西藏邦铺斑岩钼铜矿床—成矿流体演化和矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邦铺斑岩钼(铜)矿床位于冈底斯斑岩铜矿带东段,产于冈底斯-念青唐古拉复合火山岩浆弧南缘。本文通过流体包裹体、熔融包裹体、Hf同位素和He-Ar同位素研究,确定了矿床主要蚀变及矿化类型,约束了岩浆出溶流体的物理化学条件,查明了成矿流体演化过程以及成矿物质迁移沉淀机制。
     研究表明,邦铺钼(铜)矿床岩浆源区主要来源于年轻地幔的组分,但在岩浆侵位过程遭受了古老地壳物质的混染。岩浆演化温度区间为850℃~1223℃,岩浆房和浅成侵位的斑岩均发生了流体出溶,石英斑晶中B20H包裹体与结晶质熔融包裹体共存,是斑岩体出溶流体的地质记录。斑岩出溶流体的压力为150~200Mpa,深度为5.6~7.4km。
     根据蚀变矿物特征,矿床的围岩蚀变有4种类型:钾硅酸盐化、绢云母化、青磐岩化和粘土化。根据矿石的物质成分、矿物组合、脉体之间穿切关系的不同,整个矿床的形成可划分为3个阶段:成矿前阶段(Ⅰ)、主成矿阶段(Ⅱ)以及成矿后阶段(Ⅲ),主成矿阶段又可进一步细分为钼矿化(Ⅱ_1)、铜矿化(Ⅱ_2)两个亚阶段。在此基础上详细识别了10种不同脉体。根据气液充填度的不同,矿床流体包裹体可分为5类:B15、B20H、B35、B60和B80(“B”代表气泡,数字表示平均气相充填度,“H”指盐类子晶)。流体包裹体研究表明,邦铺矿床成矿温度为240℃~419℃,成矿压力为38~116MPa,成矿深度为3.1~4.3km。钼沉淀主要在Ⅱ_1阶段,与钾硅酸盐化、绢云母化关系密切,相关脉体为辉钼矿脉和石英-辉钼矿脉,脉体中包裹体以B20H、B35为主,形成温度240℃~405℃,压力38~85Mpa;铜沉淀主要在Ⅱ_2阶段,与硅化、青磐岩化关系紧密,相关脉体为石英-黄铜矿±黄铁矿脉和黄铜矿脉,脉体中包裹体以B60、B80为主,形成温度293℃~419℃,压力32~84Mpa。
     邦铺矿床成矿流体为主要为NaCl-H_2O体系,主要来源于地壳,但同时有地幔流体的参与,缺乏大气水的影响。矿床钼、铜都来源于岩浆,压力波动和pH值降低是钼沉淀的主导因素,压力波动和还原硫含量增加共同导致了铜的沉淀。邦铺斑岩钼(铜)矿床是印-亚大陆碰撞过程中伸展背景下成矿大爆发的产物,许多地质特征与典型斑岩铜矿相似,但是金属沉淀与岩浆的关系更为密切。
The porphyry Mo (Cu) deposit at Bangpu, locating in the east section of Gangdese,Tibet, belongs to Gangdese-Nyainqentanglha compound volcanic magmatic arc. Withstudies on fluid and melt inclusions, Hf and He-Ar isotope compositions, this paperreports types of alteration and mineralization, the physical and chemical environmentfor magmatic exsolution, the fluid evolution history as well as the mechanism ofmetal transportation and precipitation.Lu-Hf isotope analysis of zircon grains from monzogranite porphyry and biotitemonzonitic granite suggests that their parental magmas were mainly derived from ayoung mantle and partly mixed with old continental crust rock during evolution. Byusing melt inclusions microthermometry we unravel the evolution of magmaticsystem happened from850℃to1223℃and fluid exsolution occurred at bothmagmatic chamber and hypergene emplacement porphyry. Coexistence of B20Hinclusions and silicate melt inclusions provides robust evidence of this process atpressure between150and200Mpa, corresponding to depths between5.6and7.4km.Bangpu deposit displays a consistent alteration-mineralization pattern that comprises,centrally from the bottom upward, of potassic-silicic, sericitic, propylitic andadvanced argillic. According to the veins types and crosscutting relationships, themineralization at Bangpu can be divided into three stages: Pre-stage (Ⅰ), main-stage(Ⅱ) and post-stage (Ⅲ). Main-stage needs further subdivision as Mo mineralizationstage (Ⅱ_1) and Cu mineralization stage (Ⅱ_2). Fluid inclusions at Bangpu can bedistinguished as types B15, B20H, B35, B60and B80based on the phases present atroom temperature (The letter “B” denotes “bubble”, and the number indicates theaverage volume percent occupied by the bubble in inclusions of that type. The letter“H” refers to the presence of halite as a daughter mineral). Fluid inclusionsmicrothermometry analysis gave the entire temperatures of mineralization rangingfrom240℃to419℃and pressure from38to116MPa, corresponding to depths from3.1and4.3km. B20H and B35inclusions dominate in Ⅱ_1stage with wide range ofhomogenization temperatures (240℃~405℃) and pressure from38to85Mpa. They formed molybdenum veins and quartz-molybdenum veins with potassic-silicic andsericitic alteration. In Ⅱ_2stage, fluid inclusions are mainly B60and B80types withhomogenization temperatures from293℃to419℃and pressure from32to84Mpa.They formed quartz-chalcopyrite±pyrite veins and chalcopyrite veins with silicic andpropylitic alteration.
     We conclude that the CO_2-bearing, aqueous fluids at Bangpu are consist of crust andmantle fluids with the former dominant, and lack of meteoric water involvementduring the whole mineralization. Isotope studies indicate metals at Bangpu theirmagmatic source. Pressure fluctuations, low pH and high S-content were probably themain driving force for Mo (Cu) sulfide deposition.The porphyry Mo (Cu) deposit at Bangpu, consequence of mineralization explosionduring the extension environment after India-Asia continental collision, shares manycommons with porphyry Cu deposit but has a closer relationship between magma andmetals precipitation.
引文
Audétat A and Pettke T. The magmatic-hydrothermal evolution of two barren granites: A melt andfluid inclusion study of the Rito delMedio and Canada Pinabete plutons in northern NewMexico (USA). Geochimica et Cosmochimica Acta,2003,67:97-121
    Audétat A, Pettke T, Heinrich C A, Bodnar R J. The Composition of Magmatic-HydrothermalFluids in Barren and Mineralized Intrusions. Economic Geology,2008,103:877-908
    Ballard R J, Palin J M, Camplell H I. Relative oxidation states of magmas inferred fromCe(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. ContribMineral Petrol,2002,144:347-364
    Becker S P, Fall A, Bodnar R J. Synthetic fluid inclusions ⅩⅦ.1PVTX properties of highsalinity H2O-NaCl solutions (>30wt%NaCl): Application to fluid inclusions thathomogenize by halite disappearance from porphyry copper and other hydrothermal oredeposits. Economic Geology,2008,103:539-554
    Belousova A E, Griflin L W, O’Reilly Y S, Fisher I N. Igneous zircon: trace element compositionas an indicator of source rock type. Contrib Mineral Petrol,2002,143:602-622
    Blichert T J and Albarède F. The Lu-Hf isotope geochemistry of chondrites and the evolution ofthe mantle-crust system. Earth Planet,1997,148:243-258
    Bodnar R J, Burnham C W, Sterner S M. Synthetic fluid inclusions in natural quartz. Ⅲ.Determination of phase equilibrium properties in the system H2O-NaCl to1000℃and1500bars. Geochimica et Cosmochimica Acta,1985,49:1861-1873
    Bodnar R J and Vityk M O. Interpretation of microthermometric data for H2O-NaCl fluidinclusions. In: Vivo B D and Frezzotti M L. Fluid Inclusions in Minerals, Methods andApplications. Virginia Tech, Blackburg.1994:117-130
    Bodnar R J. Fluid inclusion evidence for a magmatic source for metals in porphyry copperdeposits. In: Thompson J F H. Magmas, Fluids, and Ore Deposits. Mineralogical Associationof Canada Short Course Series,23. Mineralogical Association of Canada,1995:139-152
    Calagari A A. Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun,East-Azarbaidjan, Iran. Journal of Asian Earth Sciences,2004,23:179-189
    Candela P A and Bouton S L. The influence of oxygen fugacity on tungsten and molybdenumpartitioning between silicate melts and ilmenite. Econ. Geol.,1990,85:633-640
    Carten R B, Geraghty E P, Walker B M. Cyclic development of igneous features and theirrelationship to high-temperature hydrothermal features in the Henderson porphyrymolybdenum deposit, Colorado. Econ. Geol.,1988,83:266-296
    Cline J S and Bodnar R J. Direct evolution of brine from a crystallizing slick melt at the Questa,New Mexico, molybdenum deposit. Econ. Geol.,1994,89:780-1802
    Cline J S and Vanko D A. Magmatically generated saline brines related to molybdenum at Questa,New Mexico, USA. In: Thompson J F H. Magmas, Fluids, and Ore Deposits. MineralogicalAssociation of Canada Short Course Series,23. Mineralogical Association of Canada,1995:153-174
    Farges F, Siewert R, Ponader C W, Brown G E, Pichavantm M, Behrens H. Structuralenvironments around molybdenum in silicate glasses and melts. II. Effect of temperature,pressure, H2O, halogens and sulfur. Canadian Mineralogist,2006,44:755-773
    Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions. EconGeol,1988,83:197-202
    Halter W E, Pettke T, Heinrich C A, Rothen-rutishauser B. Major to trace element analysis of meltinclusions by laser-ablation ICP-MS: methods of quantification. Chemical Geology,2002,183:63-86
    Hedengquist J W and Arribas A Jr. Evolution of an intrusion-centered hydrothermal system: farSoutheast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol,1998,93:373-404
    Heinrich C A. The physical and chemical evolution of low-salinity magmatic fluids at theporphyry to epithermal transition: a thermodynamic study. Mineralium Deposita,2005,39:864-889
    Hou Z Q, Zeng P S, Gao Y F, Dong F L. The Himalayan Cu-Mo-Au mineralization in the easternIndo-Asian collision zone: constraints from Re-Os Dating of molybdenite. MineraliumDeposita,2006,41:33-45
    Johannes W and Holtz F. Petrogenesis and experimental petrology ofgranitic rocks. Springer,1996:335
    Klemm L M, Pettke T, Heinrich C A. Fluid and source magma evolution of the Questa posit, NewMexico, USA. Mineralium Deposita,2008,43:533-552
    Liang H Y, Camplell H. I, Allen C, Sun W D, Liu C Q, Yu H X, Xie Y W, Zhang Y Q. ZirconCe4+/Ce3+ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Miner Deposita,2006,41:152-159
    Mao J W, Zhang Z C, Zhang Z H. Re-Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the northern Qilian Mountains and its geological significance. Geochimica etCosmochimica Acta,1999,63(11-12):1815-1818
    Mao J W, Kerrich R, R H Y, R Y H. High3He-4He ratios in the Wangu gold deposit, Hunanprovince, China: Implication for mantle fluids along the Tanglu deep fault zone. GeochemicalJournal,2002,36(3):197-208
    Mao J W, Xie G Q, Bierlein F, Ye H S, Qu W J, Du A D, Pirajno F, Li H M, Guo B J, Li Y F, YangZ Q. Tectonic implications from Re-Os dating of Mesozoic molybdenum deposits in the eastQinling-Dabie orogenic belt. Geochimica et Cosmochimica Acta,2008,72:4607-4626
    Mutschler F E, Wright E G, Ludington S, Abbott J T. Gra-nite molybdenite systems. Econ. Geol.,1981,76:874-897
    Redmond P B, Einaudi M T, Inan E E. Copper deposition by fluid cooling in intrusion-centeredsystem: New insights from the Bingham porphyry ore deposit, Utah, Geology,2004,32:217-220
    Richard J P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. EconomicGeology,2003,98:151-153
    Richard J P. Cumulative factors in the generation of giant calc-alkaline porphyry Cu deposits. In:Porter T M. Super-Porphyry Copper&Gold Deposits: A Global Perspective. PGCPublishing, Adelaide,2005:7-25
    Rickers K, Thomas R, Heinrich. The behavior of trace elements during the chemical evolution ofthe H2O-, B-, and F-rich granite-pegmatite-hydrothermal system at Ehrenfriedersdorf,Germany: a SXRF study of melt and fluid inclusions. Miner Deposita,2006,41:229-245
    Ross P S, Jebrak M J, Walker B M. Discharge of hydrothermal fluids from a magma chamber andconcomitant formation of astratified breccia zone at the Questa porphyry molybdenumdeposit, New Mexico. Econ. Geol.,2002,97:1679-1699
    Rusk B G, Reed M H, Dilles J H. Fluid Inclusion Evidence for Magmatic-Hydrothermal FluidEvolution in the Porphyry Copper-Molybdenum Deposit at Butte, Montana. EconomicGeology,2008,103:307–334
    Selby D, Nesbitt B E, Muehlenbachs K, Prochaska W. Hydrothermal alteration and fluid chemistryof the Endako porphyry molybdenum deposit, British Columbia. Econ. Geol.,2000,95:183-202
    Sillitoe R H. Types of porphyry molybdenum deposits. Mining Magazine,1980,142:550-553
    Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal golddeposits in the circum-Pacific region. Australian Journal of Earth Sciences,1997,44:373-388
    Sillitoe R H. Some metallogenic features of gold and copper deposits related to alkaline rocks andconsequences for exploration. Mineralium Deposita,2002,37:4-13
    Sillitoe R H. Porphyry copper systems. Economic Geology,2010,105:3-41
    Sterner M. Homogenization of fluid inclusions to the vapor phase: The apparent homogenizationphenomenon. Economic Geology,1992,87:1616-1623
    Tacker R C and Candela P A. Partitioning of molybdenum between magnetite and melt: Apreliminary experimental study of partitioning of ore metals between silicic magmas andcrystalline phases. Econ. Geol.,1987,82:1805-1826
    Ulrich T and Mavrogenes J. An experimental study of the solubility of molybdenum in H2O andKCl-H2O solutions from500℃to800℃, and150to300MPa. Geochimica etCosmochimica Acta,2008,72:2316-2330
    Westra G and Keith S B. Classification and genesis of stockwork molybdenum deposits. Econ.Geol.,1981,76:844-873
    Wilkinson J J. Fluid inclusions in hydrothermal ore deposits. Lithos,2001,55:229-272
    Yang K and Bodnar R. Magmatic-hydrothermal evolution in the “bottoms” of porphyry coppersystems: Evidence from silicate melt and aqueous fluid inclusions in Granitoid intrusions inthe Gyeongsang Basin, South Korea. International Geological Reviews,1994,36:608-628
    Zajacz Z, Halter W. Copper transport by high temperature, sulfur-rich magmatic vapor: Evidencefrom silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano(Chile). Earth and Planetary Science Letters,2009,282:115-121
    陈懋弘,章伟,杨宗喜,等.黔西南白层超基性岩强锆石SHRIMP U-Pb年龄和Hf同位素组成研究.矿床地质,2009,28(3):240-250
    代军治.燕辽成矿带钼(铜)矿床成矿作用及成矿动力学背景:[博士论文].北京:中国地质科学院,2008
    董国臣,莫宣学,赵志丹,等.拉萨北部林周盆地林子宗火山岩层序新议.地质通报,2005,24(6):549-557
    高一鸣,陈毓川,唐菊兴,等.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义.地质学报,2009,83(10):1436-1444
    高一鸣.西藏工布江达县亚贵拉-沙让多金属矿床地质特征及区域成矿研究:[博士论文].北京:中国地质科学院,2010a
    高一鸣,陈毓川,唐菊兴.西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石Ar-Ar定年及其地质意义.矿床地质,2010b,29(2):323-331
    耿全如,潘桂堂,金振民,等.冈底斯带叶巴组火山岩地球化学及成因.地球科学——中国地质大学学报,2005,30(6):747-760
    耿全如,王立全,潘桂堂,等.西藏冈底斯带洛巴堆组火山岩地球化学及构造意义.岩石学报,2007,23(11):2699-2714
    侯增谦,莫宣学,杨志明,等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,2006,33:348-359
    侯增谦,潘小菲,杨志明,等.初论大陆环境斑岩铜矿.现代地质,2007,21:332-351
    简伟,柳维,石黎红.斑岩型钼矿床研究进展.矿床地质,2010,29(2):308-316
    纪伟强,吴福元,锺孙霖,等.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学D辑,2009,39(7):849-871
    郎兴海,唐菊兴,陈毓川,等.西藏谢通门县雄村斑岩型铜金矿集区号矿体中辉钼矿Re-Os年代学及地质意义.矿物岩石,2010,30(4):55-61
    李光明,杨家瑞,丁俊.西藏雅鲁藏布江成矿区矿产资源评价新进展.地质通报,2003,22(9):699-703
    李光明,芮宗瑶.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,2004,28(2):165-170
    李光明,刘波,屈文俊,等.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据.大地构造与成矿学,2005,29(4):482-490
    李光明,李金祥,秦克章,等.西藏班公湖带多不杂超大型富金斑岩铜矿的高温高盐高氧化成矿流体:流体包裹体证据.岩石学报,2007,23(5):935-952
    李皓揚,锺孙霖,王彦斌,等.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报,2007,23(2):493-500
    李永峰,毛景文,胡华斌,等.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质,2005a,24(3):292-304
    李永峰,毛景文,胡华斌,等.豫西公峪金矿床流体包裹体及其He、Ar、S、H、O同位素组成对成矿流体来源的示踪.岩石学报,2005b,21(5):1347-1358
    刘斌,段光贤. NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,1987,7(4):345-352
    刘斌.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用.地质论评,2001,47(6):617-622
    卢焕章,范宏瑞,倪培,等.流体包裹体.北京:科学出版社,2004
    罗茂澄,王立强,冷秋锋,陈伟.邦铺钼(铜)矿床二长花岗斑岩、黑云二长花岗岩锆石Hf同位素和Ce4+/Ce3+比值.矿床地质,2011,30(2):266-278
    毛景文,谢桂青,张作衡,等.中国北方大规模成矿作用的期次及其地球动力学背景.岩石学报,2005,21(1):169-188
    孟祥金,侯增谦,高永丰,等.西藏冈底斯东段斑岩铜钼铅锌成矿系统的发育时限:邦铺铜多金属矿床辉钼矿Re-Os年龄证明.矿床地质,2003,22(3):246-252
    孟祥金.西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究:[博士论文].北京:中国地质科学院,2004
    莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,2005,11(3):281-290
    莫宣学,赵志丹,DePaolo D J,等.青高原拉萨地块碰撞-后碰撞岩浆作用的三种类型及其对大陆俯冲和成矿作用的启示:Sr-Nd同位素证据.岩石学报,2006,22(4):795-803
    莫宣学,赵志丹,朱弟成,等.西藏南部印度-亚洲碰撞带岩石圈:岩石学-地球化学约束.地球科学-中国地质大学学报,2009,34(1):17-24
    潘桂棠,丁俊,姚冬生,等.青藏高原及邻区地质图(1:1,500,000附说明书).成都:成都地图出版社,2004
    秦克章,李光明,赵俊兴,等.西藏首例独立钼矿——冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质,2008,35(6):1101-1112
    秦志鹏,汪雄武,多吉,等.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质,2011,30(2):339-348
    曲晓明,江军华,辛洪波,等.西藏冈底斯造山带几乎同时形成的两套埃达克岩为什么一套含矿一套不含矿.矿床地质,2010,29(3):381-394
    芮宗瑶,侯增谦,曲晓明,等.冈底斯斑岩铜矿成矿时代及青藏高原隆升.矿床地质,2003,22(3):217-225
    芮宗瑶,侯增谦,李光明,等.冈底斯斑岩铜矿成矿模式.地质论评,2006,52(4):459-466
    宋玉财,胡文瑄,张文兰.山东昌乐玄武岩内刚玉巨晶中流体和熔融包裹体测温及激光拉曼密度分析.岩石矿物学杂志,2008,27(6):489-504
    唐菊兴,陈毓川,多吉,等.西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价.矿物学报,2009a,增刊:476-478
    唐菊兴,陈毓川,王登红,等.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义.地质学报,2009b,83(5):698-704
    唐菊兴,王登红,汪雄武,等.西藏甲玛铜多金属矿矿床地质特征及其矿床模型.地球学报,2010a,31(4):495-506
    唐菊兴,黎凤佶,李志军,等.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据.矿床地质,2010b,29(3):461-475
    唐菊兴,邓世林,郑文宝,等.西藏墨竹工卡县甲玛铜多金属矿床勘查模型.矿床地质,2011,30(2):179-196
    王立强,唐菊兴,陈毓川,等.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质,2011,30(2):349-360
    王亮亮,莫宣学,李冰,等.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,2006,2(4):1001-1008
    吴福元,李献华,郑永飞,等. Lu-Hf同位素体系及其岩石学应用.岩石学报,2007,23(2):185-220
    西藏自治区地勘局地热地质大队.西藏自治区墨竹工卡县邦铺矿区钼(铜)多金属矿详查报告.内部报告,2009
    西藏自治区地质矿产局.西藏自治区区域地质志.北京:地质出版社,1993
    谢国刚.西藏冈底斯-拉萨陆块中部构造格局及地质演化:[硕士论文].武汉:中国地质大学(武汉),2004
    谢玉玲,李应栩,Chang Z S,等.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征.地质学报,2009,83(12):1869-1886
    辛洪波,曲晓明.西藏冈底斯斑岩铜矿带含矿岩体的相对氧化状态:来自锆石Ce(Ⅳ)/Ce(Ⅲ)比值的约束.矿物学报,2008,28(2):152-160
    杨德明,李才,王天武.西藏冈底斯东段南北向构造特征与成因.中国区域地质,2001,20(4):392-397
    杨志明.西藏驱龙超大型斑岩铜矿床——岩浆作用与矿床成因:[博士论文].北京:中国地质科学院,2008
    要梅娟,申俊峰,李胜荣,等.石英流体包裹体的岩相学和热爆参数填图在前河金矿中的应用.地质与勘探,2008,44(6):56-61
    叶会寿,毛景文,李永峰,等.东秦岭东沟超大型斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报,2006,80(7):1078-1088
    叶先仁,陶明信,余传螯,等.用分段加热法测定的雅鲁藏布江蛇绿岩的He、Ne同位素组成:来自深部地幔的信息.中国科学(D),2007,37(5):573-583
    尹安.喜马拉雅-青藏高原造山带地质演化.地球学报,2001,22(2):193-230
    应立娟,王登红,唐菊兴,等.西藏甲玛铜多金属矿辉钼矿Re-Os定年及其成矿意义.地质学报,2010,84(8):1165-1173
    张德会,张文淮,许国建.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约.地学前缘,2001,8(3):194-202
    张绮玲,曲晓明,徐文艺,等.西藏南木斑岩铜钼矿床的流体包裹体研究.岩石学报,2003,19(2):251-259
    张元厚,毛景文,简伟.东秦岭地区钼矿床研究现状及存在问题.世界地质,2010,29(2):188-202
    赵俊兴,秦克章,李光明,等.冈底斯沙让钼矿的成矿年代学和岩石地球化学与青藏高原主碰撞期成矿作用.矿物学报,2009,增刊:197-198
    郑有业,薛迎春,程力军,等.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学,2004,29(1):103-108
    周雄.西藏邦铺钼铜多金属矿床流体包裹体研究:[硕士论文].成都:成都理工大学,2009
    周雄,温春齐,张学全,等.西藏邦铺大型钼铜多金属矿床Rb-Sr等时线年龄及地质意义.高校地质学报,2010a,16(4):448-456
    周雄,温春齐,温泉,等.西藏邦铺大型斑岩钼铜矿床二长花岗斑岩锆石SHRIMP定年及其地质意义.矿物岩石地球化学通报,2010b,29(4):373-379
    周雄,温春齐,温泉,等.西藏邦铺斑岩型钼铜多金属矿床含钼铜脉石英的激光显微探针40Ar/39Ar年龄及地质意义.矿物岩石,2011,31(1):43-48
    周云,汪雄武,唐菊兴,等.西藏甲玛铜多金属矿床成矿流体来源及演化.矿床地质,2011,30(2):231-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700