采后荔枝果皮衰老过程中生理变化与基因差异表达分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
荔枝是一种亚热带至热带果树,在华南农业经济中占有重要地位。然而,采后衰老过程中果皮发生的一些变化如褐变及病菌侵染等严重降低了荔枝的商品价值,缩短了荔枝的货架期。深入研究荔枝采后生物学问题可为开发荔枝保鲜技术提供基础与依据。虽然已有学者对若干果皮衰老相关的若干问题进行了大量研究,但目前对采后荔枝果皮衰老的机制依然不甚明了,有关采后荔枝果皮衰老分子生物学的研究报道更少。
     为了探讨采后荔枝果皮的衰老机制,为进一步荔枝采后生物学研究提供基础,本研究以妃子笑荔枝果实为试材,研究了室温无包装条件下每隔8h的果皮生理变化。通过cDNA微阵列杂交筛选,获得了一批在采后不同阶段果皮及不同荔枝组织中差异表达的基因,进一步研究了这些基因的表达规律。主要结果如下:
     妃子笑荔枝果实在实验条件下72h内完全褐变。在褐变过程中,荔枝果实与果皮的失水量持续上升,果实失水主要由果皮失水引起。采后48h内,果皮主要散失自由水,在48h以后,束缚水下降较快。果皮的总酚含量在采后0-72h内持续下降,类黄酮、花色素苷含量在采后40h后下降。衰老过程中,果皮pH值缓慢上升。果皮相对电导率持续升高,至采后40h时达到最高;丙二醛含量则缓慢升高,至采后64h时达到最高。多酚氧化酶活性在32h后快速下降至一稳定水平。过氧化物酶活性在32h内上升,此后亦下降至一稳定水平。LOX活性在32h时有一高峰,此后剧烈下降至一稳定水平。果皮抗坏血酸含量在24h内保持稳定,此后持续下降。谷胱甘肽含量在采后24h内保持稳定,32h时升至最高,高峰保持16h后下降。抗坏血酸过氧化物酶活性总体上呈下降趋势,而谷光甘肽还原酶活性则呈单峰曲线,峰值维持在采后24h-32h。
     通过对获得的各项数据进行相关分析、逐步回归分析及通径分析后发现:果皮含水量与果皮失水量是影响果皮褐变的主要因素。聚类分析表明,以32h-40h之间为界,妃子笑荔枝果皮的衰老过程可分为2个阶段。前期,即阶段Ⅰ的果皮褐变指数变化较慢,主要散失自由水,可能主要发生非酶促褐变;阶段Ⅱ的果皮自由水与束缚水均散失,褐变指数在48h以后剧烈上升,可能主要发生酶促褐变。
     在生理变化研究基础上,我们进一步研究了果皮衰老过程中的基因差异表达。首先建立了快速从果皮中提取总RNA的方法,然后构建了采后0h果皮的cDNA文库,并分别以0h果皮总RNA和32h果皮总RNA为TESTER,构建了正向和反向抑制差减杂交(SSH)文库。之后,从cDNA文库中随机挑取了11636克隆,从正向SSH文库和反向SSH文库中各挑取了284个克隆及78个克隆, PCR扩增了这些克隆的插入片段,以回收的PCR产物作探针,制做了含12000探针的cDNA微阵列。以采后0h果皮样品为共同对照,设计了11组杂交组合,用以筛选在采后不同时间果皮中及荔枝不同组织中发生差异表达的基因。通过杂交分析,分别从采收0h果皮cDNA文库、正向SSH文库及反向SSH文库中选择了2444个、49个、17个差异表达克隆。对这些克隆进行测序,各获得了2136、45、17条有效EST序列,分别拼接成为836、20、16个基因簇(Clusters)。在来自0hcDNA文库的836个clusters中,含287个重叠群,549条单一序列。依据序列分析结果进一步测序获得了200余条含完整开放读码框的cDNA序列。Blastx结果表明,共403个Clusters获得了基因功能注释,这些基因中有221个在Gene Ontology数据库中进行了功能分类,KEGG注释将150余条基因填入了不同的代谢途径。
     共获得采后0-48h内差异表达基因709个,其中,从0h果皮cDNA文库中得到693个,正向SSH文库中得到20个,反向SSH文库中得到16个。经BLASTx比对有功能注释的基因405条,未知功能基因131条,无匹配基因172条。聚类分析表明,这些基因的表达规律可分为4种类型。随机选取若干基因进行RT-PCR检测基因表达的结果与cDNA微阵列杂交结果基本一致。众多基因发生了差异表达说明果皮的衰老是一个多基因调控的复杂过程。
     功能已知的差异表达基因中有大量基础代谢相关基因、次生代谢相关基因、细胞壁代谢相关基因、转录因子、胁迫响应蛋白、激素应答元件、细胞信号传导、细胞防御相关基因等。由于参与淀粉、蔗糖、脂肪酸、磷脂、甘油脂、蛋白质等分解代谢的基因多数上调表达,而参与其合成代谢的相关基因多呈下调表达,因此在果皮衰老过程中果皮的分解代谢受到促进,合成代谢受到抑制。另外,依据基因的表达规律推测,果皮衰老过程中类黄酮类色素合成降低,木质素合成则可能上升,且细胞壁的降解加快。
     通过综合分析各类基因表达规律后发现,编码某些热击蛋白、WRKY类转录因子、锌指蛋白类转录因子等的基因和淀粉与蔗糖代谢、细胞壁代谢、半乳糖代谢、类黄酮合成、叶绿体能量代谢等代谢途径可能在调节采后果皮衰老中具有重要的作用。
     依据cDNA微阵列杂交结果,我们还获得了分别在果肉、果皮、种子、叶片、花和根中特异表达的基因39、22、20、11、6和8个,其中,有功能注释的基因分别为27、18、16、6、5和5个。RT-PCR检测结果与cDNA微阵列检测结果基本一致。这些基因的获得为进一步克隆组织特异型启动子提供了基础。
     总之,本研究发现了影响果皮衰老的主要因素和果皮衰老的进程,获得了一批在果皮衰老过程中差异表达的基因及组织特异性表达基因,发现有大量差异表达基因参与了多种代谢途径,说明荔枝果皮衰老是一个多因素影响的复杂过程,其中一些基因的表达变化可能在调节荔枝果皮衰老过程中起重要作用。这些结果为进一步的荔枝采后生物学研究提供了基础与依据。
Litchi(Litchi chinensis Sonn.) is a subtropical to tropical fruit and plays an important role in agriculture economy in southern China. However, some changes of pericarp during its senescence, such as browning or/and diseases-infecting, reduce the commercial value and shelf-life of postharvest litchi. Insights into the mechanism of pericarp senescence will provide basis for innovations in preservation technology of litchi. Though many researches have focused on some specific issues of pericarp senescence, such as pericarp browning, the mechanism of pericarp senescence has not been well understood, especially of its molecular biology.
     To get some knowledge on pericarp senescence, some physiological changes in pericarp of unpacked Feizixiao litchi fruit were investigated at an 8-hour interval in this study. A number of genes differentially expressed during pericarp senescence of postharvest litchi and in different litchi tissues were identified by cDNA microarray hybridization, and their express patterns were further analyzed. The main results were as follows:
     Litchi fruit turned fully brown within 72 hours after harvest (HAH). During the process of skin browning, both the whole fruit and pericarp lost water continuously. The water loss of whole fruit was mainly resulted from water loss of pericarp. Within 48 HAH, free water in pericarp decreased more quickly than the binding water and the binding water in pericarp lost rapidly after 48 HAH. The falvonoid and anthocyanin content in pericarp decreased after 40 HAH and the total phenols content decreased throughout the experiment time. The pH value in pericarp increased slowly along with the senescence. Relative electronic conductivity of pericap increased continuously within 40 HAH and reached the maximum at 40 HAH. Malondiadlehyde(MDA) content increased slowly and reached the maximum at 64HAH. In the first 32HAH, there was little change in PPO activity, a slight increase in POD activity and an activity plateau in LOX. After 32HAH, activities of the three enzymes decreased quickly to a stabled level. Ascorbate acid and reduced glutathione content showed no changes within the first 24 HAH. After that time, Vc content decreased rapidly and reduced glutathione content increased to a plateau. After 48HAH, reduced glutathione content decreased. Activity of ascorbate acid peroxidase showed a decreasing tendency and activity of glutathione reductase showed a plateau in 24-32HAH.
     Correlation analysis, progressively regression analysis, path analysis indicated that water content and water loss of pericarp were the key factors related with pericarp browning. Senescence were differentiated into two stages according to the cluster analysis results. On stageⅠ, which was from 0 HAH to 32 HAH, pericarp lost mainly free water and could suffer a non-enzymatic browning. While on stageⅡ, which was from 40 HAH to 72 HAH, pericarp lost both free and binding water and its browning index increased sharply after 48HAH.
     The differential gene expression was examined based upon the results above. A method for rapidly extracting total RNA from litchi pericarp was established firstly. Then a cDNA library of pericarp at 0 HAH(0 h cDNA library) was constructed. Two subtraction suppression (SSH) libraries were also constructed by using RNA from pericarp at 0 HAH and at 32 HAH as testers for forward and reverse SSH library, respectively. Insert fragments of 12000 recombinant clones,among which 11636 were randomly picked from 0 h cDNA library, 78 were picked from reverse SSH library and 286 were picked from the forward SSH library, were amplified. Then the PCR products were purified and used as probes for constructing a set of cDNA microarrays. Eleven hybridization combinations were designed with the sample from pericarp at 0 HAH as common reference to identify differentially expressed genes in pericarp during 0-48HAH and in different litchi tissues. According to the hybridization results, 2444,49,17 clones which showed differential expression in different hybridization combinations were identified from 0 h cDNA library, forward and reverse SSH library respectively, and 2316, 45, 17 clones of them were sequenced successfully. Then 836, 20 and 16 clusters were assembled respectively. There were 287 contigs and 549 singletons in the 836 clusters obtained from 0 h cDNA library. 403 clusters were functionally annotated with BLASTx, in which 221 had functional classification according to Gene Ontology database. More than 150 genes were put into different metabolism pathways in KEGG database.
     709 genes differentially expressed in pericarp during 0 to 48HAH were screened out of 12000 probes, among which 693, 20, 16 genes were identified from 0h cDNA library, forward and reverse SSH library, respectively. Of the 709 genes, 405 were annotated as functional genes by BLASTx, 131 were annotated as unknown function and 172 had no homologues in the database. The expression patterns of above genes were classified into 4 groups according to the fluorescent ratio obtained by cDNA microarray hybridization. RT-PCR examining results of randomly selected genes showed similar expression patterns to the results from cDNA microarry hybridization.
     Most of genes mentioned above were isolated from litchi pericarp for the first time. Some of them had homologues involved in primary metabolisms, secondary metabolisms, cell wall metabolism and so on. And others of them had homologues which coded transcription factors, stress-responsible proteins, hormone responsible elements, signal transduction proteins, cell defensive associated proteins et al. Because expression of most genes involved in catabolism of starch and sucrose, lipid acid, phospholipid, glycerolipid, protein and so on were up-regulated and genes involved in their biosynthesis were down-regulated during pericarp senescence of postharvest litchi, catabolism was enhanced and biosynthesis was somehow inhibited. The patterns of gene expression also indicated the reduced biosynthesis of flavonoids, enhanced biosynthesis of lignin and accelerated degradation of cell wall. Expression of genes coding some heat shock proteins, WRKY transcription factors, zinc finger transcription factors and the metabolism pathways of starch and sucrose metabolism, cell wall metabolism, galactose metabolism, biosynthesis of flavonoids as well as energy metabolism of chloroplast should play important roles in regulating the pericarp senescence of postharvest litchi.
     In addition, 39, 22, 20, 11, 6 and 8 genes specifically expressed in pulp, pericarp, seeds, leaves, flower and roots of litchi respectively were identified by cDNA microarray analysis, among which only 27, 18, 16, 6, 5, and 5 genes were functionally annotated by bioinformatics analysis. The express patterns of the genes revealed by cDNA microarray hybridization were confirmed by RT-PCR analysis.
     In conclusion, the senescence stages of pericarp and the key factors influencing pericarp browning were concluded based on the physiological changes of posthavest litchi in this study. A number of genes differentially expressed both during pericarp senescence and in different litchi tissues were identified for the first time. Their involving in various physiological and molecular events implied that many complicated molecular processes had occured during pericarp senescence. Expression patterns of these genes provided some new clues to further research on postharvest biology of litchi. All the above results should provide basis for further studying on the postharvest biology of litchi.
引文
1. 布坎南 B B, 格鲁依森姆 W, 琼斯 R L 著,瞿礼嘉,顾红雅,白书农,赵进东 译. 植物生物化学与分子生物学. 北京:科学出版社,2004:1090pp
    2. 车建美,赖钟雄,赖呈纯,郭志雄,刘鸿洲,黄志宏. 荔枝体细胞胚胎发生早期的 3 种内源激素含量变化. 热带作物学报,2005,26(2):55-61
    3. 陈洪国,彭永宏. 常温泡沫箱加冰运输条件下荔枝的温度、品质、呼吸和乙烯释放变化. 果树学报,2001,18(3):155-159
    4. 陈洪国,王育林,彭永宏. 冷藏荔枝货架期品质与生理变化. 亚热带植物科学,2001a,30(3):11-15
    5. 陈洪国,谢代寒,彭永宏. 常温运输中加冰量对荔枝果实品质的影响. 湖北农业科学, 2001b,(2):56-58
    6. 陈丽璇,黄玉环,尤瑞琛,黄维南. 荔枝贮藏过程的钙处理及其影响. 福建果树,1998,(2):4-6
    7. 陈维信,苏维霞,李沛文. 荔枝气调贮藏的研究. 华南农学院学报,1982,3(3):54-61
    8. 陈维信,吴振先,苏美霞,季作梁. 荔枝常温下泡沫箱加冰保鲜研究. 广东农业科学,2000, (3):27-28
    9. 陈蔚辉,张福平,林建新,叶碧寸,余木丽. 常温条件下微气调袋包装对荔枝品质与某些生理指标的影响. 果树学报,2004,21(1):85-87
    10. 陈贻竹,王以柔. 荔枝果实过氧化物酶(POD)的研究. 中国科学院华南植物研究所集刊, 1989,(5):47-52
    11. 陈志宏,张如莲,陈红梅. 常温下荔枝贮藏保鲜的研究. 热带作物学报,1997,18(2):59-65
    12. 邓九生,张大鹏,陈大明. 荔枝铜锌超氧物歧化酶基因的克隆与序列分析. 广西农业生物科学,2000,19(2):73-76
    13. 邓义才,朱慧英,徐妙颜,李安妮. 荔枝果皮褐变与果实水分、呼吸变化的关系. 广东农业科学,1994(5):17-19
    14. 丁晓东. 荔枝分子生物学的研究. 福建农业大学博士后出站报告,福建福州,1999
    15. 段学武,蒋跃明,苏新国,宋丽丽,李月标,林文彬. 纯氧对荔枝果实贮藏期间果皮褐变和细胞超微结构的影响.热带亚热带植物学报,2004,12(6):565-568
    16. 傅连芳,唐道一. 荔枝花粉植株诱导的研究. 遗传学报,1983,l0(5):369-374
    17. 广东荔枝贮藏协作组. 防止速冻荔枝果皮变褐的研究. 植物学报,1975,17(4):303-308
    18. 韩继成,方宣钧. 编码荔枝乙烯受体(LcERSl)的 cDNA 基因的克隆与分析. 分子植物育种,2003,1(3):351 -35
    19. 郝中娜,陶荣祥. WRKY 转录因子超家族的研究. 生命科学,2006,18(2):175-179
    20. 贺立红,宾金华. 高等植物中的多酚氧化酶. 植物生理学通讯,2001,37(4):340-345
    21. 洪启征,谢知坚,陈文军.荔枝贮藏保鲜技术的研究.福建农学院学报.1986,15(1):19-27
    22. 侯任昭,黄旭明,罗雪梅,邓志群,刘秀琼,姚振威.γ-辐照杀灭蒂蛀虫对荔枝果实生理效应的初步研究. 仲恺农业技术学院学报,1993,6(2):76-78
    23. 胡桂兵,王惠聪,黄辉白. 套袋处理提高妃子笑荔枝果实耐贮性. 园艺学报,2001,28(4):290-294
    24. 胡位荣,刘顺枝,张昭其,季作梁. 荔枝果实采后脂氧合酶活性的变化. 华中农业大学学报,2005a,24(3):285-289
    25. 胡位荣,刘顺枝,张昭其,蒋跃明,季作梁. 1-甲基环丙烯处理荔枝果实减轻其贮藏中冷害的研究. 园艺学报,2006a,33 (6):1203-1208
    26. 胡位荣,刘顺枝,张昭其,蒋跃明,季作梁. 采后荔枝果实冷害过程中多胺含量的变化. 广西植物,2006b,26(4):370-374
    27. 胡位荣,庞学群,刘顺枝,张昭其,季作梁. 采后处理对荔枝果皮花色素苷含量和花色素昔酶活性的影响. 果树学报,2005,22(3):224-228
    28. 胡位荣,张昭其,季作梁,刘顺枝. 低温对荔枝果肉膜脂过氧化和保护酶活性的影响. 热带亚热带植物学报,2005b,13(1):8-12
    29. 胡位荣,张昭其,蒋跃明,季作梁. 采后荔枝冰温贮藏的适宜参数研究. 中国农业科学,2005, 38(4):797-802
    30. 胡新宇,宁正祥. 荔枝果实褐变的研究与调控. 食品与发酵工业, 2001,27(9):47-50
    31. 胡志群,王惠聪,胡桂兵. 高效液相色谱测定荔枝果肉中的糖、酸和维生素 C. 果树学报, 2005,22(5):582-585
    32. 华南农学院果蔬贮藏加工教研室. 荔枝的贮藏保鲜. 中国果品研究,1984,(1):15
    33. 黄代青,吕柳新,王平. 荔枝 R 基因同源序列的克隆与分析. 福建师范大学学报(自然科学版),2002,18(4):86-90
    34. 黄恩雄.外销荔枝处理技术.果农合作 1990,511:28-33
    35. 黄辉白 主编. 热带亚热带果树栽培学. 高等教育出版社,2003:1-58
    36. 黄素华,赖钟雄. 荔枝胚性愈伤组织及其体胚发生过程中染色体数目的变化. 福建农林大学学报(自然科学版),2003,32(4):458-463
    37. 黄素华,赖钟雄. 荔枝胚状体 POD 与 EST 同工酶酶谱分析. 福建农林大学学报(自然科学版),2002,31(4):467-469
    38. 黄晓任,康德妹,季作梁. 荔枝果实的冷藏适温与冷害. 华南农业大学学报,1990,11(3):13-18
    39. 黄鑫,戴思兰,孟丽,郑国生. 抑制性差减杂交(SSH)技术在分离植物差异表达基囚中的应用. 分子植物育种,2006,4(5):735-746
    40. 黄旭明,王惠聪,李建国,罗诗,袁炜群,陆洁梅,尹金华,黄辉白. 不同荔枝品种采后果实衰老的比较. 植物生理与分子生物学学报, 2005,31 (5): 555-558
    41. 黄循精. 世界荔枝生产与贸易. 世界热带农业信息,2004,(1):1-5
    42. 黄祖珍,游恺哲. 荔枝茎段离体培养初探. 广东农业科学,1990,(3):27-29
    43. 江建平, 苏美霞, 李沛文. 荔枝果实在发育和采后的乙烯产生及其生理作用. 植物生理学报, 1986,12(1):95-103
    44. 鞠荣,徐汉虹,杨晓云. 噻菌灵对荔枝贮藏保鲜的效果及残留量研究. 华南农业大学学报, 2005,26(1):110-114
    45. 邝哲师,周丽侬,马雪筠,陈俊秋,曹静. 荔枝体胚发生及成苗研究. 广东农业科学,1997,(1):15-17
    46. 邝哲师,周丽侬,马雪筠,陈俊秋,曹静. 荔枝组织培养中胚状体产生的类型及分析. 果树科学,1996,13(增刊):25-28
    47. 赖呈纯,赖钟雄,车建美,郭志雄. 荔枝转基因抗性胚性愈伤组织的酷酶同工酶分析. 亚热带农业研究,2005,1(2):21-23
    48. 赖钟雄,陈振光. 龙眼荔枝属间原生质体电融合. 福建农业大学学报,2001,30(3):347-352
    49. 赖钟雄,桑庆亮,潘东明. 荔枝胚性愈伤组织基因枪转化系统的建立. 福建农林大学学报(自然科学版),2002,31(3):484
    50. 赖钟雄,桑庆亮. 荔枝胚性愈伤组织体胚发生系统的优化及转化抗性愈伤组织培养再生植株. 应用与环境生物学报,2003,9(2):131-136
    51. 李春娟,单世华,许婷婷,宫清轩. 几丁质酶和 β-1,3-葡聚糖酶基因研究进展. 生物技术通讯,2004,15(5):502-505
    52. 李洪军,胡宗利,魏流. 防御素(Defensin)研究进展. 生物工程进展,2001,21(3):34-37
    53. 李杰,朱碧岩,丁四兵,张铭光. 臭氧水对荔枝采后若干生理生化指标的影响. 亚热带植物科学, 2004,33(4):15-18
    54. 李蕾. 无核荔枝胚败育相关蛋白质的分离鉴定及 cDNA 克隆. 华南热带农业大学博士学位论文.海南海口,2006 年 5 月
    55. 李明启, 严君灵. 荔枝多酚氧化酶的研究. 植物学报,1963,11(4):329-337
    56. 李明启, 严挺, 候任昭. 还原剂和抑制剂对荔枝果皮多酚氧化酶活性的影响. 植物生理学报,1980,6(1):99-102
    57. 李沛文. 荔枝的气体贮藏. 见:李来荣 主编。山地果树研究.上海科技出版社,1966:128pp
    58. 李平,陈贻竹,王以柔,刘鸿先. 低温对荔枝果实采收后呼吸作用的影响. 植物生理学通讯, 1986,(4):23-26
    59. 李欣允,陈维信,刘爱媛. 炭疽病菌侵染对荔枝果实生理生化变化的影响. 亚热带植物科学, 2006,35(1):1-4
    60. 李新明. 汽车保鲜运输新技术----泡沫箱加冰法. 中国农村科技,2000,(7):34
    61. 李焰焰,曹家树,黄鹂. 植物多肤信号分子 RALF 的研究进展. 生物学杂志,2006,23(5):1-4
    62. 廖威,杨如钢,谭强. 荔枝常温保鲜新法研究. 广西轻工业,2003,(2):9-13
    63. 林宝凤,梁兴泉,潘萌缝,余在华. 壳聚糖涂膜对荔枝生物热的影响. 化工新型材料,2005, 33(3):16-18
    64. 林植芳,林桂珠,孙谷畴,陈芳,彭长连,刘淑娴. 人为调节荔枝果皮有机自由基及其与果皮变褐的可能关系. 实验生物学报,1994,27(4):383-388
    65. 林志民,郑文慧. 热烫或药品处理对速冻荔枝色泽的影响. 福州大学学报,2000, 28(5):109-111
    66. 刘爱媛,陈维信,李欣允. 荔枝采后炭疽病的发生情况及对贮藏效果的影响. 植物保护学报,2006,33(4):351-356
    67. 刘桂丰,褚延广,王玉成,侯英杰,杨传平. 星星草 cDNA 文库构建和金属硫蛋白(MT-1)基因的克隆. 植物生理学通讯,2005,41(4):424-428
    68. 刘鸿州,尤瑞琛,黄维南. 荔枝果实采后钙处理对三种酶活性的影响. 亚热带植物通讯,1996,25(2):1-5
    69. 刘华清,陈容茂. 荔枝胚性愈伤组织的诱导与保持. 福建果树,1997,(4): 1-3
    70. 刘晋,刘爱媛,陈维信. 荔枝果实感染霜疫病后的生理变化. 果树学报,2006a, 23(6)): 834-837
    71. 刘晋,刘爱媛,陈维信. 霜疫病菌侵染对荔枝果实生理变化的影响. 西南园艺,2006b, 34(1):1-4
    72. 刘军,袁自强,刘建东. 应用抑制差减杂交法分离水稻幼穗发育旱期特异表达的基因.科学通报,2000, 45(13):1992- 1997
    73. 刘淑娴,蒋跃明,陈芳,张东林,李月标. 荔枝果皮褐变与多酚氧化酶、过氧化物酶和酚类物质的区域化分布的关系. 中国科学院华南植物研究所集刊, 1991, 1991,(7): 95-98
    74. 陆 旺 金 , 蒋 跃 明 . 荔 枝 果 实 两 个 膨 大 素 基 因 的 克 隆 与 序 列 分 析 . 中 国 农 业 科学,2003,36(12):1525-1529
    75. 罗保康,韦祖桂,邓飞洪. 荔枝耐贮品种及防腐保鲜方法筛选. 1991,(2):24-31
    76. 罗志勇,陆秋恒,刘水平,陈湘晖,罗建清,汤立军,胡维新. 人参植物皂苷生物合成相关新基因的筛选与鉴定. 生物化学与生物物理学报,2003,35(6):554-560
    77. 欧阳曙,郑晓英,王瑞珍,蒋兴邨,邵启全. 致瘤农杆菌对荔枝的致瘤及 T-DNA 转移. 遗传学报,1985,12 (1):42-45
    78. 潘瑞炽,董愚得. 植物生理学. 高等教育出版社,1983,第二版:5-30
    79. 潘少霖,何志刚,蔡子坚,陆东和,林晓姿. 乌叶荔枝果实的采前病害控制与保鲜研究. 福建果树,2001,(2):9-11
    80. 庞学群, 段学武, 张昭其, 徐凤彩, 季作梁. 荔枝果皮过氧化物酶的纯化及部分酶学性质的研究. 热带亚热带植物学报,2004,12(5):449-454
    81. 庞学群, 张昭其, 段学武, 季作梁. 乙烯与 1-甲基环丙烯对荔枝采后果皮褐变的影响. 华南农业大学学报, 2001,22(4):11-14
    82. 庞学群,张昭其,段学武,季作梁. pH 值和温度对荔枝果皮花色素苷稳定性的影响.园艺学报,2001,(1):25-30
    83. 彭坚,翟迪升. 单体速冻荔枝生产工艺的研究. 食品科学,2001,23 (8):133-135
    84. 彭永宏,成文,施和平. 热水结合酸浸处理对荔枝果皮色素含量与酶活性的影响. 果树科学, 1999,16(2):92-97
    85. 彭永宏. 采后操作对荔枝果实品质,失水及呼吸的影响. 果树科学,1998a,15(3):217-222
    86. 彭永宏. 荔枝(Litchi chinensis Sonn.)采后果皮褐变机理与保鲜技术研究进展. 热带亚热带植物学报,1998b,6(1):81-86
    87. 桑庆亮,赖钟雄,潘东明.荔枝基因枪转化研究初报 福建农业大学学报 2001,30(2):266-267
    88. 沈朝贵,魏勤,胡昌泉. 荔枝果实熏硫与冷藏试验.福建果树,1997,(1): 11-14
    89. 宋纯鹏. 植物衰老生物学. 北京大学出版社,1998:180pp
    90. 宋光泉,柳建良,梁世强. 荔枝果皮褐变与失重关系的研究. 仲恺农业技术学院学报,2002, 15(3):107
    91. 宋光泉,王文龙. 荔枝包装与其果皮花色素普的光稳定性研究. 农业工程学报,2002, 18(2):115-117
    92. 宋垚臻,卓献荣,吕金虎. 荔枝保鲜化学品及其应用研究进展. 化工进展,2005,24(8):877-880
    93. 苏明申,林顺权,陈振光,俞长河. 荔枝叶片愈伤组织的诱导. 中国南方果树,2005, 34(1):25-26
    94. 孙大业,郭艳林,马力耕,崔素娟. 细胞信号传导. 科学出版社,2001,第 3 版:201-208
    95. 孙谷畴,林植芳,林桂珠,陈芳,刘淑娴. 不同浓度氧贮藏荔枝的几种酶活性变化. 广西植物,1992,12(1):36-40
    96. 孙艳. 热激蛋白与果实的发育和贮藏. 山东农业管理干部学院学报,2006,22(3):160\
    97. 谭兴杰, 周永成. 荔枝果皮酶促褐变的研究. 植物生理学报,1987,13(2):197-203
    98. 谭兴杰,李月标. 荔枝(Litchi chinensis)果皮多酚氧化酶的部分纯化及性质. 植物生理学报, 1984,10(4):339-345
    99. 唐启义,冯明光. DPS 数据处理系统. 北京:科学出版社,2001 年第 2 版
    100. 唐志. 蒸气热处理侵染荔枝的昆士兰实蝇卵和幼虫的初步研究. 植物检疫,1994,8(5): 267-270
    101. 田国忠,李怀芳,裘维蕃. 植物过氧化物酶研究进展. 武汉植物学研究,2001,19(4):332-344
    102. 田路明,黄丛林,张秀海,张潞生,吴忠义. 逆境相关植物锌指蛋白的研究进展. 生物技术通报,2005,(6):12-16
    103. 王继栋,朱西儒. 荔枝采后病害及防治技术研究进展. 果树学报,2002,19(22):128-131
    104. 王家保 陈业渊 姜成东. 加入 WTO 后中国荔枝产业面临的挑战与对策. 热带作物学报, 2002, 23(增刊):38-43
    105. 王少峰,陆文华. 不同预冷速度、药剂、包装及温度对荔枝保鲜效果的研究. 福建农科院学报,1988,3(1):11-16
    106. 王永胜,王景,李发强,刘筱斌,刘良式. SSH 法获取水稻矮化突变体相关的 cDNA 片段. 高技术通讯,2001,(5):20-24
    107. 王育林,彭永宏. 热空气处理对荔枝生理特性和贮藏效果的影响. 应用与环境生物学报2003,9(2):137-140
    108. 吴光旭,刘爱媛,陈维信. 开口箭提取物对荔枝霜疫霉菌的抑制作用及其对荔枝果实的贮藏效果. 中国农业科学,2006,39(8):1703-1708
    109. 吴乃虎. 基因工程原理(下). 科学出版社,2001,第二版:88-107
    110. 夏瑞,陆旺金,李建国,杜娟. 简并引物的程序化设计与荔枝 HMGR 基因片段的克隆. 果树学报2006,23(6):903-906
    111. 谢建华,庞进,庞杰. 魔芋葡甘聚糖可食性涂膜处理荔枝的保鲜效果. 食品与机械,2003,(3):20-21
    112. 谢纳 M.著,张亮等译. 生物芯片分析. 科学出版社,2004:582pp
    113. 谢玉明,易千军,张秋明,曾继吾. 荔枝“妃子笑”品种花药培养及其体胚发生. 热带作物学报,2006,27(1):68-72
    114. 徐步前,余小林,罗文如. 高浓度 CO2 短时处理影响荔枝贮藏品质的初探. 食品科学,2004,(5):182-186
    115. 许柏球,杨剑. 反相高效液相色谱法测定荔枝果实游离氨基酸. 食品科学, 2004, 25(12): 156-159
    116. 禤维言,李明芳,郑学勤. 无核荔枝花发育相关 MADS-box 基因的克隆及结构分析. 生物技术,2005,15(3):6-9
    117. 禤维言,郑学勤. 无核荔枝 MADS-box 基因 LMADSI 的表达与转化拟南芥分析. 热带作物学报,2006,27(4):60-63
    118. 禤维言. 无核荔枝花与果实发育相关基因的克隆和功能分析. 华南热带农业大学博士学位论文.海南海口,2005 年 5 月
    119. 禤维言. 无核荔枝花与果实发育相关基因的克隆和功能分析. 华南热带农业大学博士学位论文.海南海口,2005 年 5 月
    120. 颜季琼,张孝琪,龙程. 高等植物细胞壁的结构和功能的分子生物学基础. 见:余叔文,汤章城 主编,植物生理与分子生物学. 北京:科学出版社,1998:93-112
    121. 姚振威, 胡美英,侯任环,邓志群,邱宇彤,刘秀琼. 荔枝蒂蛀虫辐射检疫处理初步研究. 仲恺农业技术学院学报,1993,6(1):19-21
    122. 尤瑞琛,林丽榕,陈丽璇,刘鸿州,黄维南. 钙处理对贮藏过程中的荔枝果品质的影响. 山东师范大学学报(自然科学版),1997,12(4):414-418
    123. 尤瑞琛.陈淳,林丽榕,刘鸿州,黄维南. 采后钙处理对荔枝果实过氧化物酶活性、呼吸率及乙烯生成的影响. 亚热带植物通讯,1997,26(1):6-10
    124. 于秋菊,吴錡,林忠平. 植物水孔蛋白研究进展. 北京大学学报(自然科学版),2002,38(6):855-866
    125. 于晓南,张启翔. 观赏植物的花色素苷与花色. 林业科学,2002,38(3):147-153
    126. 余恺,胡卓炎,余小林,佘凌苹,王东峰,陈昌实,黄智询. 荔枝果肉质构特性测定参数的研究. 中国食品学报,2006,(1):101-105
    127. 余亚白. 荔枝组织培养的若干研究. 福建农业科技,1991,(1): 15-16
    128. 俞长河,陈振光. 荔枝胚性悬浮培养物的建立、保持和优化原生质体分离的研究. 热带作物学报,1998,19(3):16-20
    129. 俞长河 , 陈振光 . 幼胚和花药培养诱导荔枝胚性愈伤组织 . 福建农业大学学报 ,1997, 26(2):168-172
    130. 曾黎辉,吕柳新,王平,卢秉国. 荔枝、龙眼胚性愈伤组织的细胞组织学观察. 福建农林大学学报(自然科学版),2002,31(3):331-333
    131. 曾黎辉,吕柳新. 根癌农杆菌介导荔枝遗传转化研究. 果树学报,2003,20(4) :287-290
    132. 曾黎辉,吕柳新.LEAFY 基因转化荔枝获得再生植株. 福建农业大学学报 2001,30(4):563-564
    133. 曾韶西,王以柔,陈贻竹,刘鸿先. 荔枝在不同低温贮藏下果皮中乙醇脱氢酶(ADH ) 同工酶的变化. 园艺学报,1987,14(1):62-64
    134. 张红云,宋娟娟,刘志刚,康敏雄. 荔枝果实中泛变应原 p rnfilin 基因的克隆及序列分析. 2006,6(6):620-623
    135. 张懋平. 荔枝速冻工艺的研究. 制冷,1995,51(2):1-4
    136. 张其昌,黄羌维,檀东飞,叶文. 荔枝保鲜研究简报. 植物生理学通讯,1986,(1):35-36
    137. 张以顺,向旭,傅家瑞,黄上志. 荔枝败育胚 S-腺苷甲硫氨酸合成酶基因的全长扩增和序列分析. 园艺学报,2004a,31 (2):160-164
    138. 张以顺,向旭,傅家瑞,黄上志. 荔枝败育胚 S-腺苷甲硫氨酸合成酶基因的全长扩增和序列分析. 园艺学报,2004a,31 (2):160-164
    139. 张以顺,向旭,傅家瑞,黄上志. 荔枝胚败育差异表达基因 cDNA 片段的克隆及序列分析. 园艺学报,2004b,31(1):25-28
    140. 张以顺,向旭,傅家瑞,黄上志. 荔枝胚败育差异表达基因 cDNA 片段的克隆及序列分析. 园艺学报,2004b,31(1):25-28
    141. 张以顺,向旭,傅家瑞,黄上志. 一种从荔枝幼胚中提取总 RNA 的方法. 植物生理学通讯,2004,40(2):226-228
    142. 张昭其,庞学群,段学武,季作梁. 荔枝采后果皮花色素苷的降解与花色素苷酶活性变化. 中国农业科学,2003,36(8):945-949
    143. 张昭其,庞学群,段学武,季作梁. 荔枝采后果皮花色素普的降解与花色素普酶活性变化. 中国农业科学,2003,36(8):945-949
    144. 张昭其,庞学群,段学武,季作梁. 荔枝果皮褐变过程中花色素苷含量的变化及测定. 华南农业大学学报,2002,22(1):16-19
    145. 张昭其,庞学群,季作梁,李雪萍. 采后荔枝果皮褐变的研究. 热带作物学报,1997,18(2): 53-58
    146. 赵玉清,郑兆艳,王 冰,闵玉梅. 壳聚糖复合物的制备与荔枝保鲜研究. 大连民族学院学报,2004,6(1):44-46
    147. 中华人民共和国农业行业标准. NY/T 5174-2002, 无公害食品 荔枝生产技术规程. 中国标准出版社,2002:5pp.
    148. 中华人民共和国商业行业标准. SB/T 10194-1993, 荔枝 鲜果. 中国标准出版社,1993:6pp
    149. Bassani M, Neurmann P M, Gepstein S. Differential expression profiles of growth-regulated genes in elongation zone of maze primary root.. Plant molecular biology,2004,56(3):367-380
    150. Batten D J. Maturity criteria for litchis. Food quality and preference,1989,1(4/5):149-155
    151. Bouton S, Viau I, Lelievre F, Limami A M. A gene encoding a protein with a praline reich domain(MtPPDI), revealed by suppressive substractive hybridazatiton(SSH), is specifically expressed in the Medicago truncatula embryo axis during germination. Journal of experimental botany,2005,56(413):825-832
    152. Chen W X, Wu Z X, Ji Z L . Postharvest research and handling of litchi in China-A review. A cta horticulturae.2001,558:321-330
    153. Chen X, Yuan H, Ren R, Zhu L, Du B, Weng Q, He G. Isolatiton and characterization of triacontanol-regulated genes in rice(Oryza sativa L.):possible role of triacotanol as a plant growth stimulator. Plant cell physiology,2002,43(8):869-876
    154. Chyau C C, Ko P T, Chang C H, MaU J L. Free and glycosidically bound aroma compounds in lychee (Litchi chinensis Sonn.). Food Chemistry,2003,(80):387–392
    155. CLONTECHniques . SMARTTM PCR cDNA Synthesis Kit. 1999, I:4-8
    156. CODEX STAND FOR LIYCHI. CODEX STAN 196-1995. 1995:6pp
    157. Degenhardt J, Al-Masri A N, Kurkcuoglu S, Szankowski I, Gau A E. Characterization by suppression subtractive hybridization of transcripts that are differentially expressed in leaves of apple scab-resistant andsusceptible cultivars of Malus domestica. Mol Gen Genomics,2005,273: 326-335
    158. Diatchenko L, Lau Y F C, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov Y, Gurskya N, Sverdlov E, Siebert P D. Suppression substractive hybridization: A method for generating diferentially regualated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA.,1996,93:6025-6030
    159. Ding X D, Lu L X, Xue Y B, Huang H B, Menzel C. Cloning of ACC oxidase gene in fruit of Litchi chinensis Sonn. and its expression in E. coli. Acta horticulturae,2001,58:161-165
    160. Duan X W, Jiang Y M, Su X G, Liu H, Li Y B, Zhang Z Q, Zheng Y H, Jiang W B. Role of pure oxygen treatment in browning of litchi fruit after harvest. Plant Science,2004,167: 665–668
    161. Duan X W, Jiang Y M, Su X G, Zhang Z Q, Shi J. Antioxidant properties of anthocyanins extracted from litchi (Litchi chinenesis Sonn.) fruit pericarp tissues in relation to their role in the pericarp browning. Food Chemistry,2007,101(4): 1365-1371
    162. Duggan D J, Bitter M, Chen Y, Meltzer P, Trent J M. Expression profiling using cDNA microarrays. Nature genetics,1999,21(suppl.):10-14
    163. Erwan L R, Thierry D, Pascale S M, Yves L, Veronique C. A-type proanthocyanidins from pericarp of litchi chinensis. Phytochemistry,1998,48(7):1251-1258
    164. Fonseca S, Hackler L, Zvara A, Ferreira S, Balde A, Dudits D, Pais M S, Puskas L G. Monitoring rene expression along pear fruit developmet,ripening and senescence using cDNA microarrys. Plant Science,2006,167:457-469
    165. Fuches Y, Zacrijrman G, Ronijn R. The physiological basis of litchi fruit pericarp color retetion Acta Horticulturae,1993, (343): 29-33
    166. Gao P, Wang G Y, Zhao H J, Fan L, T Y Z. Isolation and identification of submergence induced genes in maize (Zea mays)seedlings by suppression subtractive hybridization. Acta botanica sinica,2003,45(4):479- 483
    167. Gong Q Q, Tian S p. Partial characterization of soluble peroxidase in pericarp of litchi fruit. Progress in biochemistry and biophysics,2002,29(6):891-895
    168. Hadfield K A, Bennett A B. Programmed senescence of plant organs. Cell death and differentiation, 1997, 4, 662-670
    169. Hinderhofer K, Zentgraf U. Identification of a transcription factor specificially expressed at the onset of leaf senescence. Planta,2001,213(3):469-473
    170. Huang X M, Wang H C, Wei-Qun Yuan W Q, Lu J M,Yin J H, Luo S, Huang H B. A study of rapid senescence of detached litchi: roles of water loss and calcium. Postharvest Biology and Technology,2005,(36):177–189
    171. Jacobi K K, Wong L S, Giles J E. Lychee(Litchi chinensis Sonn.) fruit quality following vapour heat treatment and cool storage. Postharvest biology and technology,1993,3:111-119
    172. Jiang Y M, Chen F. A study on polyamine change and browning of fruit during cold storage of litchi(Litchi chinensis Sonn.). Postharvest Physiology and Technology,1995,(5):245-250
    173. Jiang Y M, Chen F. A study on polyamine change and browning of fruit during cold storage of litchi(Litchi chinensis Sonn.). Postharvest Physiology and Technology,1995,(5):245-250
    174. Jiang Y M, Duan X W, Joyce D, Zhang Z Q, Li J R. Advances in understanding of enzymatic browning in harvested litchi fruit. Food Chemistry,2004a,(88): 443–446
    175. Jiang Y M, Fu J R. Inhibition of polyphenol oxidase and the browning control fo litchi fruit by glutathione and citric acid. Food chemistry,1998,62(1):49-52
    176. Jiang Y M, Fu J R. Postharvest browning of litchi fruit by water loss and its prevention by controlled atmosphere storage at high relative humidity. Lebensm.-Wiss. U.-Technol., 1999,(32):278-283
    177. Jiang Y M, Li J R, Jiang W B. Effects of chitosan coating on shelf life of cold-stored litchi fruit at ambient temperature. LWT,2005,38:757-761
    178. Jiang Y M, Li Y B, Li J R. Browning control, shelf life extension and quality maintenance of frozen litchi fruit by hydrochloric acid. Journal of food engineering,2004b,(63):147-151
    179. Jiang Y M, Zauberman G, Fuches Y. Partial purification and some properties of polyphenol oxidase extracted from litchi fruit pericarp. Postharvest Biology and Technology,1997,(10): 221-228
    180. Jiang Y M, Zhu X R, Li Y B. Postharvest control of litchi fruit rot by Bacillus subtilis. Lebensm-Wiss. U.-Technol.,2001,34:430-436
    181. Jiang Y M. Role of anthocyanins, polyphenol oxidase and phenols in lychee pericarp browning. Journal of the science and agriculture,2000,(80):305-310
    182. Joas J, Caro Y, Ducamp N D, Reynes M. Postharvest control of pericarp browning of litchi fruit (Litchi chinensis Sonn cv. Kwai Mi) by treatment with chitosan and organic acids: I. Effect of pH and pericarp dehydration. Postharvest Biology and Technology, 2005,(38): 128–136
    183. Johnson G I, Cooke A W, Sardsud U. Postharvest disease control in lychee. Acta horticulturae, 2002,575(2):705-715
    184. Kramer M S, Kuhn G D. The effect of radiation on mold populations on fresh lychees. Proceedings for Florida state horticulture society,1964,77:436-438.
    185. Laity,T H, Lee B M, Wright P E. Zinc finger proteins insigt into structural and functional diversity.Current opinion in structural biology,2001,11(1):39-46
    186. Lee, H S, Wicker L. Quantitative changes in anthocyanin pigments of lychee fruit during refrigerated storage. Food chemistry,1991(40):263-270
    187. Li Y, Jones L, Mcqueen-Mason. Expansins and cell growth. Current opinion in plant biology,2003,6:603-610
    188. Licher A, Dvir Orit, Ackerman M, Feygenberg O, Pesis E. Acidified peel litchi fruit select for postharvest Penicillium decay. Phytoparasitica,2004,32(3):226-236
    189. Lichter A, Dvir O, Rot I, Aderman M, Regev R, Wieblum A, Fallik E, Zaubermam G, Fuchs Y. Hot water brushing: an alternative method to SO2 fumigation for color retention of litchi fruits. Postharvest biology and technology,2000,18:235-244
    190. Lin H T, Chen S J, Xi Y F. Commercial postharvest handling and storage technology of litchi fruit. Transactions of CSAE,2003,19(5):126-134
    191. Lopez-Gomez R.,Gomez-Lim MA. A method for extracting intact RNA from fruit rich in polysacchrides using ripe mango mesocarp. HortScience,1992,27:440-442
    192. McLauchlan R L, Mitchell G E, Johnson G I, Nottingham S M. Effects of disinfestation-dose irradiation on the physiology of Tai So lychee. Postharuest Biology and Technology, 1992,(1): 273-281
    193. Minic Z, Jouanin L. Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiology and Biochemistry,2006,44:435–449
    194. Mlazza G, Brouillard R. The mcohanism of co-pigmentation of anthocyanins in aqueous solutions. Phytochemistry,1990,(29):1097-1102
    195. Moctezuma E, Smith D L, Gross K C. Effect of ethylene on mRNA abundance of threeβ-galactosidase genes in wild type and mutant tomato fruit. Postharvest Biology and Technology, 2003, 28:207-217
    196. Mullins E D, McCollum T G, McDonald R E. Consequences on ethylene metabolism of inactivating the ethylene receptor sites in diseased non-climacteric fruit. Postharvest Biology and Technology,2000,19:155–164
    197. Nagar P K. Physiological and biochemical studies during fruit ripening in litchi(Litchi chinensis Sonn.). Postharvest biology and technology,1994,(4):225-234
    198. Nigam J K, Kumar G, Misra K K. Effect of wax coating and gibberellic acid treatment on shelf life of litchi fruit. Progressive horticulture,2001,33:49-51
    199. North G B, Nobel P S.Heteroneneity in water availability alters cellular development and hydraulic conductivity along roots of a desert succulent. Annals of botany.2000,85: 247-255.
    200. Olesen T, Nacey L, Wiltshire N, Brien S O. Hot water treatment for the control of rots on harvested litchi(litchi chinensis Sonn.) fruit. Postharvest biology and technology,2004,32: 135-146
    201. Patra D K, Sadhu M K. Influence of postharvest calcium treatment on shelf life and quality of litchi fruits. South Indian horticulture,1992,40 (5):252-256
    202. Paull R E, Chen N J. Effect of storage temperature and wrapping on quality characteristics of litchi fruit. Scientia horticulturae,1987,(33):223-236
    203. Paull R E, Reyes M E Q, Reyes M U. Litchi and rambutan insect disinfestation: treatments to minimize induced pericarp browning. Postharvest biology and technology,1995,(6):139-148
    204. Paux E, Tamasloukht M B, Ladouce1 N, Sivadon P, Grima-Pettenati J. Identification of genes preferentially expressed during woodformation in Eucalyptus. Plant Molecular Biology , 2004,55: 263–280,
    205. Peng J, Tang X D, Feng H Y. Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. Nuomoci). Scientia Horticulturae,2004, (2004) xxx–xxx
    206. Pesis E, Dvir O, Feygenberg O, Arie R B, Ackerman M, Lichter A. Production of acetaldehyde and ethanol during maturation and modified atmosphere storage of litchi fruit. Postharvest Biology and Technology ,2002,(26): 157–165
    207. Puchooa D. Expression of green fluorescent protein gene in litchi (Litchi chinensis Sonn.) tissues. Journal of applied horticulture,2004,6(1):11-15
    208. Puchooa D. In vitro regeneration of lychee(Litchi chinensis Sonn.). African journal of biotechnology,2004,3(11):576-584
    209. Ray-Rafie A, Balerdi C F. International marketing of lychee and what is the future for florida growers. Proceedings for Florida state horticulture society,2002,(115):88-90
    210. Rigney C J. Status of quarantine treatment of fruits in Australia with special reference to possible application of irradiation. In: Use of Irradiation as a Quarantine Treatment of Agricultural Commodities. IAEA-TECDOC-326, International Atomic Energy Agency, Vienna, 1985: 49-54.
    211. Rivera-Loapez J, Ordorica-Falomir C, Wesche-Ebeling P. Changes in anthocyanin concentration in Lychee (Litchi chinensis Sonn.) pericarp during maturation. Food Chemistry 1999,(65): 195-200
    212. Roux E L, Doco T, Sarni-Manchado P, Lozano Y, Cheynier V. A-type procanthocyanidins from pericarp of Litchi chinensis. Phytochemistry,1998,48(7):1251-1258
    213. Saengnil K, Lueangprasert K, Uthaibutra J. Control of enzymatic browning of harvested ‘hong huay’ litchi fruit with hot water and oxalic acid dips. ScienceAsia,2006,32:345-350
    214. Sambrook J, Russell D W. Molecular cloning: A laboratory manual. The 3rd edition. Translated by Huang P T. Beijing: Science Press. 2002:979pp(in Chinese)
    215. Sarni-Manchado P, Roux E L, Guerneve C L, Lozano Y, Cheynier V. Phenolic composition of litchi fruit pericarp. Journal of Agriculture and food chemistry. 2000,(48):5995-6002
    216. Schena M, Shalon D, Davis R W. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995, 270: 467-470
    217. Scott K J, Brown B I, Chaplin G R, Wilcox M E, Bain J M. The control of rotting and browning of litchi fruit by hot benomyl and plastic film. Scientia horticulturae, 1982,(16): 253-262
    218. Semova N, Semov A, Wang E. Digital image analysis for rapid quantification of total RNA and cDNA for SMARTTM-PCR, Biotechniques, 2001,31:746-752
    219. Shi Y H, Zhu S W, Feng J X, Qin Y M, Zhang L, Cheng J, Wei L P, Wang Z Y, Zhu Y X. Transciptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber elongation. The plant cell,2006,18:651-664
    220. Singh J P, Mandal B K. Role of wrappers and post-harvest application of calcium nitrate on the storage behavior of sub-tropical litchi cv. Manaraji. Journal of applied biology. 2000,10 (1):37 42
    221. Sivakumar D, Korsten L. Influence of modified atmosphere packaging and postharvest treatments on quality retention of litchi cv. Mauritius. Postharvest biology and technology,2006,41(2):135-142
    222. Srki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki Y, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 arabidopsis genes under drought and cold stresses by using full-length cDNA library. The plant cell,2001,13,61-72
    223. Sun J, Jiang Y M, Wei X Y, Shi J, You Y L, Kakuda Y, Zhao M M. Identification of (-)-epicatechin as the direct substrate for polyphenol oxidase isolated from litchi pericarp. Food research international,2006,39(8):864-870
    224. Tian S P, Li B Q, Xu Y. Effects of O2 and CO2 concentration on physiology and quality of litchi fruit in storage. Food chemistry,2005,(91):659-663
    225. Tiang Z D, Liu J, Xie C H. Isolation of resistance related-genes to Phytophthora infestans with suppression subtractive hybridization in the R-gene-free potato. Acta genetica sinica ,2003, 30(7):597-605
    226. Timeberlake C F, Bridle P. Flavylium salts, anthocyanidins and anthocyanins.Ⅰ . Reactions with sulpher dioxide. Journal of food science,1967,18:470-485
    227. Ulcer B, Mukhtar M S, Somssich I E. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta,2007,DOI 10.1007/s00425-006- 0474-y
    228. Underhill S J R, Critchley C. Cellular localization of polyphenol oxidase and peroxidase activity inLitchi chinensis Sonn. pericarp. Australian Journal of plant physiology, 1995.(22):627-632
    229. Underhill S J R, Simons D H. Lychee (Litchi chinensis Sonn. ) pericarp desiccation and the importance of postharvest micro-cracking. Scientia Horticulturae, 1993,(54): 287-294
    230. Wang S F, Cheng Z M, Li Y. Effect of postharvest treatments on physiology and quality of litchi and their economics. Acta horticulturae. 1996,429:503-507
    231. Wang W X, Vinocur B, Shoseyov O, Altman A. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends in plant science,2004,9(5):244-252
    232. Wang X, Wu P, Xia M, Wu Z, Chen Q, Liu F. Identification of genes enriched in rice roots of the local nitrate treatment and their expression patterns in split-root treatment. Genetics,2002,297:93-102
    233. Wara-Aswapati O, Somsrivichai J, Uthaibutra J. Effect of seal packaging by different plastic films on storage life and quality of litchi (Litchi chinensis Sonn.)fruits stored at three different temperatures. Japanese journal of tropical agriculture.34( 2): 68 -77
    234. Waters D L E, Holton T A, Ablett E M, Lee L S, Henry R J. The ripening wine grape berry skin transcriptome. Plant science,2006,171:132-138
    235. Wong L S, Jacobi K K, Giles J E. The influence of hot benomyl dips on the appearance of cool stored lychee. Scientia horticulturae,1991,46:245-251
    236. Xu Z C, Cai D, He F Y, Zhao D Y. Radiation preservation and test marketing of fruits and vegitables. Radiation physiology and chemistry,1993,42(1-3):253-257
    237. Yang B, Wang J S, Zhao M M, Liu Y, Wang W, Jiang Y M. Identification of polysaccharides from pericarp tissue of litchi(Litchi chinensis Sonn.) fruit in relation to their antioxidant activities. Carbohydrates research,2006,341:634-638
    238. Yang B, Zhao M M, Liu Y, Li B Z. Identification of the major flavanols in litchi pericarp. Natural product research and development,2005,17(5):577-579
    239. Yu C H, Chen Z G, Lu L X, Lin J W. Somatic embryogenesis and plant regeneration from litchi protoplasts isolated from embryogenic suspensions. Plant cell, tissue and organ culture,2000, 61: 51–58
    240. Zakhrabekova S, Kannangara C G, Wettstein D V, Hansson M. A microarray approach for identifying mutated genes. Plant Physiol. Biochem.,2002,40: 189–197
    241. Zauberman G, Ronen R, Akerman M, Weksler A, Rot I, Fuches Y. Post-harvest retention of the red colour of litchi fruit pericarp. Scieintia horticulturae,1991,(47):89-97
    242. Zhang D L, Cheng L Y, Tan J H, Zheng K W, Jiang Y M. Effects of chitosan coating on quality and shelf life of peeled litchi fruit. Journal of food engineering,2004,(64):355-358
    243. Zhang D L, Quantick P C, Grigor J M. Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biology and Technology, 2000,(19):165–172
    244. Zhang D L, Quantick P C. Effects of chitosan coating on enzymatic browning and decay during postharvest storage of litchi(Litchi chinensis Sonn) fruit. Postharvest biology and technology, 1997,12(2):195-202
    245. Zhang Z Q, Pang X Q, Chong Y, Ji Z L, Jiang Y M. Purification and structural analysis ofanthocyanins from litchi pericarp. Food chemistry,2004a,(84):601-604
    246. Zhang Z Q, Pang X Q, Duan X W, Ji Z L, Jiang Y M. Role of peroxidase in anthocyanin degradation in litchi fruit pericarp. Food chemistry,2004b,
    247. Zhang Z Q, Pang X Q, Ji Z L, Jiang Y M. Role of anthocyanin degradazation in litchi preicarp browning. Food Chemistry, 2001,75: 217-221
    248. Zhao M M, Yang B, Wang J S, Li B Z, Jiang Y M. Identification of the major flavonoids from pericarp tissues of lychee fruit in relation tot their antioxidant activities. Food chemistry,2006.
    249. Zheng X L, Tian S P. Effect of oxalic acid on control of posthavest browning of litchi fruit. Food chemistry,2006,96:519-523

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700