天然气水合物藏降压开采实验与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然气水合物以其巨大的资源量成为能源开发的热点。在油气资源日趋紧张的形势下,合理开发天然气水合物藏,可以缓解目前社会所面临的能源危机。世界各国政府都高度重视对天然气水合物开采的基础研究,降压法是开发天然气水合物藏的一种重要的方法。在天然气水合物的降压开采过程中,天然气水合物在多孔介质中的形成与分解对储层参数(如饱和度、渗透率、孔隙度、声波波速、岩电阻率)的影响,一些重要的开发参数(如水合物饱和度)的测试和定量解释,地层水中的盐浓度、水合物饱和度的分布对水合物藏的开发动态的影响,相应的数学模型和数值模拟研究等问题是天然气水合物开发领域的前沿课题。目前,国内外对这方面的研究尚十分欠缺。
     本研究从室内实验、理论研究和数值模拟三个方面出发,对以上问题进行了研究。研究分两条主线:一是实验研究,主要进行天然气水合物实验设备的研制、储层物性测量和开采实验;二是数值模拟研究,包括天然气水合物开采数学和数值模型的建立、相应计算程序的编制和数值模拟。
     在充分调研的基础上,设计了天然气水合物储层物性测量及开采实验系统和一维天然气水合物电阻率测量实验装置,专门用于水合物储层参数变化规律实验研究和水合物储层电阻率测量;建立了含盐富水相天然气水合物储层开采数学模型,该模型可以描述三相(气、液、水合物)八组分水合物储层开采的多相非等温渗流。研究得出了如下结论:
     (1)实验验证了储层渗透率和孔隙度随水合物饱和度的变化规律,提出了新的描述储层渗透率和水合物饱和度之间关系的指数型关系式;验证了水溶液中盐组分的存在可引起甲烷水合物相平衡曲线向左移动,回归了新的盐浓度与过冷度关系的经验公式。
     (2)提出描述储层声波波速与水合物饱和度的修正的威利方程,可以解释储层的水合物饱和度。
     (3)提出了适用于含盐富水相的天然气水合物体系的饱和度电阻率解释模型,并进行了一维天然气水合物电阻率测量实验,利用水合物饱和度电阻率解释模型可以确定水合物饱和度分布。
     (4)提出天然气水合物加热分解的动力学理论假设,并分析了天然气水合物降压与加热分解的综合过程,使建立的天然气水合物开采数学模型可以描述降压和加热开采过程。在所建立的含盐富水相天然气水合物储层开采数学模型中,包括组分质量守恒方程、能量守恒方程以及气组分、盐和抑制剂的输运方程、天然气水合物的分解动力学方程。该模型较全面地反映了含盐富水相天然气水合物储层开采的作用机理。
     (5)应用有限差分法对含盐富水相天然气水合物储层开采数学模型进行了离散。数学模型的求解方法采用变量逐次求解的方法,即在一个时间步长之内依次求解压力、饱和度、温度、气相组分分数、盐或抑制剂的浓度分布。实践表明,该计算方法既满足了数值计算的需求,又使得处理过程变得相对简单。
     (6)利用所编制的含盐富水相天然气水合物藏储层开采数值模拟程序,对一维甲烷水合物降压开采实验进行了数值模拟。讨论了水合物降压开采的影响因素。结果表明,水合物饱和度分布、储层水溶液的盐浓度等因素对水合物降压开发动态具有明显的影响。
Natural gas hydrate (NGH) is regarded as the development focus of energy for its large reserve. With the severe situation of oil and gas resources being less and less, the energy crisis in current society can be alleviated by the rational development of NGH reservoir. The governments all around the world pay high attention to the fundamental research of NGH exploitation. Depressurization is an important method of developing NGH reservoir. The forward topics on the NGH development include: the impact of the formation and decomposition of NGH in porous media during depressurizing development on the reservoir parameters (such as saturation, permeability, porosity, acoustic velocity, rock resistivity); the measurement and quantitative interpretation of some important development parameters (such as the NGH saturation); the impact of the distribution of salt concentration of reservoir water and the NGH saturation on the development performance, and the study on mathematical model and numerical simulation. So far, there is little research on the subject at home and abroad.
     These problems are studied through laboratory experiment, theoretical research and numerical simulation in this paper. There are two main line: one is experimental research, including the development of NGH experimental equipment, the measurement of NGH reservoir physical properties and the experiment of NGH development, the other is numerical simulation study, including the construction of mathematical and numerical model, the programming of corresponding software and the numerical simulation. On the basic of full investigation two sets of devices for hydrate experiment are designed: one for measuring the physical properties and developing the NGH reservoir, the other for measuring the one-dimension resistivity of NGH. These devices are specially used to study the variations of reservoir parameters and measure the resistivity of hydrate reservoir. A three-phase (gas, water and hydrate), eight-component mathematical model for NGH reservoir of the salt-containing, water-rich phase is presented, which can describe multiphase, non-isothermal seepage.The conclusions are as follows:
     (1) The law of reservoir permeability and porosity with hydrate saturation is testified. Exponential-type formula, a new formula for describing the relationship between the permeability and saturation is presented. The left shift of methane hydrate phase-equilibrium curve caused by salt component in the solution is testified, a new empirical formula between salt concentration and super-cooling degree is regressed.
     (2) The modified formula of Wyllie equation, which describes the relationship between acoustic velocity and hydrate saturation in the reservoir, can interpret the hydrate saturation.
     (3) Saturation resistivity interpretation model suitable for NGH system of salt-containing, water-rich phase is proposed, which is suitable for resistivity log interpretation of saturation in the hydrate reservoir. One-dimensional measurement experiment of resistivity is carried out, and resistivity explanation model is used to obtain the distribution of hydrate saturation.
     (4) The kinetic hypothesis of NGH’s thermal decomposition is presented, and the integrated process of the depressurization and thermal decomposition is analyzed. Therefore, the mathematical model can be applied for the depressurizing and heating process. The mathematical model mentioned above includes mass conservation equation of the components, energy conservation equation, transport equation of gas components, salt and inhibitor, and decomposition kinetic equation of NGH. The factors, such as temperature, components, phase equilibrium, are fully considered in the multiphase seepage model, so as to well describe the development mechanism of salt-containing, water rich phase NGH reservoir.
     (5) The mathematical model is discretized by finite difference method and solved by sequential solution method, which is to successively solve the pressure, saturation, temperature, mass fraction of gas phase, the distribution of salt or inhibitor in a time step. It is proved that this method not only meets the demand of numerical calculation, but also simplifies the processing procedure.
     (6) The self-made program is used in the one-dimensional depressurization numerical simulation of methane hydrate and the influencing factors of depressurization are analyzed. The results suggest that the factors, such as distribution of hydrate saturation and salt concentration of reservoir solution, have a great effect on depressurized development performance of the hydrate.
引文
[1]郑军卫编译.美国国家甲烷水合物多年研发计划简介[J].天然气地球科学,2001,12(1-2)
    [2]曾繁彩,吴琳,何拥军.国外天然气水合物调查研究综述[J].海洋地质动态,2003,19(11):19-23
    [3]许红,王建桥等.国际天然气水合物调查研究现状及其主要技术构成[J] .中国地质,2001,28(3):1-4
    [4]宋海斌,松林修.日本的天然气水合物地质调查工作[J].天然气地球科学,2001,12(1-2)
    [5]赵生才编译.德国气水合物研究计划简介.天然气地球科学[J],2001,12(1-2)
    [6]何拥军,陈建文,曾繁彩,等.世界天然气水合物调查研究进展.海洋地质动态[J],2004,20(6):43-46
    [7] G J Moridis.Numerical Simulation Studies of Thermally-Induced Gas Production From Hydrate Accumulations With No Free Gas Zones at the Mallik Site[J],Mackenzie Delta,Canada.SPE 77861
    [8] Mehran Pooladi-Darvish.Gas production from hydrate reservoirs and its modeling [J].SPE 86827
    [9]栾锡武,赵一阳,秦蕴珊,等.海洋沉积中的天然气水合物及其在我国边缘海域的研究进展[J].海洋科学,2001,25(6):23-24
    [10]全志利,伊尧国,孙良传.开发我国天然气水合物资源的探讨[J].天津城市建设学院学报,2001,7(3)
    [11]高爱国.天然气水合物研究及我国的对策[J].海洋地质动态,2001,17(3):1-5
    [12]赵生才.天然气水合物研究现状及我国对策——香山科学会议第160次学术讨论会观点摘要[J].地球科学进展, 2002(3):158-161
    [13]胡春,裘俊红.天然气水合物的结构性质及应用[J].天然气化工.2000,25(4):48-52
    [14]徐国强,吕炳全,王红罡.天然气水合物的特征及环境意义[J].上海地质.2000(2): 24-28
    [15]孙萍.天然气水合物-二十一世纪的新能源[J].海洋地质动态.1998,193(12):3-6
    [16]金庆焕,张光学,杨木壮等编著.天然气水合物资源概论[M].北京:科学出版社,2006:32-35.
    [17] Moridis G. J., 2002. Numerical studies of gas production from methane hydrates[J]. SPE87330,1-11.
    [18] Kobayashi R, Katz D L. Vapor-liquid equilibria for binary hydrocarbon-water systems[J]. Industry Engineering and Chemistry, 45, 440-451.
    [19] Hyndman R.D, Davis E E. 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J]. J.Geophys.Res.,B, Solid Earth and Planets, 97(5): 7025~7041.
    [20] Hyndman R.D, Foucher J P,Yamano M et al.1992. Deep sea bottom-simulating reflectors: calibration of the base of the hydrate stability field as used for heat flow estimates[J]. Earth and Planetary Science Letter, 109: 289-301.
    [21] Roo, J de. , Peters, C.J., Lichtenthaler, R.N., and Diepen, G.A.M., 1983. Occurrence of methane in hydrate-bearing sediments and unsaturated solutions of sodium chloride and water in dependence of temperature and pressure[J]. AIChE Journal, 29:651-657.
    [22] Dickens, G.R., and Quinby-Hunt, M.S., 1994. Methane hydrate stability in seawater. Geophys[J]. Res. Lett., 21:2115-2118.
    [23]前川龙男等.甲烷水合物合成实验和稳定条件研究[J].地球,1996,181(10):20-25.
    [24] Dholabhai, P., N. Kalogerakis, P.R. Bishnoi. 1993. Kinetics of methane hydrate formation in aqueous electrolyte solutions[J]. Can. J. Chem. Eng. 71: 68–74.
    [25] Dickens, G.R., Quinby-Hunt, M.S., 1994. Methane hydrate stability in seawater[J]. Geophys. Res. Lett., 21:2115-2118.
    [26] Paull, C.K., Buelow, W. J., et al., 1996. Increased continental-margin slumping frequency during sea-level low-stands above gas hydrate-bearing sediments[J]. Geology, 24(2):143-146
    [27] Klausner, Y., 1991, Fundamentals of continuum mechanics of soils[J]. London, Springer-Verlag, 607
    [28] Clennell, M.B., Hovland, M, Booth, J.S., Henry, P., Winters, W.J., 1999. Formation of natural gas hydrates in marine sediments: Part 1. Conceptual model of gas hydrate growth conditioned by host sediment properties. J. Geophys.Res[J]. 104 (B 10), 22985-23003.
    [29] Handa Y P, Stupin D. Thermodynamic properties and dissociation characteristics of methane and propane hydrates in 70-?-radius silica-gel pores[J]. Phys.Chem., 1992, 96: 8599-8603.
    [30] Zakrzewski, M. and Handa, Y.P., Thermodynamic properties of ice and of tetrahydrofuran hydrate in confined geometries, Journal of Chemical Thermodynamics[J],1993(25): 631–637.
    [31] Melnikov, V., and Nesterov, A., 1996, Modeling of gas hydrates formation in porous media, in 2nd international conference on natural gas hydrates proceedings[J]: ENSIGC-INPT, Toulouse, France, p. 541-548.
    [32] Ruppel, C. Anomalously cold temperatures observed at the base of the gas hydrate stability zone on the U.S. Atlantic passive margin[J]: Geology, 1997,25(8):699-702.
    [33] Henry, P., Thomas, M.; Clennell, M.B. Formation of Natural Gas Hydrates in Marine Sediments 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments[J], ? J. Geophys. Res., 1999(104):23005-23022.
    [34] Paull, C. K., Beulow, W. J., Ussler, W., III, and. Borowski, W. S. Increased continental margin slumping frequency during low-stands above gas hydrate-bearing sediments[J]. Geology,1996, 24(2):143-146.
    [35] Sloan, E. D., 1990. Clathrate Hydrates of Natural Gases[J]. Marcel Dekker, New York. 641
    [36] E.D. Sloan, Jr.. Clathrate Hydrate of Natural Gases[J]. New York, Marcel Dekker, Inc, 1998.
    [37] Wonmo S., Hoseob L., Sunjoon K..Experimental Investigation of Production Behaviors of Methane Hydrate Saturated in Porous Rock[J]. Energy Sources, 2003; 25:845-856.
    [38]樊栓狮,石磊,郭彦坤,等.甲烷气体水合物相平衡测试新装置及新方法[J].天然气工业,2001,21(3):71-73.
    [39] Smith, D.H., Joseph W. W., Kal S. et al.Equilibrium Pressure and Temperatures for Equilibria Involving sI and sII Hydrate,Liquid Water,and Free Gas in Porous Media[C], Proceedings of the Fourth International Conference on. Gas Hydrates, Yokohama, Japan, 2002: 295-300.
    [40] Zhang, W., J.W. Wilder, and D.H. Smith.Interpretation of ethane hydrate equilibrium data for porous media involving hydrate-ice equilibria[J]. Aiche Journal, 2002; 48(10): 2324-2331.
    [41] Zhang, W., J.W. Wilder, and D.H. Smith.Methane hydrate-ice equilibria in porous media[J]. Journal of Physical Chemistry B, 2003; 107(47): 13084-13089.
    [42] Zhang, W., J.W. Wilder, and D.H. Smith.Equilibrium Pressures and Temperatures for Equilibria Involving Hydrate,Ice,and Free Gas in Porous Media[C], Proceedings of the Fourth International Conference on. Gas Hydrates, Yokohama, Japan, 2002: 321-326.
    [43] Turner, D. and E.D. Sloan.Hydrate Phase Equilibria Measurements and Predictions inSediments[C], Proceedings of the Fourth International Conference on. Gas Hydrates, Yokohama, Japan, 2002: 327-330
    [44]张剑,业渝光.天然气水合物探测技术的模拟实验研究[J].海洋地质动态,2003,19(6):28-30
    [45]业渝光,张剑,刁少波.海洋天然气水合物模拟实验技术[J].海洋地质与第四纪地质,2003,23(1):119-123
    [46]刘昌岭,业渝光.海洋天然气水合物生成机制的实验研究[J].海洋地质与第四纪地质,2003;23(2):90-96
    [47] Youslf M.H., Sloan E.D..Depressurization of Natural Gas Hydrate in Berea Sandstone Cores[J] . Journal of Inclusion Phenomena and Molecular Recognition in Chemistry, 1990( 8):71-88.
    [48] Youslf M.H., Sloan E.D..Experimental Investigation of Hydrate Formation and Dissociation in Consolidated Porous Media[J].SPERE, 1991, 11:452-458.
    [49] Buffett B.A., Zatsepina O.Ye.Formation of Gas Hydrate from Dissolved Gas in Natural Porous Medium[J].Marine Geology, 2000,164:69-77.
    [50] Booth J.S., Winters W.J, Dillon W.P..Apparatus Investigates Geological Aspects of Gas Hydrates[J].Oil & Gas Journal, 1999, 8(4):63-69.
    [51] Wonmo S., Hoseob L., Sunjoon K..Experimental Investigation of Production Behaviors of Methane Hydrate Saturated in Porous Rock[J]. Energy Sources, 2003, 25:845-856.
    [52] Wonmo S., Hoseob L., Hojoon Y..An Experimental Study for Hydrate Dissociation Phenomena and Gas Flowing Analysis by Electric Heating Method in Porous Rocks_korean[J]. Korean Chem. Eng. Res., 2004, 42(1):115-120.
    [53] Charles E. Taylor. Large-volume, High-pressure View Vell Helps Fill Gaps in Understanding of Methane Hydrate Behavior[R], Fire in the Ice Newsletter, Summer, USA: The National Energy Technology Laboratory, 2004: 10-12.
    [54]梅东海,廖健,王璐琨,等.气体水合物平衡生成条件的测定及预测[J].高校化学工程学报,1997,11(3):225-230
    [55]马荣生,孙志高,樊栓狮,等.气体水合物生成条件研究[J].扬州大学学报(自然科学版),2002,5(2):49-52
    [56]郝永卯.天然气水合物开采理论与技术研究[D].东营:中国石油大学(华东), 2006
    [57] Minagawa H., Masuda Y., et al. Water Permeability Measurements of Gas Hydrate-bearing Sediments[C]. Proceedings of 5rd International Conference on Gas Hydrates, Trondheim, Norway, 2005.
    [58] Ring J. N., Wattenbarger R. A., Keating J. F., and Peddibhotla S., Simulation of Paraffin Deposition in Reservoirs[J], SPE Production & Facilities, 9, 36 (Feb. 1994).
    [59] Koh C. J., Dagenais P. C., Larson D. C., and Murer A. S., Permeability Damage in Diatomite Due to In-Situ Silica Dissolution Precipitation[C], Proc. of 1996 SPE/DOE Tenth Symp. on Improved Oil Recovery, Tulsa, OK, Paper SPE/DOE 35394, 511 (Apr. 21-24, 1996).
    [60] Civan F., Scale Effect on Porosity and Permeability: Kinetics, Model, and Correlation[J]. AIChE Journal, 2001, 47: 271-287
    [61] Chuvilin, E.M., T. Ebinuma, Y. Kamata, T. Uchida, S. Takeya, J. Nagao, and H. Narita, Effects of temperature cycling on the phase transition of water in gas-saturated sediments[J], Can. J. Phys., 81 (1-2), 343-350, 2003.
    [62]黄犊子,樊栓狮.水的形态与甲烷水合物的生成[J].天然气工业, 2004, 24(7): 29-31
    [63] Zhong Y, Rogers R.E. Surfactant effects on gas hydrate formation[J]. Chem. Eng. Sci., 2000, 55: 4175~4187
    [64] Zhang C S. Effects of chemical additives on formation process and performance of natural gas hydrate [D]. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, 2003
    [65] E.D. Sloan,Jr..Clathrate Hydrate of Natural Gases[J]. New York, Marcel Dekker, Inc,1998.
    [66]郝永卯,薄启炜,陈月明等.天然气水合物降压开采实验研究[J].石油勘探与开发,2006,33(2):217-220.
    [67] T. J. Kneafsey, Methane hydrate formation and dissociation in a partially saturated core-scale sand sample[J], Journal of Petroleum Science and Engineering 2007,56: 108-126
    [68]陈光进,马庆兰,郭天民等.水合物模型的建立及在含盐体系中的应用[J].石油学报,2000,21(1):64-70.
    [69] PatelN C, Teja A S. A new cubic equation of state for fluids and fluid mixtures[C]. Chem. Eng. Sci. 1982, 37: 463-473.
    [70] Zuo Y X, Guo T M. extension of the Patel-Teja Equation of state to the prediction of the solubility of natural gas in formation water [C ].Chem. Eng. Sci. 1991, 46: 3251-3258.
    [71] Barkan E S, Sheinin D A. A general technique for the calculation of formation conditions of natural gas hydrates[C]. Fluid Phase Equilibria.1993, 86: 111-136.
    [72] Moridis G. J., 2002. Numerical studies of gas production from methane hydrates[J]. SPE87330,1-11.
    [73]宋海斌,松林修,吴能友,郝天珧,等.海洋天然气水合物的地球物理研究(Ⅰ)岩石物性[J].地球物理学进展,2001,16(2):118-126.
    [74] Wyllie, M., Gregory, A., and Gardner, G., 1956, Elastic wave velocities in heterogeneousand porous media[J]. Geophysics, 21, 41–70.
    [75] Wyllie, M., Gregory, A., and Gardner, G., 1958, An experimental investigation of factors affecting elastic wave velocities in porous media[J]. Geophysics, 23, 459–493.
    [76]郭平,刘士鑫,杜建芬编著.天然气水合物气藏开发[M].北京:石油工业出版社,2006,8:76-77.
    [77]孙宝佃,张银海,陈守军等.岩电影响因素实验及数据处理方法[J].测井技术,2006,30(6):493-496.
    [78]丁次乾主编.矿场地球物理[M].山东东营:石油大学出版社,2002.8:15.
    [79] Naval Goel,Michael Wiggins,Subhash Shah.Analytical modeling of gas recovery from in situ hydrates dissociation[J].Journal of Petroleum Science and Engineering,2001,29:115-127
    [80] M H Yousif,H H Abass,M S Selim,et al.Experimental and theoretical investigation of methane-gas-hydrate dissociation in porous media[J]. SPE 18320,1991
    [81] Wim J.A.M.Swinkels, Rik J.J.Drenth.Thermal Reservoir Simulation Model of Production from Naturally Occurring Gas Hydrate Accumulations[J].SPE 56550
    [82] Wim J.A.M Swinkels,Rik J.J.Drenth.Thermal Reservoir Simulation Model of Production from Naturally Occurring Gas Hydrate Accumulations[J].SPE 68213
    [83] G J Moridis.Numerical Studies of Gas Production From Methane Hydrates[J].SPE 75691
    [84] G J Moridis.Numerical Simulation Studies of Thermally-Induced Gas Production From Hydrate Accumulations With No Free Gas Zones at the Mallik Site,Mackenzie Delta,Canada[J].SPE 77861
    [85] G J Moridis,T S Collett,S R Dallimore,et al.Numerical Studies of Gas Production From Several CH4-Hydrate Zones at the Mallik Site,Mackenzie Delta,Canada[J].LBNL 50257
    [86] W K Sawyer,C M Boyer,J H Frantz,et al.Comparative Assessment of Natural Gas Hydrate Production Models[J].SPE 62513
    [87] G D Holder,P K Angert.Simulation of Gas Production From a Reservoir Containing Both Gas Hydrates and Free Natural Gas[J].SPE 11105
    [88] P L McGuire . Recovery of Gas From Hydrate Deposits Using Conventional Technology[J].SPE/DOE 10832
    [89] Kim, H. C., Bishinoi, P. R., Heidemann, R. A. and Rizvi, S. S. H., 1987. Kinetics ofmethane hydrate dissociation[C]. Chem. Eng. Sci., 42(7):1645-1653.
    [90]塔雷克·艾哈迈德.油藏工程手册[M].北京:石油工业出版社,2002,3:35-38,38-42,44-46,75-76
    [91] Lake, L. W., 1989. Enhanced Oil Recovery. Prentice-Hall Inc[J]. Upper Saddle River, NJ.
    [92] Kamath, V. Study of heat transfer characteristics during dissociation of gas hydrate in porous media. PhD thesis[D], University of pittsburgh, Pittsburgh, 1983
    [93] B.E.波林,J.M.普劳斯尼茨,J.P.奥康奈尔.气液物性估算手册[M].北京:化学工业出版社,2005,12:411-420,456-457,474-477
    [94]李庆扬,关治,等.数值计算原理[M].北京:清华大学出版社,2000
    [95]张烈辉.油气藏数值模拟基本原理[M].北京:石油工业出版社,2005,8:85-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700