西藏甲玛铜多金属矿床矿物学特征及其成因意义研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏甲玛铜多金属矿床是冈底斯成矿带上最典型、独特的斑岩-矽卡岩型铜多金属矿床,其铜、钼、铅锌及伴生金、银资源量均已达大型-超大型规模。因此,开展详细的矿石学、矿物学研究不仅对于甲玛矿床,甚至对冈底斯这一具世界级规模的铜、铅、锌、铁、金、银等多金属成矿带上类似矿床的研究意义重大。本文在充分收集整理、分析总结前人资料和研究成果的基础上,立足于大量的野外工作,通过3万米的岩矿心地质编录,1000张野外照片,253件光薄片鉴定,500点电子探针分析及10件单矿物测试,取得了如下进展和创新:
     划分了矿体类型,基本查明了矿石组构和矿石物质组成。矿床主要由产于矽卡岩中的铜钼铅锌金银多金属矿体、产于角岩中的钼(铜)多金属矿体及产于深部隐伏斑岩中的铝(铜)矿体组成。矿石构造主要为岩浆热液形成的矿石构造,包括浸染状构造、块状构造、细脉-网脉状构造等;矿石结构主要为交代结构、结晶结构、固溶体分离结构等。矿床中矿物种类约60种,鉴定出金属矿物包括斑铜矿、黄铜矿、辉钼矿、黝铜矿、方铅矿、闪锌矿、辉铜矿、蓝辉铜矿、铜蓝、蓝铜矿、孔雀石、自然金、自然银及硫盐矿物等,非金属矿物主要为石榴子石(钙铁榴石、钙铝榴石)、硅灰石、透辉石、透闪石、绿帘石等矽卡岩矿物,其次为石英、长石、方解石、黑云母、绢云母、绿泥石、硬石膏、萤石、高岭石等。矿床形成经过岩浆期、矽卡岩期、热液期和表生期四个成矿期次,其中热液期又分为铜钼硫化物阶段、铜硫化物-硫盐矿物阶段、铜铅锌硫化物阶段及金成矿阶段等四个成矿阶段,每个成矿阶段典型矿物组合特征具有明显的从高温组合到低温组合的趋势。
     查明了矿物类型及成分特征。矽卡岩矿物为一套钙铁榴石-钙铝榴石-透辉石-硅灰石组合,属于典型的钙矽卡岩组合,形成温度为450℃-700℃的高温条件。金属矿物中发育斑铜矿-黄铜矿、斑铜矿-辉铜矿、斑铜矿-硫铋铜矿等互为主客晶的乳滴状、格子状、叶片状固溶体分离结构,这些含铜矿物形成的固溶体分离结构指示成矿温度主要为中-高温(475℃-225℃)。上述温度条件表明,矿床形成并非热水喷流沉积所能形成,而是与岩浆作用有不可或缺的成因联系。
     石榴子石、透辉石、硅灰石、斑铜矿、黄铜矿、辉钼矿等矿物的电子探针分析表明:石榴子石暗色带相对于浅色带普遍具有SiO2、TiO2、Al2O3含量偏低,而TFeO含量偏高的成分变化特点,且暗色带Mn、Ti含量高于浅色带,反映了石榴子石在形成过程中物理化学环境有所改变;矿床中辉石类型主要为透辉石,其Mn/Fe比值除2个较高(1.18和0.80)外,其余变化范围为0.17~0.50,指示甲玛矿床矿化类型属于多金属矿床;斑铜矿颜色的差异是由固溶体析出成分的不同、Fe含量的高低及斑铜矿形成温度高低所致,Fe含量由低-高变化过程中斑铜矿反射色显示出蓝紫色-锖紫色-棕红色的变化趋势;花岗斑岩中产出的黄铜矿其Ag和Zn含量普遍高于产在角岩和矽卡岩中黄铜矿Ag和Zn的含量,而角岩中黄铜矿Au的含量略高于矽卡岩和花岗斑岩中黄铜矿的Au含量。
     论文通过对前人氢-氧、硫、铅同位素分析资料的综合整理,分析了成矿流体和成矿物质的来源,结合项目组对于矿床成矿时代、成矿流体演化等方面的相关研究,对甲玛矿床成因进行了较为深入的阐述,认为矿床形成与中新世浅成岩浆作用有关,矿床类型为斑岩-矽卡岩型。
Jiama copper polymetallic deposit is a typical and unique porphyry-skarn type ore deposit in the Gangdise metallogenic belt of Tibet. The ore reserves of copper, molybdenum, lead and zinc and associated gold and silver have already reached large and super-large scale. Therefore, to carry out detailed research on the ore mineralogy and mineralogy, not only has an important significance to Jiama deposit, but also to those mineral deposits in Gangdise polymetallic metallogenic belt which have world-class scale of copper, lead, zinc, iron, gold and silver. After fully collecting, analyzing and summing the formers' data and research results, moreover, lots of field work were completed, containing 30 thousand meters core geological logging,1000 pieces of field photos, appraisal of 253 pieces of polished section of the ore, electron microprobe analysis of 500 points, and testing of 10 pieces of single minerals, this paper has got some progress following.
     The types of ore-bodies have been classified and ore fabrics and component of ore mineral have been ascertained. The Jiama copper polymetallic deposit are mainly consisted of skarn-type Cu-Mo-Pb-Zn-Au-Ag polymetallic ore-body, hornfels-type Mo (Cu) polymetallic orebody and deeply buried porphyry-type molybdenum (copper) ore-body. The ores are dominated by ore structures produced by magmatic hydrothermal, including disseminated structure, massive structure, veinlets-stockwork structure; the ore textures are mainly metasomatic texture, crystalline texture, solid-solution separation texture, and so on. There are about 60 kinds of metallic minerals in the deposit, mainly containing bornite, chalcopyrite, molybdenite, tetrahedrite, galena, sphalerite, chalcocite, alpha chalcocite, covellite, azurite, malachite, natural gold, natural silver and sulfosalt minerals; non-metallic minerals including mainly garnet (andradite, grossular), wollastonite, diopside, tremolite, epidote and other skarn minerals, subordinately quartz, feldspar, calcite, biotite, sericite, chlorite, anhydrite, fluorite, kaolinite. This mineral deposit has experienced four mineralization periods of magmatic stage, skarn stage, hydrothermal stage and supergene stage, in which the hydrothermal stage can be divided into Cu-Mo sulfide phase, copper sulfide-sulphosalts mineral phase, Cu-Pb-Zn sulfide phase and gold mineralization phase, and the typical mineral assemblages in each mineralization phase have the obvious trend features of varying from high temperature to low temperature.
     The types of minerals and composition characteristics have been ascertained, also. In this ore deposit, the skarn minerals are a set of andradite-grossular-diopside-wollastonite assemblage, belonging to typical calcium skarn combination and forming in the medium-high temperature conditions of 450℃-700℃. The emulsion-like, lattice-like and leaf-shaped solid-solution separation textures are widely developed in the ores of this mineral deposit, in which bornite-chalcopyrite, bornite-chalcocite and bornite-wittichenite served as host and guest crystals each other. And the solid-solution separation textures formed by the copper-bearing minerals mentioned above have indicated that, the mineralization temperature are mainly medium-high temperature conditions(475℃-225℃). And the temperature mentioned above has suggested that, this ore deposit is not formed by hydrothermal sedimentary exhalative processes, but has indispensable genetic relationship with magmatism.
     Through systematic electron microprobe analyses on garnet, pyroxene, wollastonite, bornite, chalcopyrite, molybdenite and so on, this paper has made some conclusion. First, comparing with light zonation in garnets, the contents of SiO2, TiO2, Al2O3 are lower in dark zonation, while the contents of TFeO, Mn, Ti are higher. All of these phenomenon showed that the physic-chemical condition had been changed during the crystallization of garnets. Second, diopsides in Jiama ore pyroxene are mainly diopside and their ratios of Mn/Fe mainly varied from 0.17~0.50 except two tested points (with the ratios of 1.18 and 0.80). The characteristics of ratios of Mn/Fe have shown Jiama ore deposit was a typical polymetallic deposit. The color difference of bornite is caused by precipitation of solid-solution composition, Fe content and different formation temperature, and changes from the low content of to high content of Fe induced reflected colors varying from blue-purple to purple to brown red. Third, contents of Ag and zn in chalcopyrites occurred in granite-porphyry were higher than chalcopyrites occurred in hornfels and skarn. Whereas the content of Au in chalcopyrites occurred in hornfels was higher than those occurred in granite-porhpyry and skarn.
     The sources of ore-forming fluids and mineralization materials have been fully analyzed by comprehensivly summing up the formers' analytical data about H-O-S-Pb isotopes. Through combining with the related researches about the mineralization age and the evolution of ore-forming fluids and so on which have been carried out by the project team, the genesis of Jiama ore deposit has been discussed deeply, and it is found that the formation of this ore deposit was closely related with miocene magmatism, and the genetic type of Jiama ore deposit belongs to porphyry-skarn type.
引文
Ahmed Z and Hariri M M.2006.Formation and mineral chemistry of a calcic skarn from Al-Madhiq,SW Saudi Arabia[J]. Chemie der Erde Geochemistry,66:187-201.
    Brian G. Rusk, Mark H. Reed, and John H. Dilles.2008. Fluid Inclusion Evidence for Magmatic-Hydrothermal Fluid Evolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana[J]. Economic Geology,103:307-334.
    Clayton R N.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis[J]. Geochim Cosmochim Acta,27(1):43-52.
    Cheng Suhua, Lai Xingyun.2009. P-T taths deribed from garnet growth zoning in Danba Domal Metamorphic Terrain, Sichuan Probince, West China[J]. Journal of Earth Science,20(2): 219-240.
    Einaudi MT, Meinert LD, Newberry RJ.1981. Skarn deposits[J]. Economic Geology, (75): 317-391.
    Einaudi MT, Burt DM.1982.A special issue devoted to skarn deposits introduction erminology, classification, and composition of skarn deposits[J].Economic Geology,77(4):745-754.
    Fuentes G, Vinals J., Herreros O.2009. Hydrothermal purification and enrichment of Chilean copper concentrates Part 1:the behavior of bornite, covellite and pyrite[J]. Hydrometallurgy, 95:104-112.
    Guillermo Ossandon C., Roberto Freraut C., Lewis B. Gustafson, et al..2001. Geology of the Chuquicamata mine:a progress report[J].Economic Geology,96:249-270.
    Hickmott D D, Spear F S.1992.Major and trace element zon-ing in garnets from calcareous pelites in the NW Shelburne Falls Quadrangle, Massachusetts:Garnet growth histories in retrograded rocks[J]. Journal of Petrology, (33):965-1005.
    Kierran C. Maher.2010. Skarn alteration and mineralization at Coroccohuayco, Tintaya District, Peru[J]. Economic Geology,105:263-283.
    Lu Huanzhang,Liu Yimao,Wang Changlie,et al.2003.Mineralization and fulid inclusion study of the Shizuyuan W-Sn-Bi-Mo-F skarn deposit,Hunan Province,China[J]. Economic Geology, 98:955-974.
    Misra K C.2000. Understanding Mineral Deposit[M]. Dordrecht,The Netherlands:Kluwer Academic Publishers.
    Patrick B. Redmond, Marco T. Einaudi.2010. The Bingham Canyon Porphyry Cu-Mo-Au deposit. I. sequence of intrusions, vein formation, and sulfide deposition[J]. Economic Geology, 105:43-68.
    Qu Xiaoming, Zengqian Hou, Khin Zaw, Li Youguo.2007.Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau:Preliminary geochemical and geochronological results[J].Ore Geology Reviews 31:205-223.
    Rossman G R, Aines R D.1991.The hydrous components in garnets-grossular-hydrogrossular[J]. American Mineralogist,76(7-8):1153-1164.
    Tolga Oyman.2010. Geochemistry, mineralogy and genesis of the Ayazmant Fe-Cu skarn deposit in Ayvalik, (Balikesir), Turkey[J].Ore Geology Reviews,37:175-201.
    Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition[J]. Econ. Geol,69(6):843-883.
    Zartman R E, Doe B R.1981. Plumbotectonics-The model[J].Tectonophysics,75 (1/2):135-162.
    常丽华,陈曼云,金巍,等.2006.透明矿物薄片鉴定手册(地质调查工作方法指导手册).北京:地质出版社.
    陈正,岳树勤,陈殿芬.1985.矿石学(上编)[M].北京:中国地质科学院矿床地质研究所.
    陈光远,孙岱生,殷辉安.1987.成因矿物学与找矿矿物学[M].重庆:重庆出版社.
    程文斌,顾雪祥,唐菊兴,等.2010.西藏冈底斯-念青唐古拉成矿带典型矿床硫化物Pb同位素特征—对成矿元素组合分带性的指示[J].岩石学报,3350-3361.
    杜光树,姚鹏,潘凤雏,等.1998.喷流成因矽卡岩与成矿-以西藏甲马铜多金属矿床为例[M].成都:四川科学技术出版社,82-113.
    黄崇轲,白冶,朱裕生,等.2001.中国铜矿床(上册,下册)[M].北京:地质出版社,0-705.
    黄华盛.1994.矽卡岩矿床的研究现状[J].地学前缘,1(3-4):105-111.
    李光明,王高明,高大发,等.2002.西藏冈底斯铜矿资源前景与找矿方向[J].矿床地质,21(增刊):144-147.
    李光明,杨家瑞,丁俊.2003.西藏雅鲁藏布江成矿区矿产资源评价新进展[J].地质通报,22(9):699-703.
    李光明,芮宗瑶.2004a.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄[J].大地构造与成矿学,28(2):165-170.
    李光明,潘桂棠,王高明,等.2004b.西藏冈底斯成矿带矿产资源远景评价与展望[J].成都理工大学学报(自然科学版),31(1):22-27.
    李光明,芮宗瑶,王高明,等.2005.西藏冈底斯成矿带甲玛和知不拉铜多金属矿床的Re-Os同位素年龄及意义[J].矿床地质,24(5):481-489.
    李永胜.2009.西藏甲玛铜多金属矿床地质特征及矿床成因探讨(硕士学位论文)[D].49-52.导师:严光生.北京:中国地质大学.
    卢静文,彭晓蕾.2010.金属矿物显微镜鉴定手册(地质调查工作方法指导手册).北京:地质出版社.
    梁祥济.1994.钙铝-钙铁系列石榴子石的特征及其交代机理[J].岩石矿物学杂志,13(4):342-351.
    孟祥金.2004.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究(博士论文)[D].导师:侯增谦.北京:中国地质科学院:81-86.
    孟祥金,侯增谦,叶培盛,等.2007.西藏冈底斯银多金属矿化带的基本特征与成矿远景分析[J].矿床地质,26(2):153-162.
    潘桂棠,丁俊,王立全,等.2001.青藏高原区域地质调查重要新进展[J].地质通报,21(11):787-793.
    潘桂棠,莫宣学,侯增谦,等.2006.冈底斯造山带的时空结构及演化[J].岩石学报,22(3):521-533.
    潘凤雏,邓军,姚鹏,等.2002.西藏甲马铜多金属矿床夕卡岩的喷流成因[J].现代地质,16(4):359-364.
    潘兆橹,赵爱醒,潘铁红.1993.结晶学及矿物学[M].北京:地质出版社.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿成矿带:西藏第二条玉龙铜矿带[J].矿床地质,20(4):355-366.
    秦志鹏,汪雄武,唐菊兴,等,2010.西藏甲玛铜多金属矿两类花岗岩的特征、侵位机制及成因意义[J].第十届全国矿床会议论文集,矿床地质增刊,29(supp.):261-262.
    秦志鹏,汪雄武,唐菊兴,等.2011.西藏甲玛铜多金属矿岩体(脉)La-ICPMS锆石U-Pb年龄:岩浆演化系列及对成矿作用时限的厘定[J].矿床地质,30(2):339-348.
    芮宗瑶,侯增谦,曲晓明,等.2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,22(3):217-223.
    芮宗瑶,侯增谦,李光明,等.2006.冈底斯斑岩铜矿成矿模式[J].地质论评,52(4):459-466.
    佘宏全,丰成友,张德全.2006.西藏冈底斯铜矿带甲马夕卡岩型铜多金属矿床与驱龙斑岩型铜矿流体包裹体特征对比研究[J]岩石学报,22(3):689-696.
    沈渭洲.稳定同位素地球化学[M].北京:原子能出版社,1987:78-83.
    石礼炎,李子林.1989.福建上杭紫金山次火山热液铜金矿床地质特征初探[J].福建地质,8(4):286-302.
    唐菊兴,王登红,汪雄武,等.2010.西藏甲玛铜多金属矿矿床地质特征及其矿床模型[J].地球学报,31(4):495-506.
    唐菊兴,邓世林,郑文宝,等.2011.西藏墨竹工卡县甲玛铜多金属矿床勘查模型[J].矿床地质,30(2):179-196.
    王登红,唐菊兴,应立娟,等.2011.甲玛与世界级铜矿的初步对比及下一步找矿工作建议[J].矿床地质,(2):197-206.
    王全海,王保生,李金高,等.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估[J].地质通报,21(1):35-40.
    王亮亮,莫宣学,李冰,等.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学[J].岩石学报,22(4):1001-1008.
    王焕,唐菊兴,应立娟.2010.西藏甲玛铜多金属矿床主要矿石类型及矿石矿物特征研究[J].第十届全国矿床会议论文集,矿床地质增刊,29(supp.):287-288.
    王焕,唐菊兴,应立娟,等.2011a.西藏甲玛铜多金属矿床主要矿石矿物特征[J].成都理工大学学报(自然科学版):38(1):103-112.
    王焕,王立强,应立娟,等.2011b.西藏甲玛铜多金属矿床斑铜矿特征及其成因意义[J].矿床地 质,30(2):305-317.
    王焕,唐菊兴,王立强,应立娟,等.2011c.西藏甲玛铜多金属矿床矽卡岩矿物学特征及其地质意义[J].地质通报,30(5):28-42.
    夏代祥,郑安柱,谢义木.1994.西藏自治区区域地质志[M].北京:地质出版社,0-707.
    徐林刚,毛景文,杨富全,等.2007.新疆蒙库铁矿床矽卡岩矿物学特征及其意义[J].矿床地质,26(4):455-464.
    杨志明,侯增谦,宋玉才,等.2008.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质,27(3):279-318.
    姚鹏,杜光树.1999.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究[J].特提斯地质,23:46-56.
    姚鹏,郑明华,彭勇民,等.2002.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究[J].地质论评,48(5):468-479.
    姚晓峰,唐菊兴,叶天竺,等.2011.西藏甲玛铜多金属矿矽卡岩基本特征及其成因意义[J].成都理工大学学报(自然科学版)(待刊).
    杨时惠.1995.西藏甲马赤康多金属矿床金银铋钴镍赋存状态及其矿物学特征研究[J].矿物岩石,15(1):26-34.
    袁万明,侯增谦,李胜荣,等.2001.西藏甲玛多金属矿区热历史的裂变径迹证据[J].中国科学D辑.31(S1):117-121.
    袁见齐,朱上庆,翟裕生.1985.矿床学[M].北京:地质出版社.
    应立娟,唐菊兴,王登红,等.2009.西藏甲玛铜多金属矿床矽卡岩中辉钼矿铼-锇同位素定年及其成矿意义[J].岩矿测试,28(3):265-268.
    应立娟,王登红,唐菊兴,等.2010a.西藏墨竹工卡县甲玛铜多金属矿不同矿石中辉钼矿Re-Os同位素定年及其成矿意义[J].地质学报,84(8):1165-1174.
    应立娟,王登红,唐菊兴,等.2010b.西藏甲玛铜多金属矿床中铋矿物及其与铜矿化关系[J].吉林大学学报(自然科学版),40(4):801-809.
    应立娟,王登红,唐菊兴,等.2010c.西藏甲玛铜多金属矿斑铜矿的特征浅析[J].第十届全国矿床会议论文集,矿床地质增刊,29(supp.):325-326.
    周云.2010.西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化(硕士学位论文)[D].66-77.导师:汪雄武.成都:成都理工大学。
    周云,汪雄武,唐菊兴,等.2011.西藏甲玛铜多金属矿成矿流体来源及演化[J].矿床地质,30(2):232-248.
    郑淑蕙,张知非,倪葆龄,等.1982.西藏地热水氢氧稳定同位素研究[J].北京大学学报,(1):99-106.
    张刚阳,郑有业,龚福志,等.2008.西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J].岩石学报,24(3):473-479.
    张泽明,肖益林,沈昆等.2005.苏鲁超高压榴辉岩的石榴石生长成分环带及变质作用P-T轨迹.岩石学报,21(3):809-818
    赵一鸣,林文蔚,毕承思等.1986.中国矽卡岩矿床基本地质特征[J].中国地质科学院院报,59-87.
    赵一鸣,林文蔚,毕承思,等.1990.中国矽卡岩矿床[M].北京:地质出版社.
    赵一鸣,张轶男,林文蔚.1997.我国夕卡岩矿床中的辉石和似辉石特征及其与金属矿化的关系[J].矿床地质,16(4):318-329.
    赵一鸣.2002.矽卡岩矿床研究的某些重要进展[J].矿床地质,21(2):113-120.
    赵劲松,Newberry R.1996对柿竹园夕卡岩成因及其成矿作用的新认识[J].矿物学报,16(4):442-449.
    赵劲松,夏斌等.2008.海南岛石碌矽卡岩铁矿石中石榴子石的熔融包裹体及其意义[J].岩石学报,24(1):149-160.
    郑有业,多吉,王瑞江,等.2007.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展[J].中国地质,34(2):324-334.
    郑文宝,陈毓川,宋鑫,等.2010a.西藏甲玛铜多金属矿元素分布规律及地质意义[J].矿床地质,29(5),775-784.
    郑文宝,陈毓川,唐菊兴,等.2010b.西藏墨竹工卡地区甲玛矽卡岩型铜多金属矿体的变化性[J].地质通报,29(10):42-50.
    郑文宝,陈毓川,唐菊兴,等.2010c.西藏甲玛铜多金属矿床钼矿体分布特征[J].第十届全国矿床会议论文集,矿床地质增刊,29(supp.):349-350.
    郑文宝,陈毓川,唐菊兴,等.2011a.西藏甲玛铜多金属矿床钼矿体地质特征[J].成都理工大学学报(自然科学版),
    郑文宝,陈毓川,唐菊兴,等.2011b.西藏墨竹工卡县甲玛矿区筒状矿体的发现及其地质意义[J].矿床地质,30(2):207-218.
    郑文宝,黎枫佶,唐菊兴,等.2011c.西藏墨竹工卡县甲玛矿区矽卡岩型铜多金属矿体的变化性[J].地质通报(待刊).
    周剑雄,毛水和.1988.电子探针分析[M].北京:地质出版社.
    ①唐菊兴,王登红,钟康惠,汪雄武,郭衍游,刘文周,应立娟,郭娜,郭科,郑文宝,秦志鹏,李磊,凌娟,叶江,黎枫估,姚晓峰,李志军,孙艳,王友,白景国,唐晓倩,裴有哲,彭惠娟.2009a.西藏自治区墨竹工卡县甲玛矿区外围铜多金属矿详查报告(内部资料).
    ②唐菊兴,王登红,钟康惠,汪雄武,郭衍游,刘文周,应立娟,郭娜,郭科,郑文宝,秦志鹏,李磊,凌娟,叶江,黎枫佶,姚晓峰,李志军,孙艳,王友,白景国,唐晓倩,裴有哲,彭惠娟.2009b.西藏自治区墨竹工卡县甲玛铜多金属矿区0-16-40-80、0-15线矿段铜多金属矿资源量储量核实报告(内部资料)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700