新型溶剂高效吸收净化高酸性石油天然气技术开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年来我国石油天然气工业发展迅速。新开发的川东北普光气田是世界上罕见的高酸性气田。为适应严格的天然气净化要求,确保川气东送的质量,研发我国具有自主知识产权的高选择性吸收脱除H2S、有机硫等杂质组分的溶剂,是中国石油化工股份有限公司确定的“第二道防火墙”。这对于高酸性石油天然气高效脱硫溶剂的国产化,对于我国天然气净化装置“安稳长满优”运行均具有重要意义。
     本文以提高有机硫化物在溶剂中的溶解和传质性能为导向,借助热力学和动力学分析以及量子化学理论计算方法,设计了明显能动改进溶剂脱除有机硫性能的复配溶剂UDS组成的基本构成,得到的新型UDS溶剂在高效脱除H2S的同时能够显著提高有机硫脱除效率。
     动力学分析和量子化学计算结果表明,UDS溶剂中具有环状结构的MOR组分能够有效促进COS-Am两性离子的脱质子反应,并能够显著提高COS的水解反应速率,改善COS的化学脱除率,SUL组分则对COS和硫醇等有机硫分子具有良好的物理溶解性能,两种因素的共同作用赋予了UDS溶剂良好的有机硫脱除性能。
     随后,本文在静态平衡测定装置和填料塔中研究了羰基硫、甲硫醇、乙硫醇、异丙硫醇和正丙硫醇5种模型化合物在UDS溶液中的溶解平衡行为和传质性能。结果表明,在相同的气相分压条件下,各硫醇平衡溶解度的大小顺序为:甲硫醇>乙硫醇>异丙硫醇>正丙硫醇。有机硫化物在UDS溶剂中的亨利常数小于MDEA溶剂.,传质性能因子大于MDEA溶剂,表明有机硫化物在UDS溶剂中的溶解和传质两方面性能均高于MDEA溶剂。
     此外,本文还分别研究了UDS溶液对不同金属材质的腐蚀性和抗发泡性能。结果表明,缓蚀剂的添加促进了金属表面钝化膜的形成,有效降低了UDS溶液对不锈钢和碳钢的腐蚀速率,相同条件下的腐蚀性低于MDEA溶液。通过向UDS溶液中添加20 ppm的DF-E后,其抗发泡性能能够得到有效改善。
     同时,在不同压力条件下进行了UDS溶剂净化模拟试验和以实际高酸性石油天然气为原料的侧线试验。试验结果均表明,UDS溶剂不仅表现出与国外引进MDEA溶剂同等的H2S脱除效果,而且具有明显优越的有机硫脱除性能,当UDS-F含量在20%以上时,UDS溶剂对有机硫的脱除率较MDEA溶剂高出30-40个百分点。UDS溶剂对CO2的脱除效果同时能够满足净化指标要求。
     在模试和侧线试验所取得的良好脱硫效果的基础上,在普光天然气净化厂进行了UDS溶剂的工业应用试验。结果表明,在工业装置目前操作条件下,维持尾气处理单元投用的完整工艺流程,应用UDS和MDEA溶剂,经一级吸收后COS含量分别约为165mg/m3和220 mg/m3。在停用水解反应器的工艺条件下,应用UDS溶剂,净化气中COS含量在135 mg/m3以下,产品气质量满足二类天然气指标要求。UDS溶剂对COS的总体脱除率较MDEA溶剂高出约20~27个百分点。达到相近再生效果的情况下,UDS和MDEA溶剂所需再生蒸汽单耗相当。在相近的操作条件下,应用UDS溶剂的净化装置的闪蒸气流量和闪蒸气中有机硫含量均低于MDEA。
With the fast development of domestic petroleum natural gas industry in the past few years, the Puguang natural gas field which is extremely rare in worldwide gas fields because of its high sour components contents, has been observed and is being developed. As "the second fire wall", the purification solvent with high absorption selectivity for the impurities such as H2S and organosulfurs needs to be developed in order to meet the strict purification requirement. Furthermore, it is of great significance to develop the purification solvent with independent intellectual property rights in the consideration of the localization of desulfurization solvent as well as smooth and steady running of domestic purification plants.
     The composition design of a novel solvent oriented by enhancing solubility and mass transfer properties of organosulfurs absorption into solvent was conducted by using thermodynamics and kinetics analysis methods as well as the quantum chemistry calculation method. Based on the basic formation, the novel UDS solvent shows not only the perfect removal performance for H2S but also high removal efficiency for organosulfurs.
     The results of dynamics analysis and the quantum chemistry calculation indicate that MOR component with ringed structure can accelerate the zwitterion deprotonation reaction and significantly catalyze the COS hydrolysis reaction, thus, improved the chemical removal efficiency of COS in solvent. Meanwhile, SUL component increases the physical solubility of COS and mercaptans in solvent. As a result, the UDS solvent displays an excellent performance for removing organosulfurs from high sour petroleum natural gas.
     Hereafter, the equilibrium behavior and mass transfer property of COS, methyl mercaptan (MeSH), ethyl mercaptan (EtSH), iso-propyl mercaptan (i-PrSH) as well as n-propyl mercaptan (n-PrSH) in UDS solutions were measured at static equilibrium apparatus and the packed column. The solubilities of five organosulfur compounds in UDS solutions show the turns as:MeSH>EtSH>i-PrSH>n-PrSH. As compared with MDEA solvent, the smaller Henry constants and the larger mass transfer factors have been observed for UDS solvent, suggesting the higher solubility and the better transfer performance of organosulfurs absorption in UDS solvent.
     In addition, the corrosivity and the foam behavior of UDS solution were investigated. By adding corrosion inhibitor into UDS solvent, the passive film is formed in the surface of the metal and the corrosion rates of stainless steel and carbon steel exposed to UDS solutions are reduced significantly. In the same condition, UDS solution indicates lower corrosivity as compared to MDEA solution. Meanwhile, UDS solution shows the low foaming trend after adding 20 ppm DF-E.
     Then, the absorption experiments for purifying high sour petroleum natural gas using UDS solvent were executed at simulation and side-stream absorption units, respectively. The purification results indicate that UDS solvent have equivalent removal performance for H2S and higher removal efficiencies for organosulfurs as compared with MDEA solvent. The organosulfurs removal efficiencies of UDS solvent are 30~40% higher than MDEA solvent as the content of UDS-F component is above 20%. Moreover, UDS solvent also shows the satisfactory removal efficiency for CO2.
     Based on the excellent desulfurization performance obtained from simulation and side-stream experiments, the industrial application test of UDS solvent was carried out in Puguang Natural Gas Plant. Under the present operation conditions of industrial plants and keeping the whole purification process, the COS contents in natural gases from the top of the first absorption column are 165 and 220 mg/m3 as using UDS and MDEA, respectively. For UDS solvent, the COS content in purified natural gas is 135 mg/m3 while the hydrolysis reactor is shut down. The quality of purified natural gas met the second-class standard. The organosulfur removal efficiency of UDS solvent is 20~27% higher than that of MDEA solvent. The steam consumption for regenerating UDS solvent seems to be similar to the consumption for MDEA solvent. As compared to MDEA solvent, the flow and organosulfur contents of flashing gas from the purification plant using UDS solvent are lower under the similar conditions.
引文
[1]BP公司.BP世界能源统计2009.http://www.bp.com/statisticalreview,2009.
    [2]江怀友,赵文智,张东晓等.世界天然气资源及勘探现状研究[J].天然气工业,2007,28(7): 12-16.
    [3]龙胜祥,朱虹,朱彤等.中国石化天然气勘探前景展望[J].天然气工业,2008,28(1):17-21.
    [4]陈赓良.醇胺法脱硫脱碳工艺的回顾与展望[J].石油与天然气化工,2003,32(3):134-138,142.
    [5]陈赓良.物理分离过程在天然气净化中的应用[J].天然气工业,1996,16(3):79-85.
    [6]陈赓良.膜分离技术在天然气净化工艺中的应用[J].天然气工业,1989,9(2):57-63.
    [7]陈赓良,缪明富,马卫.天然气中有机硫化合物脱除工艺评述[J].天然气工业,2007,27(10):120-122.
    [8]罗小武.天然气净化工艺技术研究与应用[J].天然气与石油,2006,24(2):30-34.
    [9]Buewell K F, Kubek D J and Sigmund P W. Alkanolamine Treating[J]. Hydrocarbon Processing,1982,3:108-116.
    [10]Rivera-Tinoco R and Bouallou C. Reaction kinetics of carbonyl sulfide (COS) with diethanolamine in methanolic solutions[J]. Ind. Eng. Chem. Res.,2008,47:7375-7380
    [11]冯孝庭.天然气—宝贵的财富[M].北京:化学工业出版社,2004.
    [12]常宏岗.天然气化工现状及发展动向[J].石油与天然气化工.2005,34(6):462-464.
    [13]于淼,周理.天然气中H2S的脱除方法发展现状与展望[J].天津化工,2002,5:18-20.
    [14]高建兵,詹亚力,朱建华.液化石油气脱硫技术[J].天然气化工,2001,26(2):37-41.
    [15]牛刚,黄玉华,王经.低温甲醇洗技术在天然气净化过程中的应用[J].天然气化工,2003,28(2):28-29.
    [16]苏欣,古小平,范小霞.天然气净化工艺综述[J].宁夏石油化工,2005,2:1-5.
    [17]朱利凯.胺法的进展[J].石油与天然气化工,1997,26(1):29-33.
    [18]Ameen J and Furbush S A. SOLVENT COMPOSITION USEFUL IN ACID GAS REMOVAL FROM GAS MIXTURES[P]. US 3737392,1973-06-05.
    [19]Van der Pas-Toornstra H M. Process of the removel H2S and CO2 from a gas mixture[P].US 4397660,1983-08-09.
    [20]沈春红,夏道宏.国内外脱硫技术进展[J].石化技术,1999,6(1):44-47.
    [21]杨林森.炼厂气选择性溶剂脱硫技术进展[J].炼油,1998,2:60-64.
    [22]王遇东.天然气处理原理与工艺[M].北京:中国石化出版社.2007.
    [23]Kohl, Arthur L and Nielsen, Richard B. Gas Purification[M]. Houston:Gulf Publishing Company.1997.
    [24]张涌,高秉宏.炼厂气二异丙醇胺水溶液脱硫装置标定报告[J].石油炼制,1985,(9):49-50.
    [25]杨林森.炼厂气选择性溶剂脱硫技术进展[J].炼油,1998,2:60-64.
    [26]Ludwigshafen E W, Frankenthal K V and Limburgerhof U W. Removal of CO2 and H2S from natural gases[P]. US 4537753,1985-8-27.
    [27]Ludwigshafen E W, Frankenthal K V and Lampertheim W H. Removal of CO2 and or H2S from gases[P]. US 4551158,1985-11-05.
    [28]Frankenthal K V, Ludwigshafen E W and Limburgerhof U W. Removal of CO2 and or H2S from gases[P]. US 4553984,1985-11-19.
    [29]陈建良,马正飞,纪宏宸等.MDEA水溶液对H2 S和C02混合气体吸收速率的测定[J].天然气化工,2007,32(4):74-78.
    [30]王开岳,张建华.甲基二乙醇胺选择性脱除H2S的工业试验[J].石油炼制,1988,(9):35-40.
    [31]Linden G S, Suummit S D W and Edison E L S. Process for the selective removal of hydrogen sulfide from gaseous mixtures with severely sterically hindered secondary aminoether alcohols[P]. US 4405585,1983-09-20.
    [32]Ho W S W and Sartori G. Addition of severely-hindered amine salts and or aminoacids to non-hindered amine solutions for the absorption of H2S[P]. US 4892674, 1990-01-09.
    [33]Ho W S W and Sartori G. Addition of severely-hindered aminoacids to severely-hindered amines for the absorption of H2S[P]. US 4895670,1990.
    [34]Austgen D M, Rochelle G T and Chen C C. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems.2. Representation of hydrogen sulfide and carbon dioxide solubility in aqueous MDEA and carbon dioxide solubility in aqueous mixtures of MDEA with MEA or DEA[J]. Ind. Eng. Chem. Res.,1991,30 (3):543-555.
    [35]Sidi-Boumedine R, Horstmann S, Fischer K, et al. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibria,2004,218:149-155.
    [36]Mandal B and Bandyopadhyay S S. Simultaneous Absorption of CO2 and H2S Into Aqueous Blends of N-Methyldiethanolamine and Diethanolamine[J]. Environ. Sci. Technol.,2006,40 (19):6076-6084.
    [37]Li M H, Shen K P. Solubility of hydrogen sulfide in aqueous mixtures of monoethanolamine with N-methyldiethanolamine[J]. J. Chem. Eng. Data,1993,38(1): 105-108.
    [38]Rinker E B, Ashour S S and Sandall O C. Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine[J]. Ind. Eng. Chem. Res.,2000, 39(11):4346-4356.
    [39]Aroonwilas A and Veawab A. Characterization and Comparison of the CO2 Absorption Performance into Single and Blended Alkanolamines in a Packed Column[J]. Ind. Eng. Chem. Res.,2004,43 (9):2228-2237.
    [40]Liao C H, Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine+N-methyldiethanolamine[J]. Chemical Engineering Science,2002, 57:4569-4582.
    [41]Zhang X, Zhang C F and Liu Y. Kinetics of Absorption of CO2 into Aqueous Solution of MDEA Blended with DEA[J]. Ind. Eng. Chem. Res.,2002,41(5):1135-1141.
    [42]Mandal B P, Guha M, Biswas A K, et al. Removal of carbon dioxide by absorption in mixed amines:modeling of absorption in aqueous MDEA/MEA and AMP/MEA solutions[J]. Chemical Engineering Science,2001,56:6217-6224.
    [43]Sidi-Boumedine R, Horstmann S, Fischer K, et al. Experimental determination of carbon dioxide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibria, 2004,218:85-94.
    [44]Dawodu O F and Meisen A. Solubility of Carbon Dioxide in Aqueous Mixtures of Alkanolamines[J]. J. Chem. Eng. Data 1994,39(3):548-552.
    [45]Li Y G and Mather A E. Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution[J]. Ind. Eng. Chem. Res.,1994,33 (8):2006-2015.
    [46]Benamor A and Aroua M K. Modeling of CO2 solubility and carbamate concentration in DEA, MDEA and their mixtures using the Deshmukh-Mather model[J]. Fluid Phase Equilibria,2005,231:150-162.
    [47]Mandal B P, Kundu M and Bandyopadhyay S S. Physical Solubility and Diffusivity of N2O and CO2 into Aqueous Solutions of (2-Amino-2-methyl-l-propanol+ Monoethanolamine) and (N-Methyldiethanolamine+Monoethanolamine)[J]. J. Chem. Eng. Data 2005,50(2):352-358.
    [48]Li M H and Lee W C. Solubility and Diffusivity of N2O and CO2 in (Diethanolamine +N-Methyldiethanolamine+Water) and in (Diethanolamine+2-Amino-2-methyl-1-propanol+Water)[J]. J. Chem. Eng. Data,1996,41(3):551-556.
    [49]Mandal B P, Biswas A K and Bandyopadhyay S S. Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-l-propanol and diethanolamine[J]. Chemical Engineering Science,2003,58:4137-4144.
    [50]Li M H and Chang B C. Solubilities of Carbon Dioxide in Water+ Monoethanolamine +2-Amino-2-me thyl-l-propanol[J]. J. Chem. Eng. Data,1994,39(3):448-452.
    [51]Xiao J, Li C W and Li M H. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-l-propanol+monoethanolamine[J]. Chemical Engineering Science,2000,55:161-175.
    [52]Park S H, Lee K B, Hyun J C, et al. Correlation and Prediction of the Solubility of Carbon Dioxide in Aqueous Alkanolamine and Mixed Alkanolamine Solutions [J]. Ind. Eng. Chem. Res.,2002,41 (6):1658-1665.
    [53]Sakwattanapong R, Aroonwilas A and Veawab A. Reaction rate of CO2 in aqueous MEA-AMP solution:Experiment and modeling[J]. Energy Procedia,2009,1:217-224.
    [54]Rebolledo-Libreros M E and Trejo A. Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol at 313, 343, and 393K in the range 2.5-1036 kPa[J]. Fluid Phase Equilibria,2004,224:83-88.
    [55]Rebolledo-Libreros M E and Trejo A. Gas solubility of CO2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol[J]. Fluid Phase Equilibria,2004,218:261-267.
    [56]Dubois L and Thomas D. CO2 Absorption into Aqueous Solutions of Monoethanolamine, Methyldiethanolamine, Piperazine and their Blends[J]. Chem. Eng. Technol.,2009, 32(5):710-718.
    [57]Klaus V and Werner H. Process for removing CO2 and/or H2S from gases[P]. DE 3411532 A1,1985-10-10.
    [58]Dannstadt-Schauernheim M A, Limburgerhof U W, Mannheim H J H, et al. Removal of CO2 and or H2S and or COS from gases containing these constituents[P]. US 4336233, 1982-06-22.
    [59]Maxdorf E W, Frankenthal K V, Lampertheim W H, et al. Removal of CO2 and or H2S from gases[P]. US 4997630,1991-03-05.
    [60]Belle Mead C N S, Yonkers P F and Clinton J W D. Absorbent compositions for the removal of acid gases from gas streams[P]. US 6337059 B1,2002-01-08.
    [61]汪志和,肖九高,王俊昌等.从混合气中脱除H2S的溶剂[P].CN 1887406A,2007-01-03.
    [62]Ico van den Born, Jay Rajani, Gerrit Bloemendal et al.壳牌公司的天然气、炼厂气和液体的处理技术[J].石油与天然气化工,2003,32(3):158-161.
    [63]王遇冬.天然气处理与加工工艺[M].石油工业出版社.1999,152-168.
    [64]四川石油管理局天然气研究所405组.用物理—化学混合溶剂选择性脱除硫化氢与有机硫[J].石油与天然气化工,1990,19(1):1-10.
    [65]Willaim T C and Hans W P. Method and composition for removing sulfides from hydrocarbon streams[P]. US 2002139717 Al,2002-10-03.
    [66]Yit Nieh E C. Removal of acid gases from gas streams[P]. US 4775519,1988-10-04.
    [67]朱利凯.H2S和C02在环丁砜—二异丙醇胺水溶液中的溶解度[J].石油与天然气化工,1991,20(4):9-14.
    [68]Christoph G and Karl-Heinz H. Method for removing acid gas components from gases[P]. US 6436174 B1,2002-08-20.
    [69]胡赓良,常宏岗.配方型溶剂的应用于气体净化工艺的发展动向[M].北京:石油工业出版社,2004.
    [70]曾亭.气体脱硫用UCARSOL溶剂[J].石油炼制译丛,1992,9:44-46.
    [71]Rescalli L G C and Snamprogotti O S. Selefining Process:A New Route for selective H2S Removal[J]. Chem. Eng. Prog.,1986, (5):47-49.
    [72]温崇荣,彭子成,郑必伟.川渝地区含硫天然气净化技术研究[J].石油与天然气化工,2005,34(5):370-374.
    [73]付敬强.CT8-5选择性脱硫溶液在四川长寿天然气净化分厂使用效果评估[J].石油与天然气化工,1999,28(3):184-186.
    [74]胡天友.高酸性天然气中有机硫脱除溶剂(CT8-20)的研究[J].气体净化,2005,5(4):38-44.
    [75]李革飞,许如,刘军.SDS高效脱硫剂在焦化干气脱总硫中的工业应用[J].石油炼制与化工,2003,34(5):14-16.
    [76]唐清林,范雨润,陈纪良.YXS-93新型选择性脱硫溶剂的工业应用[J].油气综合利用工程,1998,4(1):24-27.
    [77]胡莲佑,吴碧涛,徐斌.高效脱硫剂HRS-1的开发与性能研究[J].精细化工中间体,2001,31(4):29-31.
    [78]Mandal B P, Biswas A K and Bandyopadhyay S S. Selective absorption of H2S from gas streams containing H2S and CO2 into aqueous solutions of N-methyldiethanolamine and 2-amino-2-methyl-1-propanol[J]. Separation and Purification Technology,2004, 35:191-202.
    [79]Saha A K, Bandyopadhyay S S, Sajuf P, et al. Selective removal of hydrogen sulfide from gases containing hydrogen sulfide and carbon dioxide by absorption into aqueous solutions of 2-Amino-2-methyl-l-propanol[J]. Ind. Eng. Chem. Res.1993,32(12): 3051-3055.
    [80]Alper E. Reaction Mechanism and Kinetics of Aqueous Solutions of 2-Amino-2-methyl -1-propanol and Carbon Dioxide[J]. Ind. Eng. Chem. Res.,1990,29(8):1725-1728.
    [81]Rinker E B, Ashour S S and Sandall O C. Absorption of Carbon Dioxide into Aqueous Blends of Diethanolamine and Methyldiethanolamine[J]. Ind. Eng. Chem. Res.,2000, 39(11),4346-4356.
    [82]Danckwerts P V. The reactions of CO2 with ethanolamines[J]. Chem. Eng. Sci.,1979, 34:443-445.
    [83]Littel R J, Versteeg G F and Van Swaaij W P M. Kinetic study of COS with tertiary alkanolamine solutions.2. Modeling and experiments in a stirred cell reactor[J]. Ind. Eng. Chem. Res.,1992,31 (5):1269-1274.
    [84]Lee S C, Snodgrass M J, Park M K, et al. Kinetics of Removal of Carbonyl Sulfide by Aqueous Monoethanolamine[J]. Environ. Sci. Technol.,2001,35 (11):2352-2357.
    [85]Amararene F and Bouallou C. Kinetics of Carbonyl Sulfide (COS) Absorption with Aqueous Solutions of Diethanolamine and Methyldiethanolamine[J]. Ind. Eng. Chem. Res.,2004,43(19):6136-6141.
    [86]Rivera-Tinoco R and Bouallou C. Reaction Kinetics of Carbonyl Sulfide (COS) with Diethanolamine in Methanolic Solutions[J]. Ind. Eng. Chem. Res.,2008,47 (19):7375-7380.
    [87]Hinderaker G, Sandall O C. Absorption of carbonyl sulfide in aqueous diethanolamine[J]. Chemical Engineering Science,2000,55:5813-5818.
    [88]Alper E. Comments on kinetics of carbonyl sulphide with aqueous MDEA[J]. Chemical Engineering Science,1993,48(6):1179-1180.
    [89]Littel R J, Versteeg G F and Van Swaaij W P M. Kinetic study of COS with tertiary alkanolamine solutions.1. Experiments in an intensely stirred batch reactor[J]. Ind. Eng. Chem. Res.,1992,31 (5):1262-1269.
    [90]Rivera-Tinoco R and Bouallou C. Kinetic Study of Carbonyl Sulfide (COS) Absorption by Methyldiethanolamine Aqueous Solutions from 415 mol/m3 to 4250 mol/m3 and 313 K to 353 K[J]. Ind. Eng. Chem. Res.,2007,46 (20):6430-6434.
    [91]Alper E. Reaction Mechanism and Kinetics of Aqueous Solutions of 2-Amino-2-Methyl-1,3-Propanediol and Carbonyl Sulphide[J]. Turk J. Chem.,2001,25:209-214.
    [92]Littel R J, Versteeg G F and van Swaaij W P M. Kinetics of COS with primary and secondary amines in aqueous solutions[J]. AIChE Journal,1992,38(2):244-250.
    [93]Austgen D M, Rochelle G T, Peng X, et al. Model of vapor-liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation[J]. Ind. Eng. Chem. Res.,1989,28 (7):1060-1073.
    [94]Weiland R H, Chakravarty T and Mather A E. Solubility of carbon dioxide and hydrogen sulfide in aqueous alkanolamines[J]. Ind. Eng. Chem. Res.,1993,32 (7):1419-1430.
    [95]Haghtalab A and Tafti M D. Electrolyte UNIQUAC-NRF Model to Study the Solubility of Acid Gases in Alkanolamines[J]. Ind. Eng. Chem. Res.,2007,46 (18):6053-6060.
    [96]Gabrielsen J, Michelsen M L, Stenby E H, et al. A Model for Estimating CO2 Solubility in Aqueous Alkanolamines[J]. Ind. Eng. Chem. Res.,2005,44 (9):3348-3354.
    [97]Huttenhuis P J G, Agrawal N J, Hogendoorn J A, et al. Gas solubility of H2S and CO2 in aqueous solutions of N-methyldiethanolamine[J]. Journal of Petroleum Science and Engineering,2007,55:122-134.
    [98]Kuranov G, Rumpf B, Maurer G, et al. VLE modelling for aqueous systems containing methyldiethanolamine, carbon dioxide and hydrogen sulfide[J]. Fluid Phase Equilibria, 1997,136:147-162.
    [99]Lemoine B, Li Y G, Cadours R, et al. Partial vapor pressure of CO2 and H2S over aqueous methyldiethanolamine solutions[J]. Fluid Phase Equilibria,2000,172:261-277.
    [100]Li C X and Furst W. Representation of CO2 and H2S solubility in aqueous MDEA solutions using an electrolyte equation of state[J]. Chemical Engineering Science,2000, 55(15):2975-2988.
    [101]Jou F Y, Carroll J J, Mather A E, et al. The solubility of carbon dioxide and hydrogen sulfide in a 35 wt% aqueous solution of methyldiethanolamine [J]. The Canadian Journal of Chemical Engineering,2009,71(2):264-268.
    [102]Kuranov G, Rumpf B, Smirnova N A, et al. Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of N-Methyldiethanolamine in the Temperature Range 313-413 K at Pressures up to 5 MPa[J]. Ind. Eng. Chem. Res.,1996, 35(6):1959-1966.
    [103]Jou Y, Otto F D and Mather A E. Solubility of Mixtures of Hydrogen Sulfide and Carbon Dioxide in Aqueous Solutions of Triethanolamine[J]. J. Chem. Eng. Data,1996, 41(5):1181-1183.
    [104]Jou F Y and Mather A E. Solubility of carbon dioxide in an aqueous mixture of methyldiethanolamine and N-methylpyrrolidone at elevated pressures[J]. Fluid Phase Equilibria,2005,228-229:465-469.
    [105]Rebolledo-Librerosa M E and Trejo A. Gas solubility of H2S in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-l-propanol at 313, 343, and 393K in the range 2.5-1036 kPa[J]. Fluid Phase Equilibria,2004,224:83-88.
    [106]Rebolledo-Libreros M E and Trejo A. Gas solubility of CO2 in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol[J]. Fluid Phase Equilibria,2004,218:261-267.
    [107]Chen C C and Evans L B. A local composition model for the excess Gibbs energy of aqueous electrolyte systems[J]. AIChE Journal,1986,32(3):444-454.
    [108]Barreau A, Bouhelec E B, Tounsi K N H, et al. Absorption of H2S and CO2 in Alkanolamine Aqueous Solution:Experimental Data and Modelling with the Electrolyte-NRTL Model[J]. Oil & Gas Science and Technology,2006,61(3):345-361.
    [109]Bouhelec-Tribouillois E B L, Mougin P, Barreau A, et al. Simultaneous Solubilities of CO2 and H2S in Diethanolamine Aqueous Solution[J]. Oil & Gas Science and Technology,2008,63(3):363-372.
    [110]Smirnova N A and Victorov A I. Thermodynamic properties of pure fluids and solutions from the hole group-contribution model[J]. Fluid Phase Equilibria,1987, 34(2-3):235-263.
    [111]Lacombe R H and Sanchez I C. Statistical thermodynamics of fluid mixtures[J]. The Journal of Physical Chemistry,1976,80(23):2568-2580.
    [112]Yih S M and Shen K P. Kinetics of Carbon Dioxide Reaction with Sterically Hindered 2-Amino-2-methyl-l-propanol Aqueous Solutions[J]. Ind. Eng. Chem.Res., 1988,27(12):2237-2241.
    [113]Rinker E B, Ashour S S and Sandall O C. Kinetics and Modeling of Carbon Dioxide Absorption into Aqueous Solutions of Diethanolamine[J]. Ind. Eng. Chem. Res. 1996, 35(4):1107-1114.
    [114]Ko J J, Li M H. Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine+water[J]. Chemical Engineering Science,2000,55:4139-4147.
    [115]Bishnoi S and Rochelle G T. Absorption of Carbon Dioxide in Aqueous Piperazine/ Methyldiethanolamine[J]. AIChE Journal,2002,48(12):2788-2799.
    [116]Bougie F, Lauzon-Gauthier J and Iliuta M C. Acceleration of the reaction of carbon dioxide into aqueous 2-amino-2-hydroxymethyl-1,3-propanediol solutions by piperazine addition[J]. Chemical Engineering Science,2009,64:2011-2019.
    [117]Ali S H, Merchant S Q and Fahim M A. Reaction kinetics of some secondary alkanolamines with carbon dioxide in aqueous solutions by stopped flow technique [J]. Separation and Purification Technology,2002,27:121-136.
    [118]Bedell S A and Miller M. Aqueous amines as reactive solvents for mercaptan removal [J]. Ind. Eng. Chem. Res.,2007,46:3729-3733.
    [119]胡英.物理化学[M].北京:高等教育出版社,第五版,2007.
    [120]Thompson H W, Kearton C F and Lamb S A. The kinetics of the reaction between carbonyl sulphide and water[J]. J. Chem. Soc.,1935,31:1033-1037.
    [121]Sharma M M. Kinetics of reactions of carbonyl sulfide and carbon dioxide with amines and catalysis by Bronsted Bases of the hydrolysis of COS[J]. Trans. Faraday Soc.,1965, 61:681-688.
    [122]Bush W V. Process for the selective removal of hydrogen sulphide and carbonyl sulfide from light hydrocarbon gases containing carbon dioxide[P]. US 4749555A,1988-7-7.
    [123]Chen M S, Edwards J T, Ernst W R. Catalytic hydrolysis of COS in acid gas removal solvents[P]. US 4482529A,1984-11-13.
    [124]Correll G D and Friedli H R. Hydrolysis of carbon oxysulfide with morpholines and piperazines[P]. US 4351812A,1982-9-28.
    [125]Reilly J T, Schubert C N, Lindner J R, et al. Effect of heterocyclic amine additives on the absorption rates of carbonyl sulfide and carbon dioxide in aqueous methyldiethanolamine solutions[P]. Chem. Eng. Comm.,1990,93:181-191.
    [126]Ernst W R, Chen M S K, and Mitchell D L. Hydrolysis of carbonyl sulfide:comparison to reactions of isocyanates[P]. Can. J. Chem. Eng.,1990,68:319-323.
    [127]Gaussian03 manual[EB/OL]. http://www.gaussian.com/g_tech/1.htm.2009-9-1/2010-3-20.
    [128]Dean J A主编,魏俊发译.兰氏化学手册.第二版[M].北京:科学出版社,2003.
    [129]谢奇叡.醇胺纇水溶液之介電常数量测研究[D].台湾:中原大学化学工程学系,1994.
    [130]Takahashi H, Kitaura M, Kishi R, et al. Theoretical Study on the Polarizabilities of Molecules in Solution by the Quantum Mechanical/Molecular Mechanical Approach: Comparison with the Polarizable Continuum Model[J]. Computing Letters,2007, 3(2-4):441-448.
    [131]American Society for Testing and Materials. ASTM Book of Standards Section 05-Petroleum Products, Lubricants, and Fossil Fuels, Volume 06[M]. PA:West Conshohocken,2006.
    [132]American Society for Testing and Materials. ASTM Book of Standards-Section 05-Petroleum Products, Lubricants, and Fossil Fuels.Volume 06[M]. PA:West Conshohocken,2007.
    [133]American Society for Testing and Materials. ASTM Book of Standards-Section 11-Water and Environmental Technology.Volume 07[M]. PA:West Conshohocken, 2003.
    [134]American Society for Testing and Materials. ASTM Book of Standards-Section 11-Water and Environmental Technology.Volume 07[M]. PA:West Conshohocken, 2005.
    [135]中国标准出版社总编室.中国国家标准汇编1998年修订-6[M].北京:中国标准出版社,1999,595-603.
    [136]中国标准出版社总编室.中国国家标准汇编1998年修订-6[M].北京:中国标准出版社,1999,604-610.
    [137]中国标准出版社总编室.中国国家标准汇编285(GB 18556-18612)[M].北京:中国标准出版社,2003,630-635.
    [138]中国标准出版社总编室.中国国家标准汇编285(GB 18556-18612)[M].北京:中国标准出版社,2003,636-639.
    [139]Yin C L, Xia D H. A study of the distribution of sulfur compounds in gasoline produced in China. Part 3. Identification of individual sulfides and thiophenes[J]. Fuel,2004, 83:433-441.
    [140]Lopez R, Lapena A C, Cacho J, et al. Quantitative determination of wine highly volatile sulfur compounds by using automated headspace solid-phase microextraction and gas chromatrography-pulsed flame photometric detection Critical study and optimization of a new procedure[J]. Journal of Chromatography A,2007,1143:8-15.
    [141]Inomata Y, Matsunaga K, Murai Y, et al. Simultaneous measurement of volatile sulfur compounds using ascorbic acid for oxidant removal and gas chromatography-flame photometric detection[J]. Journal of Chromatography A,1999,864:111-119.
    [142]姚华群.气相色谱法测定天然气中的硫化物[J].分析测试技术与仪器,2001,7(3):170-173.
    [143]程清,曹常军,姚晓红.气相色谱脉冲火焰光度检测器测定丙烯中微量羰基硫[J].分析仪器,2006,2:38-42.
    [144]张宝铭.用气相色谱法分析炼厂气中各种形态硫化物[J].齐鲁石油化工,1991,2:137-140.
    [145]刘业孝,牟彩琴,秦南奕.特高硫化氢天然气和伴生气中有机硫分析方法研究[J].石油与天然气化工.1993,32(2):71-75.
    [146]Wardencki W. Problems with the determination of environmental sulphur compounds by gas chromatography [J]. Journal of Chromatography A,1998,793:1-19.
    [147]何金龙,胡天友,彭修军.天然气净化厂脱硫系统防腐措施研究[J].石油与天然气化工,2006,35(2):110-113.
    [148]Cummings A L, Veatch F C, and Keller A E. Corrosion and corrosion control methods in amine systems containing hydrogen sulfide[J]. Materials performance,1998,37(1): 42-48
    [149]Kosseim J, McCullough J G, and Butwell K F. Corrosion-Inhibited Amine Guard ST Process[J]. Chemical Engineering Progress,1984,80(10):64-71.
    [150]周欣,杨怀玉,蔡铎昌等.低碳钢在富含H2S乙醇胺溶液中的腐蚀及缓蚀剂抑制[J].中国腐蚀与防护学报,2005,25(2):79-82.
    [151]谢伟杰,李荻,胡艳玲等.LY12CZ和7075T7351铝合金在EXCO溶液中腐蚀动力学的统计研究[J].航空学报,1999,20(1):34-38.
    [152]梁治齐,宗惠娟,李金华.功能性表面活性剂[M].北京:中国轻工业出版社,2002.
    [153]Tamura T, Kageyama M, Kaneko Y, et al. Diretct Observation of foam film rupture by several types of antifoams using a scanning laser microscope[J]. Journal of colloid and interface science,1999(213):179-186.
    [154]Pugh R J. Foaming, foam films, antifoaming and defoaming[J]. Advances in colloid and interface science,1996,64:67-142.
    [155]马洛平.消除有害泡沫技术[M].北京:化学工业出版社,1985.
    [156]章建华,沈本贤,孙辉等.XDS溶剂常压吸收脱除高酸性石油天然气中的有机硫效果[J].华东理工大学学报.2009,35(3):357-362.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700