165-2170.
    [129]赵靖舟.油气包裹体在成藏年代学研究中的应用实例分析[J],地质地球化学,2002,30(2):83-88.
    [130]孙秀丽,陈武珍,张晖.有机包裹体的红外光谱研究进展[J],内蒙古石油化工,2009,5-7.
    [131]陈勇,Burke E A J.流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向[J].地质论评,2009,55(6):851-861.
    [132]Samson LM and Walker RT. Cryogenic Raman Spectroscopic studies in the system NaCl-CaCl2-H2O and implications for low temperature phase behaviour in aqueous fluid inclusions[J]. The Canadian Mineralogist,2000,38:35-43.
    [133]倪培,丁俊英,饶冰.人工合成H20及NaCl-H2O体系流体包裹体低温原位拉曼光谱研究[J].科学通报,2006,51(9):1073-1078.
    [134]高先志.高邮凹陷输导体系与油气成藏规律研究.江苏:江苏油田内部资料,2009:55-87.
    [135]米敬奎,张水昌,王晓梅.不同类型生烃模拟实验方法对比玉关键技术[J],石油实验地质,2009,31(4):409-415.
    [136]刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987,7(4):345-352.
    [137]王铁冠,盛国英,陈军红.黔西水域藻煤的生物标志物[J],中国科学(B辑),1995,25(11):1219-1225.
    [138]包建平.未降解原油和生油岩中的25-降藿烷系列[J],科学通报,1996,41(20):1875-1878.
    [139]李亚辉,胡斌.高邮凹陷成藏机理及勘探潜力研究.江苏:江苏油田内部资料,2003:89-133.
    [140]蔡李梅,陈红汉,李纯泉.济阳坳陷东营凹陷沙三中亚段流体包裹体古流体势场恢复[J].石油与天然气地质,2009,30(1):17-25.
    [141]刘斌,沈昆.包裹体流体势图在油气运聚研究方面的应用[J].地质科技情报,1998,17(增刊):81-86.
    [142]葛云锦,陈勇,周瑶琪.实验模拟碳酸盐岩储层包裹体对油气充注的响应[J],地球科学进展,2011,26(10):1050-1056.
    [143]王焕弟,牛滨华,任敦占.隐蔽油气藏勘探现状与对策分析[J].石油地球物理勘探,2004,39(6):739-744.
    [144]邓丽娟,夏连军,张列平等.苏北盆地隐蔽油气藏勘探方法探讨—以高邮凹陷为例[J].复杂油气藏,2009,2(1):14-19.
    [145]薄永德,梁兵,周彬.苏北盆地高邮凹陷隐蔽油气藏勘探方法[J].天然气工业,2007,(增刊):424-427.
    [146]李玉城.苏北盆地高邮凹陷戴南组隐蔽油气藏研究[J].中国石油勘探,2008,(1):21-27.
    [147]朱筱敏.含油气断陷盆地分析.北京:石油工业出版社,1995.105-125.
    [148]李建雄,李明杰.断陷盆地层序地层学解释与隐蔽油气藏勘探[J].石油地球物理勘探,2004,39(5):607-613.
    [149]林畅松,张燕梅.高精度层序地层学和储层预测[J].地学前缘,2002,23(2):111-117.
    [150]刘斌.地壳构造流体.北京:科学出版社,2008:133-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700