用户名: 密码: 验证码:
高含硫天然气集输管道腐蚀与泄漏定量风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合“大型油气田及煤层气开发”国家科技重大专项“高含硫气藏安全高效开发技术研究”项目(2008ZX05017)所属课题“高含硫气田集输工艺与安全控制技术”,系统开展高含硫天然气集输管道腐蚀与泄漏定量风险研究,通过理论研究、数值计算和计算机仿真,在高含硫天然气集输管道腐蚀因素分析、腐蚀泄漏风险定量预测、腐蚀泄漏预警研究、腐蚀泄漏风险评价指标体系及方法、腐蚀泄漏检测优化等方面取得较大的研究进展。主要研究成果总结如下:
     1高含硫天然气集输管道腐蚀因素分析
     高含硫天然气集输管道腐蚀影响因素主要为内腐蚀、埋地金属腐蚀和大气腐蚀。内腐蚀影响因素包括产品腐蚀和管道内防护;埋地金属腐蚀包括地下环境、阴极保护和包覆层;大气腐蚀包括大气暴露、大气类型和包裹层等因素。分析流速、压力、温度等管道运行参数对内腐蚀的影响,用灰色关联度方法辨识内腐蚀的主要影响因素为硫化氢含量。并用事故树方法对高含硫天然气集输管道腐蚀因素进行系统分析,得出各因素的结构重要度及导致腐蚀失效发生的最小割集。
     2高含硫集输管道腐蚀泄漏风险定量预测
     应用CFD(Computational Fluid Dynamics)方法定量预测高含硫天然气集输管道泄漏后果,构建集气站高含硫天然气泄漏CFD模型,并探讨网格依赖性、风场一致性和模型有效性对CFD模拟的影响。实现对多种工况高含硫天然气泄漏后果的预测。预测结果表明,各种工况下人员中毒风险较大,且明显高于可燃气体燃爆风险。提出复杂山区地形CFD网格生成技术。通过处理待建模地区的GIS数据,获取分别对应于经度、纬度和海拔高度的坐标,确定参考点并转换为平面直角xyz坐标并以此为基础,构建真实地形CFD网格。实现对高含硫天然气复杂山区地形扩散后果的真实预测,并以某泄漏工况为例,预测山区地形高含硫天然气泄漏后30 min内的扩散后果。提出CFD与中毒剂量反应模型结合的人员急性中毒定量评估技术,通过CFD计算泄漏毒气的实时浓度场,根据浓度场和暴露时间确定人员暴露剂量,由剂量反应模型确定人员死亡百分比。对高含硫天然气集气站人员中毒风险进行定量分析,以某泄漏工况为例,评估人员静止不动和在应急撤退过程中的中毒死亡百分比。
     3高含硫集输管道腐蚀泄漏预警方法
     提出高含硫天然气集输管道腐蚀穿孔预警技术方案,包括集输管道腐蚀风险辨识、腐蚀风险预测预警及腐蚀穿孔应急控制三个阶段,并对各阶段适用的技术方案进行详细分析,可为相关预警及应急提供可靠的决策依据。
     建立可用于预警系统的多种腐蚀速率预测数学模型,包括灰色模型、BP神经网络模型、Monte-Carlo模型、灰色神经网络模型,并对各种预测模型的预测精度进行对比,可为腐蚀泄漏预警提供决策参考。
     提出基于剩余强度评估的腐蚀降低管道输送能力预警方法,明确腐蚀管道预警事件分级标准及相应预警阈值。
     4高含硫集输管道腐蚀泄漏风险评估指标体系
     构建高含硫天然气集输管道腐蚀风险评估指标体系,由腐蚀指数评估管道腐蚀相对风险。腐蚀指数包括大气腐蚀指数、内腐蚀指数和埋地金属腐蚀指数三部分,每部分又包括若干二级指标和三级指标。给出各指标的详细评分标准,各项指数累计评分之和即为管道腐蚀相对风险,范围0~100分,分值越高腐蚀风险越小。
     为减小评分法的主观不确定因素,引入层次分析法根据各评分专家的知识背景、工作经历、专业特长等因素来确定评分专家对内腐蚀指数、大气腐蚀指数和埋地金属腐蚀指数的评分权重。通过权重与各专家评分值相乘并累计相加得出最后的腐蚀指数评分结果,增加了腐蚀指数评分法的客观性。
     探讨管道腐蚀相对风险和绝对风险的关系,建立腐蚀指数相对风险值与腐蚀速率及可能导致腐蚀穿孔失效时间的对应关系,使得腐蚀指数风险评估结果的直观性得以增加。
     5高含硫集输管道腐蚀泄漏检测优化
     提出基于CFD的高含硫天然气泄漏检测优化方法。以高含硫天然气集气站为例,研究气体检测报警仪的布置优化,构建集气站CFD模型,并将站内气体检测报警仪设置为模型中的监测点,通过对天然气泄漏及扩散过程的数值模拟获得各监测点的甲烷和硫化氢浓度。据此对可燃气体检测报警仪布置高度、可燃及有毒气体检测报警仪探测有效性及反应时间进行了分析,提出了高含硫气田集气站气体检测报警仪布置优化的建议。
Quantitative risk research on corrosion and leakage of high sulfide natural gas gathering pipeline was systemically conducted in this dissertation, which is a part of the sub-topics‘gathering process and safety control techniques in high sulfide gas field’of national science and technology special project“Large-scale oil & gas fields and coal bed gas Exploitation”(No. 2008ZX05017).
     Through theoretical research, numerical calculation and computer simulation, progress were made in these aspects including the corrosion factors of high sulfide natural gas gathering pipeline, quantitative risk prediction on corrosion and leakage, pre-warning technique on corrosion and leakage, risk evaluation index system and measures of corrosion and leakage, inspection method optimization on corrosion and leakage and so on. The main works are summarized as follows:
     1 Analysis on Corrosion Factors of High Sulfide Natural Gas Gathering Pipeline
     There are three types of corrosion factors in high sulfide natural gas pipeline including internal corrosion, buried metal corrosion and atmospheric corrosion. The internal corrosion mainly includes products corrosion and inside corrosion protection of the pipe; the buried metal corrosion mainly includes underground environment factors, cathodic protection and coating; atmospheric corrosion mainly includes atmospheric exposure, atmospheric type and wrapped layer and so on. The influence of pipeline operation parameters such as flow rate, pressure and temperature to the internal corrosion was analyzed. Hydrogen sulfide concertration, the main influence factor leading to internal corrosion was identified based on grey relevance method. Detailed analysis on corrosion factors of the high sulfide gas pipeline was conducted by means of Fault Tree Analysis, the structure importance degree of each factor and the minimal cut sets causing corrosion failure were figured out.
     2 Quantitative Risk Prediction on Corrosion and Leakage of High Sulfide Natural Gas Gathering Pipeline
     Quantitative risk prediction for the consequence caused by leakage of high sulfide gathering pipeline was systematically conducted using Computational Fluid Dynamics(CFD) method. The CFD model of high sulfide natural gas leakage in gas station was established. Also the influence of grid dependency, horizontal homogeneity of Atmospheric Boundary Layer, and validity of model were take into consideration. The prediction of the consequences as result of leakage of high sulfide natural gas under a variety of working conditions was achieved. The prediction results show that the risk of individual poisoning was obviously higher than the risk of explosion of inflammable gas.
     The technic of computation grid generation over complex mountainous terrain was presented. First, GIS data of pre-modelling terrain was dealed to get the coordinate of the longitude, the latitude and the altitude. Then the reference point was fixed meanwhile the coordinates were transformed to planimetric rectangular coordinates with a XYZ format. Finally the CFD mesh of real terrain was established to make realistic prediction of dispersion consequence in result from the high sulfide natural gas leakage over complex mountainous terrain. A case study under some working condition has been carried out to making prediction for the dispersion rules of high sulfide natural gas accidental leakage over complex mountainous terrain in 30 min.
     A CFD numerical simulation and dose–response model combined approach has been proposed for quantitative analysis of acute toxic gas exposure threats. First the toxic gas concentration distribution in time and space was got by CFD simulation, then toxic dose according to gas concentration and exposure time was calculated. Evaluating exposure personnel death percentage according to dose reaction model is the last step. Quantitative risk analysis of individual poisoning in high sulfide natural gas station was conducted. An example of leakage under a certain working condition was studied to evaluate the personnel poisoning death percentage assuming workers stay at original exposure location without moving or make emergency evacuation.
     3 Pre-Warning Research on Corrosion and Leakage of High Sulfide Natural Gas Gathering Pipeline
     The technical flowchart of pre-warning system on corrosion and perforation of high sulfide natural gas gathering pipeline has been presented. The pre-warning contains three stages including gathering pipeline corrosion risks identification, corrosion risks prediction and pre-warning, corrosion and perforation emergency response and control. Detailed technical analysis of every stage has been conducted. This work could provide dependable references for the decision making of pre-warning and emergency responses in related areas.
     The prediction mathematical models under multiplicate corrosion rates for pre-warning system were set up including the grey model, BP neural network model, Monte-Carlo model and grey neural network model, which could provide dependable references for the decision making of pre-warning on corrosion and leakage.
     A remaining strength assessment based pre-warning method of corroded pipelines transmission capacity decrease was proposed. The classification standards and the corresponding thresholds of pre-warning incidents were established.
     4 Risk Assessment Index System on Corrosion and Leakage of High Sulfide Natural Gas Gathering Pipeline
     The relative risk of pipeline corrosion was assessed by corrosion index which includes atmospheric corrosion index, internal corrosion index and buried metal corrosion index. Each index contains some 2nd indicators and 3rd indicators. Detailed index scoring standards were given. Cumulative score of each index was the relative risk of pipeline corrosion, range from 0 to 100. The higher the score, the lower the risk of corrosion.
     To avoid the subjective uncertain factors in the scoring process, Analytic Hierarchy Process was introduced according to the factors such as the expert’s knowledge background, work experience and expertise to identify each expert’s scoring weight of internal corrosion index, atmospheric corrosion index and buried metal corrosion index. The weight multiplied the score and then was accumulated to get the final score of corrosion index in a more objective way.
     The relationship of pipeline relative and absolute risk was investigated. The correspondence of corrosion index relative risk, corrosion speed and the possible failure time of corrosion perforation was set up to increase the intuition on the risk evaluation result of corrosion index.
     5 Detection Optimization Research on Corrosion and Leakage of High Sulfide Natural Gas Gathering Pipeline
     The method of detection optimization on leakage of high sulfide natural gas was presented based on CFD. The layout of the gas detection and alarm instruments in a high sulfide natural gas station has been optimized by means of setting up a series of monitor points in CFD model. The methane and hydrogen sulfide volume fractions of monitor points were recorded by the simulation of natural gas release and dispersion process. The sensitivity to combustible gas detectors high and low level placement, validity and response time of both combustible and toxic gas detectors in large and small release rates were investigated. Then some advices about optimization of gas detection and alarm networks on high sulfide gas gathering station were provided.
引文
1董泽华,李铁成,等.管线腐蚀与防护势态的灰色评估研究[J].腐蚀科学与防护技术. 2001, 13(6): 355-358.
    2张敏,李涛,陈曙旸,等.我国硫化氢中毒的特点与控制对策[J].工业卫生与职业病. 2005, 31(1): 12-14.
    3蒋承君,巨西民.油气管道检测技术发展和现状[J].内蒙古石油化工. 2008: 83-86.
    4 Kassomenos P, Karayannis A, Panagopoulos I, et al. Modelling the dispersion of a toxic substance at a workplace[J]. Environmental Modelling & Software. 2008, 23(1): 82-89.
    5 Di Sabatino S, Buccolieri R, Pulvirenti B, et al. Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models[J]. Atmospheric Environment. 2007, 41(37): 8316-8329.
    6 Scargiali F, Di Rienzo E, Ciofalo M, et al. Heavy gas dispersion modelling over a topographically complex mesoscale: a CFD based approach[J]. Process Safety and Environmental Protection. 2005, 83(3): 242-256.
    7魏利军.重气扩散过程的数值模拟[D].北京化工大学, 2000.
    8魏利军,张政,胡世明,等.重气扩散的数值模拟[J].中国安全科学学报. 2000, 10(2): 26-34.
    9胡世明.气体释放源的三维瞬态重气扩散模型及数值研究[D].北京化工大学, 2000.
    10安宇.用于化学事故应急反应的大气扩散数值模拟研究[D].北京化工大学, 2007.
    11于洪喜,李振林,张建,等.高含硫天然气集输管道泄漏扩散数值模拟[J].中国石油大学学报(自然科学版). 2008, 32(2): 119-122.
    12黄琴,蒋军成.重气泄漏扩散实验的计算流体力学(CFD)模拟验证[J].中国安全科学学报. 2008, 18(1): 50-55.
    13颜峻,左哲. CFD方法对突发性化学事故中危险物质泄漏范围的确定[J].中国安全科学学报. 2007, 17(1): 102-106.
    14 Daniel A Crowl J F L. Chemical process safety fundamentals with applications(2nd ed). [M]. Indianapolis: Prentice Hall PTR, 2002.
    15 Muhlbauer W K. Pipeline risk management manual third Edition: ideas, techniques, and resources[M]. WKM Consultancy, TX, USA: Gulf Professional Publishing, 2003.
    16肯特米尔鲍尔著,杨嘉瑜,张德彦等译.管道风险管理手册(第二版)[M].中国石化出版社:北京, 2005.
    17廖国礼,吴超.主成分分析法在矿山空气污染监测点优化中的应用[J].金属矿山. 2005(05): 44-47.
    18许丽忠,张江山.改进密切值法优化大气环境监测布点[J].环境工程. 2000, 18(02): 50-53.
    19李祚泳.基于信息相对重要性的主成分法优选环境测点[J].环境科学研究. 1999, 12(03): 46-48.
    20李祚泳,邓新民.基于多项污染物综合相对重要性的主成分子集合环境测点优选法[J].中国环境科学. 1999, 19(05): 458-460.
    21李祚泳.用物元分析法优选大气环境测点[J].环境科学研究. 1996, 9(06): 45-48.
    22吴信荣,姜秀萍,黄雪松,等.油田集输管线介质多相流腐蚀数学模型研究[J].石油天然气学报.2006, 28(2): 139-142.
    23何生厚等.高含硫化氢和二氧化碳天然气田开发工程技术[M].北京:中国石化出版社, 2008.
    24李宝荣,王建国,王立涛,等.埋地钢质管道腐蚀防护系统综合评价技术[J].管道技术与设备. 2008: 44-47.
    25刘春波,王新华,何仁洋,等.埋地钢质管道腐蚀防护综合评价技术研究[J].压力容器. 2007, 24(6): 10-16.
    26郑伟,帅健.埋地管道外防腐蚀体系的检测与评价[J].石油化工腐蚀与防护. 2007, 24(6): 20-23.
    27郑武龙,于红艳,等.油田埋地管道腐蚀评价及优化改造[J].石油规划设计. 2003, 14(2): 31-35.
    28丁宏达.金属管道外腐蚀率预测模型的分析评价[J].水力采煤与管道运输. 2008: 1-4.
    29江镇海.输油管道中的CO2腐蚀[J].腐蚀与防护. 2004, 25(12): 547.
    30杨怀玉,曹殿珍.海底管线内防腐蚀缓蚀剂的筛选优化[J].腐蚀与防护. 1997, 18(4): 13-14.
    31余建星,雷威.埋地输油管道腐蚀风险分析方法研究[J].油气储运. 2001, 20(2): 5-12.
    32肖昆,周琰,等.埋地管道防腐系统综合评价技术[J].油气储运. 2001, 20(6): 30-36.
    33莱格拉夫格,雷德尔著,韩恩厚等译.大气腐蚀[M].北京:化学工业出版社, 2005.
    34王晓明,冯艳艳.浅议天然气输送管道的腐蚀及防护技术[J].中国集体经济. 2008(5): 166-167.
    35车汉生.大气腐蚀简介[J].环境技术. 2006, 24(2): 1-3.
    36张大全.大气腐蚀和气相缓蚀剂应用技术[J].上海电力学院学报. 2006, 22(3): 273-277.
    37 C S B. Erosion-corrosion of copper-nickle alloys in sea water and other aqueous environments- a literature review[J]. Corrosion. 1976(32): 242-252.
    38刘新宽,方其先.两种不锈钢冲刷腐蚀的研究[J].化工机械. 1998, 25(1): 12-15.
    39丁一刚,王慧龙,等.金属在液固两相流中的冲刷腐蚀[J].材料保护. 2001, 34(11): 16-18.
    40 Heitz E. Mechanistically based prevention strategies of flow-induced corrosion[J]. Electrochimica Acta. 1996, 41(4): 503-509.
    41黄义荣.磨溪气田气体流速对腐蚀的影响[J].油气储运. 1998, 17(6): 25-28.
    42寇杰,梁法春,陈婧.油气管道腐蚀与防护[M].北京:中国石化出版社, 2008.
    43龙凤乐,郑文军,陈长风,等.温度、CO2分压、流速、PH值对X65管线钢CO2均匀腐蚀速率的影响规律[J].腐蚀与防护. 2005, 26(7): 290-294.
    44高德利,赵增新,秦疆,等.局部腐蚀条件下内压对管道腐蚀速率的影响[J].钻采工艺. 2009, 32(3): 88-92.
    45张栋栋,张牛牛,王珊,等.基于灰色系统理论的天然气管道内腐蚀评价[J].兰州石化职业技术学院学报. 2007, 7(4): 12-14.
    46相臻,欧剑.灰色关联分析法在油井套管腐蚀评价中的应用[J].内蒙古石油化工. 2008(02): 46-47.
    47刘争芬,张鹏.多相流管线的内腐蚀直接评价方法[J].管道技术与设备. 2007: 33-35.
    48唐恂,苏欣,张鹏,等.改进层次分析法在管道腐蚀因素评价中的应用[J].全面腐蚀控制. 2007, 21(3): 12-14.
    49张鹏,李欣茜,彭星煜,等.湿气管线的内腐蚀直接评价原理[J].石油工业技术监督. 2007, 23(10): 15-19.
    50刘仁静,刘慧卿,李秀生,等.基于灰色关联度的低渗透氮气驱评价模型[J].中国石油大学学报(自然科学版). 2009, 33(3): 90-94.
    51东亚斌,段志善.灰色关联度分辨系数的一种新的确定方法[J].西安建筑科技大学学报. 2008, 40(4): 589-592.
    52董立新,肖登明,刘奕路.基于群灰色关联度分析方法的电力变压器绝缘故障诊断[J].东南大学学报(英文版). 2005, 21(2): 175-179.
    53胡小芳,韩廷亮,盖国胜.用人工神经网络预测天然气管道内腐蚀速度[J].油气储运. 2004, 23(9): 56-58.
    54张景林,崔国璋主编.安全系统工程[M].北京:煤炭工业出版社, 2002.
    55徐龙君,吴江,李洪强.重庆开县井喷事故的环境影响分析[J].中国安全科学学报. 2005, 15(5): 84-87.
    56滕五晓.公共安全管理中地方政府的责任及其作用—以重庆市开县井喷事故灾害为例[J].社会科学. 2005(12): 65-71.
    57章博,陈国明,朱渊.基于CFD的高压高含硫天然气泄漏危险性分析[J].重庆大学学报. 2008, 31(专刊): 143-145.
    58朱渊,陈国明.海洋平台密集作业空间内H2S扩散分析[J].安全与环境学报. 2009, 9(6): 140-143.
    59朱渊,陈国明.高含硫天然气管道泄漏扩散过程CFD建模[J].系统仿真学报. 2009, 21(2): 6613-6616.
    60李剑峰,姚晓晖,刘晓琴.基于Fluent的开县井喷事故后果模拟与分析[J].环境科学研究. 2009, 22(5): 559-566.
    61王福军.计算流体动力学分析[M].北京:清华大学出版社, 2004.
    62 Zhu Y, Guo-Ming C. Simulation and assessment of SO2 toxic environment after ignition of uncontrolled sour gas flow of well blowout in hills[J]. Journal of Hazardous Materials. 2010, 178 (1-3): 144-151.
    63 Zhang B, Guo-Ming C. Quantitative Risk Analysis of Toxic Gas Release Caused Poisoning-A CFD and dose-response model combined Approach[J]. Process Safety and Environmental Protection. 2010, 88(4): 253-262.
    64黄远东,王守生,金鑫,等.城市街道峡谷内污染物扩散模拟中不同湍流模型的比较研究[J].水动力学研究与进展. 2008, 32(2): 189-195.
    65 Blocken B, Stathopoulos T, Carmeliet J. CFD simulation of the atmospheric boundary layer: wall function problems[J]. Atmospheric Environment. 2007, 41(2): 238-252.
    66 Sagrado A P G, van Beeck J, Rambaud P, et al. Numerical and experimental modelling of pollutant dispersion in a street canyon[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(4-5): 321-339.
    67 Reichrath S, Davies T W. Computational fluid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse[J]. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90(3): 139-149.
    68 García J, Migoya E, Lana J A, et al. Study of the dispersion of natural gas issuing from compressor stations through silencers with upper cover[J]. Journal of Hazardous Materials. 2008, 152(3): 1060-1072.
    69 Montante G, Lee K C, Brucato A, et al. Numerical simulations of the dependency of flow pattern on impeller clearance in stirred vessels[J]. Chemical Engineering Science. 2001, 56(12): 3751-3770.
    70 Shao L, Riffat S B. Accuracy of CFD for predicting pressure losses in HVAC duct fittings[J]. Applied Energy. 1995, 51(3): 233-248.
    71 Shang Z, Yao Y, Chen S. Numerical investigation of system pressure effect on heat transfer of supercritical water flows in a horizontal round tube[J]. Chemical Engineering Science. 2008, 63(16): 4150-4158.
    72洪志群,票兵.川东气田天然气集输系统甲烷泄漏现状调查[J].石油与天然气化工. 2000, 29(2): 100-101.
    73 Kelsey A, Hemingway M A, Walsh P T, et al. Evaluation of flammable gas detector networks based on experimental simulations of offshore, high pressure gas releases[J]. Process Safety and Environmental Protection. 2002, 80(2): 78-86.
    74 Defriend S, Dejmek M, Porter L, et al. A risk-based approach to flammable gas detector spacing[J]. Journal of Hazardous Materials. 2008, 159(1): 142-151.
    75 Niebuhr C. Aging effects in gas detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006, 566(1): 118-122.
    76中国标准化与信息分类编码研究所. GB10000-1988中国成年人人体尺寸[S]. 1988.
    77国家发展和改革委员会发布. SY/T6610-2005含硫化氢油气井井下作业推荐作法[S]. 2005.
    78中华人民共和国石油天然气行业标准. SY/T6277-2005含硫油气田硫化氢监测与人身安全防护规程[S].北京:石油工业出版社, 2005.
    79国家石油和化学工业局. SH3063-1999石油化工企业可燃气体和有毒气体检测报警设计规范[S].北京:中国石化出版社, 1999.
    80 Di Sabatino S, Buccolieri R, Pulvirenti B, et al. Chapter 1.1 Application and validation of FLUENT flow and dispersion modelling within complex geometries[J]. Developments in Environmental Sciences. 2007, Volume 6: 3-11.
    81 Gavelli F, Bullister E, Kytomaa H. Application of CFD (Fluent) to LNG spills into geometrically complex environments[J]. Journal of Hazardous Materials. 2008, 159(1): 158-168.
    82程雪玲,胡非.复杂地形网格生成研究[J].计算力学学报. 2006, 23(3): 313-316.
    83沈晶玉,史明昌. DEM网格尺寸对地形因子影响研究—以北京市延庆县八达岭小流域为例[J].水土保持研究. 2006, 13(5): 66-69.
    84沈晶玉,史明昌,田玉柱,等. DEM网格尺寸与沟谷提取精度研究[J].中国水土保持. 2007: 56-59.
    85史明昌,沈晶玉.不同地貌起伏状况下网格尺寸与DEM精度关系研究[J].水土保持研究. 2006, 13(3): 35-38.
    86 Saadat M, Zendeh-Boodi Z, Goodarzi M A. Environmental exposure to natural sour gas containing sulfur compounds results in elevated depression and hopelessness scores[J]. Ecotoxicology and Environmental Safety. 2006, 65(2): 288-291.
    87金颖,周伟国,等.烟气扩散的CFD数值模拟[J].安全与环境学报. 2002, 2(1): 21-23.
    88李丽霞.有风情况池火灾热辐射下的最小安全距离[J].安全与环境学报. 2006, 6(B07): 113-117.
    89 Lins V F C, Guimar?es E M. Failure of a heat exchanger generated by an excess of SO2 and H2S in the Sulfur Recovery Unit of a petroleum refinery[J]. Journal of Loss Prevention in the Process Industries. 2007, 20(1): 91-97.
    90彭伟,霍然,李元洲,等.二郎山公路隧道火灾排烟及人车疏散应急方案研究[J].安全与环境学报. 2007, 7(5): 113-116.
    91 CCPS. Guidelines for Consequence Analysis of Chemical Releases[M]. New York: American Institute of Chemical Engineers, 1999: 254-255.
    92 Keller T S, Weisberger A M, Ray J L, et al. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running[J]. Clinical Biomechanics. 1996, 11(5): 253-259.
    93 Bin Liu,Yun Luo. Study on risk early-warning technology in initial processing of oil and gas[J]. Journal of Safety Science and Technology. 2008, 4(06): 123-126.
    94 Xianbin Z, Xihe Z, Zhihong G, et al. Study on Safety Early-warning Technology of Oil and Gas Pipeline Based on Risk Analysis and GIS[J]. Petroleum Planning and Design. 2007, 18(01): 6-9.
    95陈利琼.在役油气长输管线定量风险技术研究[D].西南石油学院, 2004.
    96古小平,唐恂,张鹏,等.改进层次分析法在管道腐蚀评价中的应用[J].石油化工腐蚀与防护. 2007, 24(2): 52-53.
    97田娜,陈保东,陈其胜.灰色关联分析在长输管道肯特风险评价中的应用[J].油气储运. 2006, 25(4): 7-10.
    98何东升,郭简,张鹏.腐蚀管道剩余强度评价方法及其应用[J].石油学报. 2007, 28(6): 125-128.
    99张伟,王勇,毕凤琴,等.腐蚀缺陷管道风险评估有限元模拟研究[J].腐蚀与防护. 2007, 28(12): 652-656.
    100刘晓东,李著信.应用Monte-Carlo法计算输油管道腐蚀失效概率[J].油气储运. 2007, 26(12): 16-19.
    101李又绿,姚安林,李永杰.天然气管道泄漏扩散模型研究[J].天然气工业. 2004, 24(8): 102-104.
    102 Zhang B, Guo-Ming C. Hydrogen sulfide dispersion consequences analysis in different wind speed: a CFD based approach: 2009 International conference on energy and environment technology (Volume III)[C]. Guilin, China. : IEEE computer society, 2009: 365-368.
    103章博,陈国明.基于CFD的毒气泄漏中毒定量评估[J].安全与环境学报. 2009, 9(2): 158-160.
    104章博,陈国明.毒气泄漏环境下人员暴露风险评估[J].石油化工高等学校学报. 2009, 22(2): 73-76.
    105 Zhang B, Chen G, Kong L. Toxic gas dispersion modelling over complex terrains: 2009 International conference on energy and environment technology (Volume III)[C]. Guilin, China: IEEE computer society, 2009: 135-138.
    106苏欣,袁宗明,黄坤,等.基于“数列灰预测”的输气管道腐蚀预测[J].西南石油学院学报. 2006, 28(3): 82-85.
    107殷克东,秦娟,张斌,等.基于数列灰预测的海洋经济预测[J].海洋信息. 2007(4): 13-14.
    108罗朝霞,张树夫.数列灰预测在旅游统计与预测上的应用—以江苏省为例[J].南京师大学报:自然科学版. 2005, 28(2): 117-121.
    109徐茂.一种新模型在预测输气管道腐蚀中的应用[J].内蒙古石油化工. 2007, 33(2): 139-141.
    110秦政先,李长俊,胡安鑫,等.基于Niche GA的灰色模型预测天然气管道腐蚀速率[J].油气储运. 2007, 26(2): 47-50.
    111张镇,刘晓东,李著信.基于灰色组合模型的管道腐蚀速率预测[J].中国腐蚀与防护学报. 2008, 28(3): 173-176.
    112蒋仕章,樊成,等.输气管道内腐蚀速度BP神经网络预测模型[J].油气储运. 2002, 21(7): 22-24.
    113喻西崇,赵金洲,等.利用BP神经网络预测注水管道的腐蚀速率[J].石油机械. 2003, 31(1): 14-16.
    114李萍,曾令可,税安泽,等.基于Matlab的BP神经网络预测系统的设计[J].计算机应用与软件. 2008, 25(4): 149-150.
    115何东升,郭简,张鹏.腐蚀管道剩余强度评价方法及其应用[J].石油学报. 2007, 28(6): 125-128.
    116帅健,张春娥,陈福来.腐蚀管道剩余强度评价方法的对比研究[J].天然气工业. 2006, 26(11): 122-125.
    117王文霞.在役压力管道腐蚀剩余强度的评估[J].煤气与热力. 2008, 28(10): 7-10.
    118苏春,王圣金,许映秋.基于蒙特卡洛仿真的液压系统动态可靠性[J].东南大学学报:自然科学版. 2006, 36(3): 370-373.
    119罗金恒,赵新伟.输油管道腐蚀剩余寿命的预测[J].石油机械. 2000, 28(2): 30-32.
    120谢英,袁宗明.灰色动态模型在预测输气管道腐蚀中的应用[J].西南石油学院学报. 1999, 21(3): 50-51.
    121陈永红,张大发,陈登科,等.优化的灰色模型在核动力系统管道腐蚀速率预测中的应用[J].原子能科学技术. 2007, 41(6): 707-710.
    122苗琦,杨胜强,欧晓英,等.煤与瓦斯突出灰色-神经网络预测模型的建立及应用[J].采矿与安全工程学报. 2008, 25(3): 309-312.
    123喻西崇,邬亚玲,等.利用灰色理论预测注水管道腐蚀速率的变化趋势[J].腐蚀与防护. 2003, 24(2): 51-54.
    124中华人民共和国建设部,中华人民共和国国家质量监督检验检疫总局. GB50251-2003输气管道工程设计规范[S]. 2003.
    125喻西崇,胡永全,赵金洲,等.腐蚀管道的剩余强度计算方法研究[J].力学学报. 2004, 36(3): 281-287.
    126张振永,郭林.腐蚀管道剩余强度的确定及改造措施[J].焊管. 2007, 30(4): 75-78.
    127王禹钦,王维斌,冯庆善.腐蚀管道的剩余强度评价[J].腐蚀与防护. 2008, 29(1): 28-31.
    128翁永基.腐蚀管道安全管理体系[J].油气储运. 2003, 22(6): 1-13.
    129陈利琼.在役油气长输管线定量风险技术研究[D].西南石油学院, 2004.
    130熊立,梁樑,王国华.层次分析法中数字标度的选择与评价方法研究[J].系统工程理论与实践. 2005(3): 72-79.
    131黄德才,郑河荣. AHP方法中判断矩阵的标度扩展构造法[J].系统工程. 2003(No.1): 105-109.
    132黄德才,胥琳. AHP法中判断矩阵的比例标度构造法[J].控制与决策. 2002, 17(4): 484-486.
    133吴泽宁,张晨光.层次分析法(AHP)比例标度的分析与改进[J].郑州工业大学学报. 2000, 21(2): 85-87.
    134何坤.层次分析法的标度研究[J].系统工程理论与实践. 1997, 17(6): 58-61, 103.
    135骆正清,杨善林.层次分析法中几种标度的比较[J].系统工程理论与实践. 2004(9): 51-60.
    136 Defriend S, Dejmek M, Porter L, et al. A risk-based approach to flammable gas detector spacing[J]. Journal of Hazardous Materials. 2008, 159(1): 142-151.
    137 Abbaspour M, Mansouri N. City hazardous gas monitoring network[J]. Journal of Loss Prevention in the Process Industries. 2005, 18(4-6): 481-487.
    138 Niebuhr C. Aging effects in gas detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2006, 566(1): 118-122.
    139 Li X, Koseki H, Iwata Y. Risk assessment on processing facility of raw organic garbage[J]. Journal of Hazardous Materials. 2008, 154(1-3): 38-43.
    140 Stawczyk J. Experimental evaluation of LPG tank explosion hazards[J]. Journal of Hazardous Materials. 2003, 96(2-3): 189-200.
    141 Health and Safety Executive. Offshore detector siting criterion investigation of detector spacing by lloyds register, offshore technology report OTO 93002[R]. Croydon: HSE, 1993.
    142中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB12358-2006作业环境气体检测报警仪通用技术要求[S].北京:中国标准出版社, 2006.
    143中华人民共和国行业标准. SH3063-1999石油化工企业可燃气体和有毒气体检测报警设计规范[S].北京:中国石化出版社, 1999.
    144 GB12358-2006作业环境气体检测报警仪通用技术要求[S].北京:中国标准出版社, 2006.
    145中华人民共和国石油天然气行业标准. SY6503-2008石油天然气工程可燃气体检测报警系统安全技术规范[S].北京:石油工业出版社, 2008.
    146 Kelsey A, Ivings M J, Hemingway M A, et al. Sensitivity Studies of Offshore Gas Detector Networks Based on Experimental Simulations of High Pressure Gas Releases[J]. Process Safety and Environmental Protection. 2005, 83(3): 262-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700