基于PLGA和PBLG的可注射微载体制备及其组织工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先天性骨畸形、缺陷及创伤等导致的骨和软骨缺损,是目前临床医学面临的主要难题。组织工程技术为组织缺损修复提供了一种全新的治疗途径。骨和软骨组织工程要求为缺损或病变部位提供足够数量且具有适当表型的细胞。多孔微载体不仅能满足这一要求,而且能通过注射方式修复组织缺损,可免除外科手术创伤,减轻病人痛苦。可注射微载体用于体内组织再生研究尚处于起步阶段。本论文在国内外研究现状基础上,提出以合成聚肽—聚L-谷氨酸(PLGA)和聚L-谷氨酸苄酯(PBLG)为主要原料,通过冷冻相分离技术、双乳液法及生物模拟矿化手段制备不同类型的多孔可注射细胞微载体,并尝试将其用于组织工程领域。
     以PLGA、壳聚糖(CS)为原料,采用冷冻相分离技术制备CS多孔微球,通过静电作用在CS微载体表面吸附PLGA,构建CS/PLGA聚电解质复合物(PEC)微球。研究冷冻温度、CS浓度对CS微球孔径和孔隙率影响,发现CS浓度由1%增加到3%,产物由非球形向球形转变;CS浓度为2%、2.5%和3%时,可获得微球,随着浓度增加,孔径逐渐变小,孔隙率逐渐降低;当冷冻温度为20oC,CS浓度为2%(w/v)时,制备的CS微球孔径为47.5±5.4μm,且具有较好形貌。分析了PLGA吸附量及其吸附分布,结果表明PLGA吸附量高达113μg/mg,且能均匀分布于PEC微球中,其吸附对微载体孔结构没有明显影响。通过FT-IR、TGA、Zeta电位等研究手段分析了PEC微载体形成机理,证明PEC微球由CS与PLGA通过静电相互作用形成。
     通过激光共聚焦显微镜及扫描电子显微镜观察对比分析CS和PEC微载体1、3、5、7d的软骨细胞生长情况,发现随着时间延长,PEC比CS微载体中软骨细胞增殖更快,且分泌更多细胞外基质,同时能更好维持细胞表型。通过MTT法和Real-time PCR定量分析14d内细胞生长情况和14d时软骨基因表达,发现PLGA的引入对微载体细胞黏附、增殖及相关基因表达均有促进作用;通过共聚焦显微镜对软骨细胞/PEC复合物进行多层扫描,发现软骨细胞可在PEC微载体内部生长。裸鼠皮下等量注射CS和PEC微载体细胞悬液,体内培养8周后取材,发现两种微载体均可形成新生软骨。PEC组形成的软骨组织湿重为55.3±7.1mg,比CS组重39.3%。同时,免疫组化和甲苯胺蓝染色分析显示,PEC组形成的软骨组织具有更多的Ⅱ型胶原(COL Ⅱ)和糖胺多糖(GAG)沉积。生化定量分析显示,GAG/湿重、GAG/DNA、COL Ⅱ/湿重及COL Ⅱ/DNA分别为47.6±6.1μg/mg、62.3±7.1μg/μgDNA、99.5±16.1μg/mg和130.2±17.1μg/μgDNA,分别比CS组含量高40.4%、60.9%、52.1%和74.5%。
     以PBLG为原料构建可注射多孔微载体。对比分析不同致孔剂对PBLG微球孔结构影响,确定以明胶作为温敏性致孔剂。考察致孔剂含量和搅拌速度等对PBLG微球的制备影响,发现当明胶含量为6.5%,搅拌速度为400rpm时,微球具有较大孔径与较高孔隙率,分别为41±3.8μm和79±4.3%。评价了PBLG微载体体外PBS缓冲液浸泡降解性能,结果显示体外降解18周后,PBLG微球破碎,随着分子量降低,降解速率加快,当分子量为1.2×10~5,其18周降解率为63.7%,分子量为3.0×10~5,18周降解率为40.5%。C57小鼠皮下注射分子量为3.0×10~5的PBLG微球,研究体内降解性能,HE染色、masson染色及SEM观察结果显示,PBLG微球在体内具有良好的组织相容性和生物可降解性,8周内微球已完全破碎,大部分材料在体内被降解吸收。与体外降解结果比较,发现PBLG微载体在体内降解速率明显加快。
     通过MTT法评价PBLG微载体细胞毒性,发现软骨细胞在体外培养3、7d后,PBLG微载体细胞可利用率与TCPS对照组相似,近100%,无细胞毒性。定性分析软骨细胞在PBLG微载体中生长情况,发现随着时间延长,细胞数目增多、细胞外基质分泌量增加。通过MTT法和Real-time PCR定量分析PBLG微载体14d内细胞生长情况和14d时软骨基因表达,发现PBLG微球支持细胞黏附和增殖,并维持软骨细胞表型。通过激光共聚焦显微镜对软骨细胞/PBLG复合物进行多层扫描,发现PBLG微载体孔结构适合软骨细胞在其内部生长。软骨细胞接种到1mg PBLG微载体,体外培养2d,将1mL软骨细胞/微载体悬液注射至裸鼠皮下,体内培养4、8、12周后取材,发现形成的软骨组织湿重分别为30±3.5、60±5.1和108±10.1mg,且8周时比无材料软骨细胞对照组重114%,番红-O与甲苯胺蓝染色呈阳性。生化定量分析显示,4、8、12周形成软骨组织的GAG/干重分别为0.296±0.02、0.391±0.012和0.443±0.041g/g,COL Ⅱ/干重分别为0.385±0.01、0.414±0.01和0.433±0.03g/g。
     尝试用生物模拟矿化法制备羟基磷灰石(HA)/PBLG多孔复合微载体,并分析HA形成过程。SEM和TGA分析结果表明,随着浸泡时间延长,无机物沉积量增加。EDS分析发现,5、8d时沉积的无机粒子钙磷比值分别为19.02和10.78,随着时间延长,钙磷比增加,11、14、17d时分别为2.09、2.03和1.669,接近理论钙磷比1.666;FITR和XRD结果表明,无机粒子在11d才出现HA特征吸收峰,在14和17d峰强度增加;TEM观察发现,11d后沉积的无机粒子晶体形貌为纳米针状结构,类似于天然骨中HA结构。研究结果表明最初析出的无机粒子不是HA,当延长浸泡时间,磷酸根离子逐步取代融合,进而产生HA,并在11d出现明显HA晶体结构,17d获得完善。评价模拟体液浸泡11d时HA/PBLG复合微载体细胞生长情况,结果显示微载体支持成骨诱导前后脂肪干细胞黏附与增殖,表明HA/PBLG复合微球是一种潜在的成骨组织工程材料。
Bone and cartilage tissue damage caused by defects, injuries or other types ofdamage remain the main obstacles for repair of challenging defects. Recently, tissueengineering (TE) open new perspectives for treatment of tissue damage. A majorproblem in TE is the availability of a suffcient number of cells with the appropriatephenotype for delivery to damaged or diseased cartilage and bone. The microcarrierssystem offers an attractive method for cell amplifcation and enhancement ofphenotype expression. Moreover, the microcarriers allow for easy manipulation orminimally invasive procedures by surgeons, thereby reducing complications andimproving patient comfort and satisfaction. However, injectable microcarrier for invivo tissue regeneration research is still in its infancy. In the present work, on thebasis of current status at home and abroad, porous microcarriers based on syntheticpolypeptide of Poly-L-glutamate acids (PLGA) and Poly-benzyl-L-glutamate (PBLG)were prepared by freezing phase separation technique, double emulsion method andbiomimetic mineralization, respectively. Furthermore, we also tried theirapplications in tissue engineering.
     Chitosan microspheres were firstly developed by freezing phase separationtechnique. Then, a novel kind of porous PLGA/chitosan polyelectrolyte complex(PEC) microsphere was developed through the electrostatic interaction betweenPLGA and chitosan. The effects of freezing temperature and CS concentration onpore size and porosity of CS microsphere were investigated, respectively, and foundthat the morphologies of products transite from the non-spherical to spherical withthe CS concentration increased from1%to3%. When the CS concentration waselevated to be at2%,2.5%,3%(w/v), porous microspheres could be generated, andincreasing the amount of chitosan in the preparation of microspheres resulted insmaller open pores and porosities. When chitosan concentration was fixed at2% (w/v), and freezing temperature at20°C, chitosan microsphere with optical poresize of47.5±5.4μm was developed. The amount and distribution of PLGAassembled on chitosan microsphere were investigated. The results showd that a largeamount of PLGA (110.3μg/mg) was homogeneously absorbed within PECmicrospheres and not significantly changed the pore structure. Fourier transforminfrared spectroscopy, thermal gravimetric analysis and zeta-potential analyzerrevealed that the PEC microspheres were successfully prepared through electrostaticinteraction.
     Attachment as well as proliferation of chondrocyte loaded on CS and PECmicrocarriers were examined by confocal laser scanning microscopy and SEM at1,3,5,7days after seeding, respectively. Compared with the microspheres fabricatedby chitosan, the porous PEC microspheres were shown to effciently promotechondrocyte attachment and proliferation and were found to produce significantmore chondrogenic matrix and to retain phenotype expression. Cell numbers withinthe microspheres at1,3,5,7and14days post-seeding were quantified by MTTassay and the expression of aggrecan and collagen type Ⅱ genes was detected byRT-PCR analysis. It can be found that the presence of PLGA helps to retain thechondrocyte phenotype. To further answer whether seeded cells would infiltrate andsurvive in the inner region of microspheres, harboring cells were subjected toconfocal microscope observation after7days. The results showed that the inoculatedcells could sufficiently infiltrate into the most inner region of PEC microspheres.Microspheres fabricated by chitosan/PLGA or chitosan alone were mixed withchondrocytes and injected subcutaneously in nude mice, respectively. After8weeks,harvested specimens from either PEC groups or chitosan alone group showedcartilage-like tissue. By immunohistochemical and toluidine blue staining,respectively, it was found that typical lacunae inhabited by chondrocytes, withabundant deposition of collagen type Ⅱ and proteoglycans in the neo-generatedcartilage. Furthermore, the average wet weight (55.3±7.1mg) of tissue formed from the PEC microspheres/chondrocytes was39.3%higher than that formed from thechitosan microspheres/chondrocytes. Biochemical quantification showed that tissuegenerated from PEC microspheres/chondrocytes had significantly higher GAG/wetweight (47.6±6.1μg/mg), GAG/DNA ratios(62.3±7.1μg/μg), collagen Ⅱ/wet-weight(99.5±16.1μg/mg)and the collagen Ⅱ/DNA ratios (130.2±17.1μg/μg), which weresignificantly higher than those of the chitosan alone group of40.4%,60.9%,52.1%and74.5%, respectively.
     Injectable porous micromicrocarriers were prepared based on PBLG. Theeffects of diffirent kinds of porogens on the pore size and porosity of PBLGmicrosphere were investigated, and found that when used gelatin as anthermosensitive porogen, porous PBLG microspheres could be generated. Theeffects of porogen amounts and stirred speeds on the the size and structure of PBLGmicrosphere were also investigated. The results showed that when the gelatin contentwas fixed at6.5%, and stirring speeds400rpm, we are easily to produce highlyporous large PBLG microspheres with an average pore size of41±3.8μm and aporosity of79±4.3%. The in vitro degradability of porous microcarriers wasinvestigated with certain incubation time in phosphate buffered saline (PBS) at37°C.After18weeks of incubation, the porous microspheres disintegrated into smallpieces, and as the molecular weights of PBLG microcarriers increased, thedegradation rate reduced. when the PBLG microspheres with a molecular weight of1.2×10~5lost63.7%of the weight and with a molecular weight of3.0×10~5lost40.5%of their weights, respectively. Porous PBLG microcarriers with a molecular weightof3.0×10~5were injecteded subcutaneously in C57rats with the purpose of studyingrelated to the degradation in vivo. The results showd by HE, masson and SEMimages indicated that PBLG microspheres possess good biocompatibility andcapacity to be biodegradable to naturally-occurring biological products. Overall, thescaffolds were well degraded by the host rats and no abnormal conditions wereobserved during the8weeks of implantation. The signifcant difference between in vitro and in vivo degradation in the remainning weights of the PBLG microcarriersat the end of8weeks refects that the degradation rate of PBLG microcarriers can beaccelerated by particular enzyme of living systems.
     In order to screen the ultimate cytotoxicity of the prepared porous PBLGmicrocarriers, MTT tests were carried out by means of assessing the cell viability ofCCK8cells cultured with3and7days. Chondrocytes culture on tissue culturepolystyrene (TCPS) without microspheres served as the control. The results showedthat the viability levels are similar, reaching the maximum viability of approximately100%, indicating all of these microspheres were found not to be toxic to cells.Attachment as well as proliferation of chondrocyte loaded on CS and PECmicrocarriers were examined by confocal laser scanning microscopy and SEM at1,3,5,7days after seeding, respectively, and found that with longer culture time, themicrospheres could attach more cells and produce more chondrogenic matrix. Cellnumbers within the microspheres at1,3,5,7and14days post-seeding werequantified by MTT assay and the expression of aggrecan and collagen type Ⅱ geneswas detected by RT-PCR analysis. the porous PEC microspheres were shown toeffciently promote chondrocyte attachment and proliferation and were found toproduce significant more chondrogenic matrix and to retain phenotype expression.Chondrocytes on PBLG microcarriers were examined after cultivation of1,3,5,7days by confocal microscope observation. The results implies that initially attachedcells on the surface gradually migrated towards inner region and cells couldsufficiently infiltrate into the most inner region of PBLG microspheres.Chondrocyte-seeded PBLG microcarriers were mixed with chondrocytes andinjected subcutaneously in nude mice. The inject specimens of chondrocyte-seededporous PBLG composites resulted in new cartilage-like tissue formation in vivo ininject sites at4,8and12weeks after injection subcutaneously. Byimmunohistochemical and toluidine blue staining, respectively, it was found thattypical lacunae inhabited by chondrocytes, with abundant deposition of collagen type Ⅱ and proteoglycans in the neo-generated cartilage. The average tissue wetweight (108±10.1mg) formed from the12weeks group was78.6%higher than thatformed from the8weeks group (60±5.1mg), and263.3%higher than that formedfrom the4weeks group (30±3.5mg). Furthermore, the average wet weight of8weeks group was114%higher than that formed from the control group. Biochemicalquantification showed that tissue generated from PBLG microspheres/chondrocyteshad significantly higher GAG/dried weight of0.296±0.02,0.391±0.012and0.443±0.041g/g, and higher collagen Ⅱ/dried-weight of0.385±0.01,0.414±0.01and0.433±0.03g/g at4,8and12weeks after injection subcutaneously, respectively.
     The bonelike mineral, carbonate apatite, was successfully used to functionalizeporous PBLG microspheres by a biomimetic mineralization method. Moreover, thetime of the bonelike apatite formation on PBLG was proposed. The results showedby SEM and TGA indicated that the amount of mineral phase increased graduallywith increasing incubation time. EDS spectra of the apatite coating on PBLGmicrospheres showed that the Ca/P ratio of apatite mineral was19.02formicrospheres incubated for5days and10.78for those incubated for8days. Whenincreased the incubation time, the Ca/P ratio enhanced. When the incubation wasfixed at11,14and17d, the Ca/P ratio of apatite mineral was2.09,2.03and1.669,respectively. These values are similar to Ca/P ratio of biological apatite of5:3. Thechemical structure of the mineral coating was provided by FT-IR and XRD spectra.It was found that mineralized PBLG microspheres displayed characteristic peaksassociated with HA when the microspheres incubated for11days, and thecharacteristic peaks were enhanced at14and17days. Based on TEM analyses, thecrystal structure of apatite particles on PBLG microspheres incubated for11dayswas detected to be nano-needle, which were similar to the apatite in natural bone.The above results indicated that the initial inorganic particles are not HA. Whenprolonged the incubation time, phosphate ions wereion of gradually replaced andintegrated to produce HA. When the microspheres incubated for11days, mineralized PBLG microspheres displayed characteristic crystal structure related toHA, which were perfected at17days. Adipose derived stem cells were cultured onHA/PBLG microcarriers incubated for11days and were induced to undergoosteogenic differentiation in the presence of HA/PBLG microcarriers for bone tissueengineering. The results showed that HA/PBLG microcarriers is favorable for thegrowth of adipose derived stem cells before and after osteogenic. The observedresults proved that HA/PBLG microcarriers may be promising scaffolding materialsfor bone tissue engineering and regeneration.
引文
【1】 Langer RS, Vacanti JP. Tissue engineering: the challenges ahead[J]. Sci Am1999;280:86–9.
    【2】 Cortesini R. Stem cells, tissue engineering and organogenesis in transplantation[J].Transpl Immunol2005;15:81–9.
    【3】 Langer R, Vacanti JP. Tissue engineering[J]. Science1993;260:920–6.
    【4】 Williams JM, Adewunmi A, Schek RM, et al. Bone tissue engineering usingpolycaprolactone scaffolds fabricated via selective laser sintering[J]. Biomaterials2005;26:4817–27.
    【5】 Mercier NR, Costantino HR, Tracy MA, Bonassar LJ. Poly(lactide-co-glycolide)microspheres as a moldable scaffold for cartilage tissue engineering[J]. Biomaterials2005;26:1945–52.
    【6】 Lietz M, Dreesmann L, Hoss M, Oberhoffner S, Schlosshauer B. Neuro tissueengineering of glial nerve guides and the impact of different cell types[J]. Biomaterials2006;27:1425–36.
    【7】 Vaz CM, van Tuijl S, Bouten CVC, Baaijens FPT. Design of scaffolds for blood vesseltissue engineering using a multi-layering electrospinning technique[J]. Acta Biomater2005;1:575–82.
    【8】 Dai NT, Williamson MR, Khammo N, Adams EF, Coombes AGA. Composite cellsupport membranes based on collagen and polycaprolactone for tissue engineering ofskin[J]. Biomaterials2004;25:4263–71.
    【9】 Kim SS, Kaihara S, Benvenuto MS, et al. Regenerative signals for intestinal epithelialorganoid units transplanted on biodegradable polymer scaffolds for tissue engineering ofsmall intestine[J]. Transplantation1999;67:227–33.
    【10】 DoblaréM, García JM, Gómez MJ. Modelling bone tissue fracture and healing: areview[J]. Eng Fract Mech2004;71:1809–40.
    【11】 Finkemeier CG. Bone-grafting and bone-graft substitutes[J]. J Bone Joint Surg Am2002;84:454–64.
    【12】 Perry CR. Bone repair techniques, bone graft, and bone graft substitutes[J]. Clin Orthop1999;360:71–86.
    【13】 Khan SN, Tomin E, Lane JM. Clinical applications of bone graft substitutes[J]. OrthopClin North Am2000;31:389–98.
    【14】 Lane JM, Tomin E, Bostrom MP. Biosynthetic bone grafting[J]. Clin Orthop Relat Res1999;367:S107–17.
    【15】 Hutmacher DW. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials2000;21:2529–43.
    【16】 Buckwalter JA, Mankin HJ. Articular cartilage: degeneration and osteoarthritis, repair,regeneration and transplantation[J]. Inst Course Lect1998;47:487–504.
    【17】 O’Driscoll SW. Current concepts review—the healing and regeneration of articularcartilage[J]. J Bone Joint Surg Am1998;80:1795–812.
    【18】 Temenoff JS, Mikos AG. Review: tissue engineering for regeneration of articularcartilage[J]. Biomaterials2000;21:431–40.
    【19】 Hunziker EB. Articular cartilage repair: are the intrinsic biological constraintsundermining this process insuperable[J]. Osteoarthr Cartilage1999;7:15–28.
    【20】 Dickinson ME, Kobrin MS, Silan CM, et al. Chromosomal localization of sevenmembers of the murine TGF-beta superfamily suggests close linkage to severalmorphogenetic mutant loci[J]. Genomics.1990;6:505-20.
    【21】 Kawai J, Akiyama H, Shigeno C, et a1. Effects of transforming growth factor-betasignaling on chondrogenesis in mouse chondrogenic EC cells, ATDC5[J]. Eur J CellBiol.1999;78:707-14.
    【22】 Tuli R, Li WL, Tuan RS. Current state of cartilage tissue engineering[J]. Arthritis ResTher2003;5:235–8.
    【23】 Sontjens SHM, Nettles DL, Carnahan MA, Setton LA, Grinstaff MW.Biodendrimer-based hydrogel scaffolds for cartilage tissue repair[J].Biomacromolecules2006;7:310–6.
    【24】 Bhardwaj T, Pilliar RM, Grynpas MD, Kandel RA. Effect of material geometry oncartilagenous tissue formation in vitro[J]. J Biomed Mater Res2001;57:190–9.
    【25】 Fierz FC, Beckmann F, Huser M, et al. The morphology of anisotropic3D-printedhydroxyapatite scaffolds[J]. Biomaterials2008;29:3799–806.
    【26】 Melchels FPW, Feijen J, Grijpma DW. A poly(d,l-lactide) resin for the preparation oftissue engineering scaffolds by stereolithography[J]. Biomaterials2009;30:3801–9.
    【27】 Pikal MJ, Shah S, Roy ML, Putman R. The secondary drying stage of freeze drying:drying kinetics as a function of temperature and chamber pressure[J]. Int J Pharm1990;60:203–17.
    【28】 Liapis AI, Bruttini R. A theory for the primary and secondary drying stages of thefreeze-drying of pharmaceutical crystalline and amorphous solutes: comparison betweenexperimental data and theory[J]. Sep Technol1994;4:144–55.
    【29】 Thomson RC, Shung AK, Yaszemski MJ, Mikos AG. Polymer scaffold processing. In:Lanza RP, Langer R, Vacanti JP, editors. Principles of tissue engineering[M]. SanDiego:Academic Press2000;251–62.
    【30】 Tsinontides SC, Rajniak P, Pham D, Hunke WA, Placek J, Reynolds SD. Freezedrying—principles and practice for successful scale-up to manufacturing[J]. Int J Pharm2004;280:1–16.
    【31】 Sachlos E, Czernuszka JT. Making tissue engineering scaffolds work. A review on theapplication of solid freeform fabrication technology to the production of tissueengineering scaffolds[J]. Eur Cell Mater2003;5:29–40.
    【32】 Mikos AG, Thorsen AJ, Czerwonka LA, et al. Preparation and characterization ofpoly(L-lactic acid) foams[J]. Polym Plast Technol Eng1994;35:1068–77.
    【33】 Yang S, Leong KF, Du Z, Chua CK. The design of scaffolds for use in tissueengineering. Part II. Rapid prototyping techniques[J]. Tissue Eng2002;8:1–11.
    【34】 Mikos AG, Temenoff JS. Formation of highly porous biodegradable scaffolds for tissueengineering[J]. Electron J Biotechnol2000;3:114–9.
    【35】 Lee KWD, Chan PK, Feng X. Morphology development and characterization of thephase-separated structure resulting from the thermal-induced phase separationphenomenon in polymer solutions under a temperature gradient[J]. Chem Eng Sci2004;59:1491–504.
    【36】 Ma PX, Zhang R, Xiao G, Franceschi R. Engineering new bone tissue in vitro on highlyporous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds[J]. J BiomedMater Res2001;54:284–93.
    【37】 Maquet V, Boccaccini AR, Pravata L, Notingher I, Jér me R. Preparation,characterization, and in vitro degradation of bioresorbable and bioactive compositesbased on Bioglass-flled polylactide foams[J]. J Biomed Mater Res A2003;66A:335–46.
    【38】 Chen GP, Sato T, Ushida T, Ochiai N, Tateishi T. Tissue engineering of cartilage using ahybrid scaffold of synthetic polymer and collagen[J]. Tissue Engineering2004;10:323–30.
    【39】 Miralles G, Baudoin R, Dumas D, et al. Sodium alginate sponges with or withoutsodium hyaluronate: in vitro engineering of cartilage[J]. J Biomed Mater Res2001;57:268–78.
    【40】 Barnewitz D, Endres M, Kruger I, et al. Treatment of articular cartilage defects in horseswith polymer-based cartilage tissue engineering grafts[J]. Biomaterials2006;27:2882–9.
    【41】 Kuo YC, Lin CY. Effect of genipin-crosslinked chitin-chitosan scaffolds withhydroxyapatite modifications on the cultivation of bovine knee chondrocytes[J].Biotechnol Bioeng2006;95:132–44.
    【42】 Wang YZ, Kim HJ, Vunjak-Novakovic G, Kaplan DL. Stem cell-based tissueengineering with silk biomaterials[J]. Biomaterials2006;27:6064–82.
    【43】 Goodstone NJ, Cartwright A, Ashton B. Effects of high molecular weight hyaluronan onchondrocytes cultured within a resorbable gelatin sponge[J]. Tissue Eng2004;10:621–31.
    【44】 Vickers SM, Squitieri LS, Spector M. Effects of cross-linking type II collagen-GAGscaffolds on chondrogenesis in vitro: dynamic pore reduction promotes cartilageformation[J]. Tissue Eng2006;12:1345–55.
    【45】 Pieper JS, Kraan PM, Hafmans T, et al. Crosslinked type II collagen matrices:preparation, characterization, and potential for cartilage engineering. Biomaterials2002;23:3183–92.
    【46】 Woodfield TB, Malda J, Wijn J, Peters F, Riesle J, Blitterswijk CA. Design of porousscaffolds for cartilage tissue engineering using a three-dimensional fiber-depositiontechnique[J]. Biomaterials2004;25:4149–61.
    【47】 Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytescultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds[J]. JBiomed Mater Res A2003;67A:1105–14.
    【48】 Moroni L, Wijn JR, Blitterswijk CA.3D fiber-deposited scaffolds for tissue engineering:influence of pores geometry and architecture on dynamic mechanical properties[J].Biomaterials2006;27:974–85.
    【49】 Muller FA, Muller L, Hofmann I, Greil P, Wenzel MM, Staudenmaier R.Cellulose-based scaffold materials for cartilage tissue engineering[J]. Biomaterials2006;27:3955–63.
    【50】 Girotto D, Urbani S, Brun P, Renier D, Barbucci R, Abatangelo G. Tissue-specific geneexpression in chondrocytes grown on three-dimensional hyaluronic acid scaffolds[J].Biomaterials2003;24:3265–75.
    【51】 Grigolo B, Lisignoli G, Piacentini A, et al. Evidence for redifferentiation of humanchondrocytes grown on a hyaluronan-based biomaterial (HYAFF (R)11): molecular,immunohistochemical and ultrastructural analysis[J]. Biomaterials2002;23:1187–95.
    【52】 Radice M, Brun P, Cortivo R, Scapinelli R. Battaliard C, Abatangelo G.Hyaluronan-based biopolymers as delivery vehicles for bone-marrow-derivedmesenchymal progenitors[J]. J Biomed Mater Res2000;50:101–9.
    【53】 Lin YF, Luo E, Chen XZ, et al. Molecular and cellular characterization duringchondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilageformation in vivo[J]. J Cell Mol Med2005;9:929–39.
    【54】 Schagemann JC, Mrosek EH, Landers R, Kurz H, Erggelet C. Morphology and functionof ovine articular cartilage chondrocytes in3-D hydrogel culture[J]. Cells TissuesOrgans2006;182:89–97.
    【55】 Mauck RL, Soltz MA, Wang CCB, et al. Functional tissue engineering of articularcartilage through dynamic loading of chondrocyte-seeded aga-rose gels[J]. J BiomechEng-T Asme2000;122:252–60.
    【56】 Chen JP, Cheng TH. Thermo-responsive chitosan-graft-poly(N-iso-propylacrylamide)injectable hydrogel for cultivation of chondrocytes and meniscus cells[J] MacromolBiosci2006;6:1026–39.
    【57】 Eyrich D, Brandl F, Appel B, et al. Long-term stable fibrin gels for cartilageengineering[J]. Biomaterials2007;28:55–65.
    【58】 Lee HJ, Lee JS, Chansakul T, Yu C, Elisseeff JH, Yu SM. Collagen mimeticpeptide-conjugated photopolymerizable PEG hydrogel[J]. Biomaterials2006;27:5268–76.
    【59】 Suzuki Y, Tanihara M, Suzuki K, Saitou A, Sufan W, Nishimura Y. Alginate hydrogellinked with synthetic oligopeptide derived from BMP-2allows ectopic osteoinduction invivo[J]. J Biomed Mater Res2000;50:405–9.
    【60】 Thissen H, Chang KY, Tebb TA, et al. Synthetic biodegradable microparticles forarticular cartilage tissue engineering[J]. J Biomed Mater Res Part A2006:77A:590-8.
    【61】 Hong Y, Gao CY, Xie Y, et al. Collagen-coated polylactide microspheres as chondrocytemicrocarriers[J]. Biomaterials2005:26:6305-13.
    【62】 Kim HW, Gu HJ, Lee HH. Microspheres of collagen-apatite nanocomposites withosteogenic potential for tissue engineering[J]. Tissue Eng2007;13:965-73.
    【63】 Melero JM, Dowling MA, Smith M, et al. Expansion of chondroprogenitor cells onmacroporous microcarriers as an alternative to conventional monolayer systems[J].Biomaterials2006;27:2970-9.
    【64】 Demetriou A. Transplantation of microcarrier-attached hepatocytes into90%partiallyhepatectomized rats[J]. Hepatology1988;8:1006–9.
    【65】 Overstreet M. Collagen microcarrier spinner culture promotes osteoblast proliferationand synthesis of matrix proteins[J]. In Vitro Cell Dev Biol Anim2003;39:228–34.
    【66】 Mercier NR. Poly(lactide-co-glycolide) microspheres as a moldable scaffold forcartilage tissue engineering[J]. Biomaterials2005;26:1945–52.
    【67】 Fischer EM. Bone formation by mesenchymal progenitor cells cultured on dense andmicroporous hydroxyapatite particles[J]. Tissue Eng2003;9:1179–88.
    【68】 Barrias CC. Adhesion and proliferation of human osteoblastic cells seeded on injectablehydroxyapatite microspheres[J]. Key Eng Mater2004;254;877–80.
    【69】 Barrias CC. Proliferation, activity, and osteogenic differentiation of bone marrowstromal cells cultured on calcium titanium phosphate microspheres[J]. J Biomed MaterRes A2005;72:57–66.
    【70】 Wezel A. Growth of cell strains and primary cells on microcarriers in homogeneousculture[J]. Nature1967;216:64–5.
    【71】 Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering.1.Basic concepts[J]. J Tissue Eng Regen Med2007;1:4–24.
    【72】 Webb K, Hlady V, Tresco PA. Relative importance of surface wettability and chargedfunctional groups on NIH3T3fibroblast attachment, spreading, and cytoskeletalorganization[J]. Biomed Mater Res1998;41:422-30.
    【73】 Kiremitci M, Piskin E. Cell adhesion to the surfaces of polymeric beads. Biomaterials[J]:Art Cells Art Org1990;18:599–603.
    【74】 Jin HL, Jin WL, Gilson K, Hai BL. Interaction of cells on chargeable functional groupgradient surfaces[J]. Biomaterials1997;18:351–8.
    【75】 Kato D, Takeuchi M, Sakurai T, et al. The design of polymer microcarrier surfaces forenhanced cell growth[J]. Biomaterials2003;24:4253–64.
    【76】 Bliem R, Katinger H. Scale-up engineering in animal cell technology: Part II[J]. TrendsBiotechnol.1988;6:224–30.
    【77】 Mankani MH, Kuznetsov SA, Fowler B, et al. In vivo bone formation by human bonemarrow stromal cells: Effect of carrier particle size and shape[J]. Biotechnol Bioeng2001;72:96-107.
    【78】 Qiu QQ, Ducheyne P, Ayyaswamy PS. Fabrication, characterization and evaluationof bioceramic hollow microspheres used as microcarriers for3-D bone tissue formationin rotating bioreactors[J]. Biomaterials1999;20:989-1001.
    【79】 Malda J, Carmelita G. Microcarriers in the engineering of cartilage and bone[J]. TrendsBiotechnol2006;24:299-304.
    【80】 Ng YC, Berry JM, Butler M. Optimization of physical parameters for cell attachmentand growth on macroporous microcarriers[J]. Biotechnol Bioeng1996;50:627–35.
    【81】 Berry CC, Campbell G, Spadiccino A, Robertson M, Curtis ASG. The infuence ofmicroscale topography on fbroblast attachment and motility[J]. Biomaterials2004;25:5781–8.
    【82】 Huang CC, Wei HJ, Yeh YC, et al. Injectable PLGA porous beads cellularized byhAFSCs for cellular cardiomyoplasty[J]. Biomaterials2012;33:4069–77.
    【83】 Kim TK, Yoon JJ, Lee DS, Park TG. Gas foamed open porous biodegradable polymericmicrospheres[J]. Biomaterials2006;27:152–9.
    【84】 Sutherland RM. Cell and environment interactions in tumor microregions: the multicellspheroid model[J]. Science1988;240:177-84.
    【85】王佃亮,肖成祖.动物细胞高密度培养用多孔微球.生物工程进展1998;18:46-9.
    【86】 Gokmen MT, Duprez FE. Porous polymer particles-A comprehensive guide to synthesis,characterization, functionalization and application[J]. Prog Polym Sci2012;37:365-405.
    【87】 Chung HJ, Kim IK, Kim TG, Park TG. Highly open porous biodegradable microcarriers:in vitro cultivation of chondrocytes for injectable delivery[J]. Tissue Eng Part A2008;14:607–15.
    【88】 Naidook C, Rolfes H, Easton K, et al. An emulsion preparation for novel microporouspolymeric hemi-shells[J]. Mater Lett2008;62:252-4.
    【89】 Randle WL, Cha JM, Hwang YS, et al.Integrated3-dimensional expansion andosteogenic differentiation of murine embryonic stem cells[J]. Tissue Eng2007;13:2957–70.
    【90】 Witschi C, Doelker E. influence of the microencapsulation method and peptide loadingon poly(lactic acid) and poly (lactic-co-glycolide acid) degradation during in vitrotesting[J]. J Control Release1998;51:327-41.
    【91】 Straub JA, Chickering DE, Church CC, et al. Porous PLGA micropaticles: AI-700, anintravenously administered ultrasound contrast agent for use in echocardiography[J]. JControl Release2005;108:21-32.
    【92】 Nihant N, Grandfils C. Microencapsulation by coacervation of poly(lactide-co-glycolide) IV. Effect of the processing parameters on coacervation andencapsulation[J]. J Control Release1995;35:117-25.
    【93】 Yodthong B. Porous microspheres of methoxy poly(ethylene glycol)-b-poly(ε-caprolactoneco–D, L-lactide) prepared by a melt dispersion method[J]. Polymer2009;50:4761-7.
    【94】 Sautier J. Mineralization and bone formation on microcarrier beads with isolated ratcalvaria cell population[J]. Calcif. Tissue Int1992;50:527–32.
    【95】 Malda J. Expansion of bovine chondrocytes on microcarriers enhancesredifferentiation[J]. Tissue Eng2003;9:939–48.
    【96】 Baker T, Goodwin T. Three-dimensional culture of bovine chondrocytes in rotating-wallvessels: In Vitro Cell[J]. Dev Biol Anim1997;33:358–65.
    【97】 Freed L. Cultivation of cell–polymer cartilage implants in bioreactors[J]. J CellBiochem1993;51:257–64.
    【98】 Bayram Y. The cell-based dressing with living allogenic keratinocytes in the treatmentof foot ulcers: a case study[J]. Br J Plast Surg2005;58:988–96.
    【99】 Bucheler M. Tissue engineering of human salivary gland organoids[J]. Acta Otolaryngol2002;122:541–5.
    【100】 Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan—A versatile semi-syntheticpolymer in biomedical applications[J]. Prog Polym Sci2011;36:981–1014.
    【101】 Madihally SV, Matthew HW. Porous chitosan scaffolds for tissue engineering[J].Biomaterials1999;20:1133–42.
    【102】 Lu GY, Zhu L, Kong LJ, et al. Porous chitosan MCs for large scale cultivation of cellsfor tissue engineering: fabrication and evaluation[J]. Tsinghua Sci Tech2006;11:427–32.
    【103】 Chen XG, Liu CS, Liu CG, Meng XH, Lee CM, Park HJ. Preparation andbiocompatibility of chitosan microcarriers as biomaterial[J]. Biochem Eng J2006;27:269–74.
    【104】 Anderson JM. Biological responses to materials[J]. Annu Rev Mater Res2001;31:81–110.
    【105】 Hutmacher DW. Scaffolds in tissue engineering bone and cartilage[J]. Biomaterials2000;21:2529–43.
    【106】 Kempen DHR, Lu L, Kim C, et al. Controlled drug release from a novel injectablebiodegradable microsphere/scaffold composite based on poly(propylene fumarate)[J].J Biomed Mater Res2006;77A:103–11.
    【107】 Newman KD, Mcburney MW. Poly(d,l-lactic-co-gly-colic acid) microspheres asbiodegradable microcarriers for pluripotent stem cells[J]. Biomaterials2004;5:5763-71.
    【108】 Chen R, Curran SJ, Curran JM. The use of poly(L-lactide) and RGD modiedmicrospheres as cellcarriers in a ow intermittency bioreactor for tissue engineeringcartilage. Biomaterials2006;27:4453-60.
    【109】 Nishida K, Hara M. Heat resistance and local structure of FeC12-absorbed crosslinkedPoly(glutamic acid)[J]. J Radioanal Nucl Ch2001;3:547-50.
    【110】 Ledezma AS, Romero J. The formation by microbial Poly(glutamic acid) andfluoroalumino silicate glass[J]. Mater Lett2005;59:3188–91.
    【111】 Hsieh YG, Tsai SP, Wang DM, Chang YN, Hsieh HJ. Preparation of γ-PGA/chitosancomposite tissue engineering matrices[J]. Biomaterials2005;26:5617–23.
    【112】 Idelson M, Blout ER. High molecular weight poly(L-glutamic acid): preparation andphysical rotation changes[J]. J. Am. Chem. Soc.1958;80:4631–4.
    【113】 Hanby WE, Waley SG, Watson J. Synthetic polypeptides. Part II. Polyglutamic acid[J]. JChem Soc1950;68:3239–49.
    【114】 Ohkawa K, Takahashi Y, Yamada M, Yamamoto H. Polyion complex fber and capsuleformed by self-assembly of chitosan and poly(alpha,L-glutamic acid) at solutioninterfaces[J]. Macromol Mater Eng2001;286:168–75.
    【115】 Yan SF, Zhang KX, Liu ZW, et al. Fabrication of poly(L-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds for tissue engineering[J]. J Mater Chem B2013;1:1541–51.
    【116】 Li C. Poly(L–glutamic acid)–anticancer drug conjugates[J]. Adv Drug Deliv Rev2002;54:695–713.
    【117】 Song ZJ, Yin JB, Luo K, et al. Layer–by–layer buildup of poly(L–glutamicacid)/chitosan film for biologically active coating[J]. Macromol Biosci2009;9:268–78.
    【118】 Dai ZZ, Yin JB, Yan SF, Cao T, Ma J, Chen XS. Polyelectrolyte complexes based onchitosan and poly(L–glutamic acid)[J]. Polym Int2007;56:1122–7.
    【119】许迎春.氨基酸材料微波合成材料[硕士学位论文].北京化工大学.2008.2
    【120】刘晓鸥.聚谷氨酸的生物合成及应用前景[J].食品工程.2009;1:23-6.
    【121】 Leuchs H. Ueber die glycin-carbonsaure [J]. Chem Ber1906;39:857-61.
    【122】 Birrer GA, Cromwick AM, Gross RA. γ-Poly(glutamic acid) formation by Bacilluslicheniformis9945a: physiological and biochemical studies[J]. Int J Biol Macromol1994;16:265–75.
    【123】 Tian HY, Tang ZH, Zhuang XL, Chen XS, Jing XB. Biodegradable synthetic polymers:Preparation, functionalization and biomedical application[J]. Prog Polym Sci2012;37:237–80.
    【124】 Tsutsumi A, Perly B, Forchioni A, Chachaty C. A magnetic resonance study of thesegmental motion and local conformations of poly(L-glutamic acid) in aqueoussolutions[J]. Macromolecules1978;11:977–86.
    【125】 Dolnik V, Novotny M, Chmelik J. Electronmigration behavior of poly-(L-glutamate)conformers in concentrate polyacrylamide gels[J]. Biopolymers1993;33:1299–1306.
    【126】 Miller WG. Degradation of poly(a-L-glutamic acid). I. Degradation of high molecularweight PGA by papain[J]. J Am Chem Soc1961;83:259–65.
    【127】 Miller WG. Degradation of synthetic polypeptides. II. Degradation of poly-a-L-glutamicacid by proteolytic enzymes in0.20M sodium chloride. J Am Chem Soc1964;86:3913–8.
    【128】 Hayashi T, Iwatsuki M. Biodegradation of copoly(L-aspartic acid/L-glutamic acid) invitro. Biopolymer1990;29:549–57.
    【129】 Chiu HC, Kopeckova P, Deshmane SS, Kopecek J. Lysosomal degradability ofpoly(α-amino acids)[J]. J Biomed Mater Res1997;34:381–92.
    【130】 Pytela J, Kotva R, Metalova M, Rypacek F. Degradation of N5-(2-hydroxylethyl)-L-glutamine and L-glutamic acid homopolymers and copolymers by papain[J]. Int J BiolMacromol1990;12:241–6.
    【131】 Kishore BK, Lambricht P, Laurent G, Maldague P, Wagner R, Tulkens PM. Mechanismof protection afforded by polyaspartic acid against gentamicin-induced phospholipidosis.II. Comparative in vitro and in vivo studies with poly-L-aspartic, poly-L-glutamic andpoly-D-glutamic acids[J]. J Pharmacol Exp Ther1990;255:875–85.
    【132】 Singer JW, Nudelman E, Vries P, Shaffer S. Metabolism of poly-L-glutamic acid (PG)paclitaxel (CT-2103): in tratumoral peptide cleavage followed by esterolysis[J].5thInternational Symposium on Polymer Therapeutics: From Laboratory to ClinicalPractice, Cardiff, UK, Jan.2002;3;52.
    【133】 Akamatsu K, Yamasaki Y, Nishikawa M, Takakura Y, Hashida M. Development of ahepatocyte-specifc prostaglandin E1polymeric prodrug and its potential for preventingcarbon tetrachloride-induced fulminant hepatitis in mice[J]. J Pharmacol Exp Ther1999;290:1242–9.
    【134】 McCormick-Thomson LA, Sgouras D, Duncan R. Poly(amino acid) copolymers as apotential soluble drug delivery system.2. Body distribution and preliminarybiocompatibility testing in vitro and in vivo[J]. J Bioact Compat Polym1989;4:252–68.
    【135】 Sumi H, Kawabe K, Nakajima N. Effect of various polyamino acids and D-andL-amino acids on the blood fbrinolytic system[J]. Comp Biochem Physiol1992;102B:159–62.
    【136】 Li C, Yu DF, Newman RA, et al. Wallace, Complete regression of well-establishedtumors using novel water-soluble poly(L-glutamic acid)–paclitaxel conjugates[J].Cancer Res1998;58:2404–9.
    【137】 Li C, Price JE, Milas L, et al. Antitumor activity of poly(L-glutamic acid)–paclitaxel onsyngeneic and xenografted tumors[J] Clin Cancer Res1999;5:891–7.
    【138】 Kenny AD. Evaluation of sodium poly(a-L-glutamic acid) as a plasma expander[J]. ProcSoc Exp Biol Med1959;100:778–80.
    【139】 Hoes CJT, Grootoonk J, Duncan R, et al. Biological properties of Adriamycin bound tobiodegradable polymeric carriers[J]. J Control Release1993;23:37–54.
    【140】 Hoes CJT, Potman W, Heeswijk WAR, et al. Optimization of macromolecular prodrugsof the antitumor antibiotic Adriamycin, J Control Release1985;2:205–13.
    【141】 Kato Y, Saito M, Fukushima H, Takeda Y, Hara T. Antitumor activity of1-b-D-arabinofuranosylcytosine conjugated with polyglutamic acid and its derivative[J]. Cancer Res1984;44:25–30.
    【142】 Rowland GF, O’Neill GJ, Davies DAL. Suppression of tumor growth in mice bydrug–antibody conjugate using a novel approach to linkage[J]. Nature1975;255:487–8.
    【143】 Yan SF, Zhu J, Wang ZC, Yin JB, Zheng YZ, Chen XS. Layer–by–layer assembly ofpoly(l–glutamic acid)/chitosan microcapsules for high loading and sustained release of5–fluorouracil[J]. Eur J Pharm Biopharm2011;78:336–45.
    【144】 Yan SF, Rao SQ, Zhu J, et al. Nanoporous multilayer poly(l-glutamic acid)/chitosanmicrocapsules for drug delivery[J]. Internat J Pharma2012;427:443-51.
    【145】 Cao B, Yin JB, Yan SF, Cui L, Chen XS, Xie YT. Porous Scaffolds Based onCross-Linking of Poly(L-glutamic acid)[J]. Macromol Biosci2011;11:427–34.
    【146】 Zhang KX, Zhang Y, Yan SF, et al. Repair of articular cartilage defect using adiposederived stem cells loaded on polyelectrolyte complex scaffold based on poly(L-glutamicacid) and chitosan[J]. Acta Biomaterialia2013;9:7276-86.
    【147】 Rypacek F. Structure-to-function relationships in the biodegradation of poly(aminoacid)s[J]. Polym Degrad Stabil1998;59:345-51.
    【148】 Peter M, Amidon GL, Yang VC. Modifed polypeptides containing benzyl glutamic acidas drug delivery platforms[J]. Int J Pharm1999;178:183–92.
    【149】 Liu D, Li Y, Deng JP, Yang WT. Synthesis and characterization of magneticFe3O4-silica-poly(benzyl-L-glutamate) composite microspheres[J]. React Funct Polym2011;71:1040–4.
    【150】刘斌等.生物可降解冠状动脉支架涂层材料聚乙二醇-聚乳酸-聚谷氨酸共聚物的生物相容性研究[J].中国实验诊断学2006;9:975-8.
    【151】 Deng C, Tian HY, Zhang PB, et al. Synthesis and characterization of RGD peptidegrafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) triblockcopolymer[J]. Biomacromolecules2006,7(2):590-6.
    【152】 Liu XH, Jin XB, Ma PX. Nanofbrous hollow microspheres self-assembled fromstar-shaped polymers as injectable cell carriers for knee repair[J]. Nat Mater2011;10:398–406.
    【153】 Man Y, Wang P, Guo YW, et al. Angiogenic and osteogenic potential of platelet-richplasma and adipose-derived stem cell laden alginate microspheres[J]. Biomaterials2012;33:8802–11.
    【154】 Doctor J, Petraglia CA, Loveland A, et al. Evaluating Microcarriers for DeliveringHuman Adult Mesenchymal Stem Cells in Bone Tissue Engineering[J]. Dev Biol2002;247:505.
    【155】 Chen XG, Liu CS, Liu CG, et al. Preparation and biocompatibility of chitosanmicrocarriers as biomaterial[J]. Biochem Eng J2006;27:269–74.
    【156】 Mao HQ, Roy K, Janes KA, et al. Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection effciency[J]. J Control Release2001;70:399–421.
    【157】 Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-basedmicro-and nanoparticles in drug delivery[J]. J Control Release2004;100:5–28.
    【158】 Malafaya PB, Reis RL. Bilayered chitosan-based scaffolds for osteochondral tissueengineering:Infuence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivitystudies in a specifc double-chamber bioreactor[J].Acta Biomater2009;5:644–60.
    【159】 Casettari L, Vllasaliu D, Lam JKW, Soliman M, Illum L. Biomedical applications ofamino acid-modifed chitosans:Areview[J]. Biomaterials2012;33:7565–83.
    【160】 Denuziere A, Ferrier D, Damour O, Domard A. Chitosan-chondroitin sulfate andchitosan-hyaluronate polyelectrolyte complexes: biological properties[J]. Biomaterials1998;19:1275–85.
    【161】 Ilina AV, Varlamov VP. Chitosan-based polyelectrolyte complexes: a review[J]. ApplBiochem Microbiol2005;41:5–11.
    【162】 Mao JS, Cui YL, Wang XH, et al. A preliminary study on chitosan and gelatinpolyelectrolyte complex cytocompatibility by cell cycle and apoptosis analysis[J].Biomaterials2004;25:3973–81.
    【163】 Zhang LN, Zhou JP, Yang G, Chen JH. Preparative fractionation of polysaccharides bycolumns packed with regenerated cellulose gels[J]. J Chromatogr A1998;816:131–6.
    【164】 Schreiber AB, Haimovich J. Quantitative fluorometric assay for detection andcharacterization of Fc receptor [J]. Methods Enzymol,1983,93:147-55.
    【165】 Ma L, Gao CY, Mao ZW, Zhou J, Shen JC. Enhanced biological stability of collagenporous scaffolds by using amino acids as novel cross-linking bridges[J]. Biomaterials2004;25:2997–3004.
    【166】 Lao LH, Tan HP, Wang YJ, Gao CY. Chitosan modifed poly(l-lactide) microspheres ascell microcarriers for cartilage tissue engineering[J]. Colloid Surface B2008;66:218–25.
    【167】 Lu GY, Sheng BY, Wei YJ, et al. Collagen nanofber-covered porous biodegradablecarboxymethyl chitosan microcarriers for tissue engineering cartilage[J]. Eur Polym J2008;44:2820–9.
    【168】 Lin YH, Chung CK, Chen CT, Liang HF, Chen SC, Sung HW. Preparation ofnanoparticles composed of chitosan/poly-gamma-glutamic acid and evaluation of theirpermeability through Caco-2cells[J]. Biomacromolecules2005;6:1104–12.
    【169】 Tsao CT, Chang CH, Lin YY, et al. Antibacterial activity and biocompatibility of achitosan–γ-poly(glutamic acid) polyelectrolyte complex hydrogel[J]. Carbohyd Res2010;345:1774–80.
    【170】 Lin YH, Mi FL, Chen CT, et al. Preparation and characterization of nanoparticlesshelled with chitosan for oral insulin delivery[J]. Biomacromolecules2007;8:146–52.
    【171】 Kim KM, Son JH, Kim SK, Weller CL, Hanna MA. Properties of chitosan flmsaccording to pH and types of solvents[J]. J Food Sci2006;71:E119–24.
    【172】 Sankalia MG, Mashru RC, Sankalia JM, Sutariya VB. Reversed chitosan–alginatepolyelectrolyte complex for stability improvement of alpha-amylase: optimization andphysicochemical characterization[J]. Eur J Pharm Biopharm2007;65:215–32.
    【173】 Gümüsoglu T, Ar GA, Delig z H. Investigation of salt addition and acid treatmenteffects on the transport properties of ionically cross-linked polyelectrolyte complexmembranes based on chitosan and polyacrylic acid[J]. J Membrane Sci2011;376:25–34.
    【174】 Cui Z, Liu C, Lu T, Xing W. Polyelectrolyte complexes of chitosan and phosphotungsticacid as proton-conducting membranes for direct methanol fuel cells[J]. J Power Sources2007;167:94–9.
    【175】 Malda J. The effect of oxygen tension on adult articular chondrocytes in microcarrierbioreactor culture[J]. Tissue Eng (2004)10,987–94
    【176】 Shikani AH. Propagation of human nasal chondrocytes in microcarrier spinner culture[J].Am J Rhinol (2004)18,105–12
    【177】 Patterson J, Martino MM, Hubbell JA. Biomimetic materials in tissue engineering[J].Mater Today2010,13,14–22.
    【178】 Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The Basement MembraneComponent of Biologic Scaffolds Derived from Extracellular Matrix[J]. Tissue Eng2006;12:519–26.
    【179】 Kobayashi S, Meir A,Urban JPG. The effect of cell density on the rate ofglycosaminoglycan accumulation by disc and cartilage cells in vitro[J]. J Orthop Res2008;26:493–503.
    【180】 Frondoza, C. Human chondrocytes proliferate and produce matrix components inmicrocarrier suspension culture[J]. Biomaterials1996;17:879–88
    【181】 Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering[J]. Biomaterials2003;24:4353–64.
    【182】 Thomas V, Jagani S, Johnson K, et al. Electrospun bioactive nanocomposite scaffolds ofpolycaprolactone and nanohydroxyapatite for bone tissue engineering[J]. J NanosciNanotechnol2006;6:487–93.
    【183】 Laschke MW, Strohe A, Scheuer C, et al. In vivo biocompatibility and vascularization ofbiodegradable porous polyurethane scaffolds for tissue engineering[J]. Acta Biomater2009;5:1991–2001.
    【184】 Cai ZY, Yang DA, Zhang N, Ji CG, Zhu L, Zhang T. Poly(propylene fumarate)/(calciumsulphate/[beta]-tricalcium phosphate) composites: preparation, characterization and invitro degradation[J]. Acta Biomater2009;5:628–35.
    【185】 Krogman NR, Weikel AL, Kristhart KA, et al. The infuence of side group modifcationin polyphosphazenes on hydrolysis and cell adhesion of blends with PLGA[J].Biomaterials2009;30:3035–41.
    【186】 Sutthiphong S, Pavasant P, Supaphol P. Electrospun1,6-diisocyanatohexane-extendedpoly(1,4-butylene succinate) fbermats and their potential for use as bone scaffolds[J].Polymer2009;50:1548–58.
    【187】 Puppi D, Chiellini F, Piras AM, Chiellini E. Polymeric materials for bone and cartilagerepair[J]. Prog Polym Sci2010;35:403–40.
    【188】 Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block co Polymers as injectabledrug-delivery systems. Nature1997;388:860–2.
    【189】 Sun HF, Mei L, Song CX, Cui XM, Wang PY. The in vivo degradation, absorption andexcretion of PCL-based implant[J]. Biomaterials2006;27:1735–40
    【190】 Lin JP, Zhu GQ, Zhu XM, Lin SL, Nose T, Ding WW. Aggregate structure changeinduced by intramolecular helix–coil transition[J]. Polymer2008;49:1132–6.
    【191】 Rajeswari R, Jayarama RV, Subramanian S, Shayanti M, Seeram R. Precipitation ofnanohydroxyapatite on PLLA/PBLG/Collagen nanofbrous structures for thedifferentiation of adipose derived stem cells to osteogenic lineage[J]. Biomaterials2012;33:846-55
    【192】 Draghi L, Resta S, Pirozzolo MG, Tanzi MC. Microspheres leaching for scaffoldporosity control[J]. J Mater Sci Mater M162005;12:1093–7.
    【193】 Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y. Development of highly porouslarge PLGA microparticles for pulmonary drug delivery[J]. Biomaterials2009;30:1947–53.
    【194】 Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering[J].Eur Cells Mater2003;5:1e16.
    【195】任杰,可降解与吸收材料[M].北京:化学工业出版社,2002,232.
    【196】 Shi XD, Jiang J, Sun L, Gan ZH. Hydrolysis and biomineralization of porous PLAmicrospheres and their infuence on cell growth[J]. Colloid Surface B: Biointer2011;85:73–80.
    【197】 Atsushi S, Toshiki M, Chikara O. Apatite-forming ability of polyglutamic acidhydrogels in a body-simulating environment[J]. J Mater Sci: Mater Med2008;19:2269–74.
    【198】 Chang MC, Ko C, Douglas WH. Preparation of hydroxyapatite–gelatinnanocomposite[J]. Biomaterials2003;24:2853–62.
    【199】 Li JJ, Chen YP, Yin YJ, Yao FL, Yao KD. Modulation of nano-hydroxyapatite size viaformation on chitosan–gelatin network flm in situ[J]. Biomaterials2007;28:781–90.
    【200】 Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution?[J].Biomaterials2009;30:2175–9.
    【201】 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity?[J].Biomaterials2006;27:2907–15.
    【202】 Barrere F, Blitterswijk CA, Groot K, Layrolle P. Infuence of ionic strength andcarbonate on the Ca-P coating formation from SBF×5solution[J]. Biomaterials2002;23:1921–30.
    【203】 Cuneyt TA, Bhaduri SB. Rapid coating of Ti6Al4V at room temperature with a calciumphosphate solution similar to10×simulated body fluid[J]. J Mater Res2004;19:2742-9.
    【204】 Muller L, Muller FA. Preparation of SBF with different HCO-3content and its infuenceon the composition of biomimetic apatites[J]. Acta Biomater2006;2:181–9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700