周围神经Wallerian变性对干细胞归巢/迁移的动员作用及趋化性再生的潜在分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的在建立大鼠周围神经损伤模型的基础上,研究Wallerian变性与干细胞归巢之间的关系,周围神经损伤后干细胞向神经断端归巢的现象及潜在机制,以及干细胞归巢后的转归,为周围神经损伤的修复探索新的思路。利用蛋白组学技术建立感觉神经和运动神经的双向电泳(2-DE)图,比较周围感觉神经和运动神经内蛋白质的表达差异,为周围神经损伤后趋化性再生的机制研究提供依据。
     方法1.使用PCR,Western blot,免疫荧光等方法鉴定趋化因子SDF-1在Wallerian变性的损伤神经远端及其特异性受体CXCR4在BMSCs中的表达情况。
     2.用Transwell细胞迁移模型,检验离断后发生Wallerian变性的远端神经组织匀浆对BMSCs迁移的趋化作用,使用SDF-1/CXCR4轴特异性阻断剂AMD3100检验SDF-1在其中扮演的角色。
     3.通过向大鼠坐骨神经切断/吻合模型的尾静脉注射移植表达RFP的BMSCs,模拟BMSCs向神经组织归巢的过程,使用荧光成像和病理学方法观察BMSCs是否通过机体血液循环归巢至损伤的神经组织局部,并进一步使用特异性阻断剂AMD3100验证SDF-1/CXCR4轴对BMSCs归巢的动员机制。
     4.建立大鼠坐骨神经节段性冰冻损伤和CEANA修复节段性缺损两种模型,将表达RFP的BMSCs添加到损伤的神经组织周围,观察BMSCs在神经损伤局部的迁移对神经修复的促进效果并探索其作用机制,重点观察干细胞在神经微环境中的分化和转归。
     5.正常雌性Wistar大鼠,深度麻醉后取双侧隐神经及股神经肌支,打开椎管及硬脊膜,显微镜下分离取出背侧神经根及腹侧神经根,分别提取蛋白质。在蛋白质充分匀浆、超声裂解并定量后,在相同条件下,对每组蛋白质样品进行3次双向电泳,对重复3次实验的隐神经与股神经肌支,背侧神经根与腹侧神经根两两进行分析,比较两对感觉和运动神经电泳图中的蛋白质表达的变化。将差异表达的蛋白质点从凝胶上切下来并溶解为多肽,使用纳升超高效液相色谱-电喷雾串联质谱(nanoUPLC-nano-ESI-MS/MS)进行分析,根据所得的质谱数据通过Mascot搜索引擎进行蛋白质查询鉴定。
     结果1.切断后1d、3d和7d组发生Wallerian变性的远端组织SDF-1在mRNA的表达均明显高于正常对照组。CXCR4在分离培养扩增后的BMSCs和表达RFP的BMSCs中均稳定表达。
     2. Wallerian变性的神经远端组织匀浆可以在体外Transwell模型中吸引BMSCs的迁移,该趋化作用可以被SDF-1/CXCR4轴AMD3100阻断。
     3.尾静脉注射RFP-BMSCs向切断并吻合后发生Wallerian变性的神经组织局部迁移。Wallerian变性的神经对BMSCs的趋化作用,可以被SDF-1/CXCR4轴阻断剂AMD3100阻断。
     4.在节段性冰冻损伤神经或移植的CEANA内部或周围移植RFP-BMSCs后12周,再生神经纤维间均有RFP-BMSCs分布,并显示Nestin、S100、P0阳性。在节段性冰冻损伤的神经、桥接节段性神经缺损的CEANA内注射或周围局部添加BMSCs,可以提高小腿三头肌收缩力和湿重的恢复率,缩短CMAPs潜伏期,增高CMAPs波幅,增加神经有髓纤维密度以及髓鞘的厚度,促进周围神经损伤修复。
     5.应用双向电泳体系,成功建立周围感觉神经和运动神经蛋白质组双向电泳图谱,隐神经与股神经肌支,背侧神经根与腹侧神经根等四种神经双向电泳图蛋白匹配率均>80%。通过比较双向电泳图,共计有13个蛋白质斑点在隐神经与股神经肌支的蛋白质组中差异表达,其中隐神经表达水平较股神经肌支高的有8个点,股神经肌支较隐神经表达水平高有5个点;共计有16个蛋白质斑点在腹侧神经根组与背侧神经根组表达差异,其中背侧神经根较腹侧神经根表达水平高的有6个点,表达水平低的有10个点。将选取的29个蛋白差异点进行nanoUPLC-nano-ESI-MS/MS分析得到质谱数据并在Mascot搜索引擎中查询并排除角蛋白污染后,共成功鉴定隐神经与股神经肌支的11个蛋白差异点(涉及7种蛋白),以及腹侧神经根与背侧神经根的9个蛋白差异点(涉及7种蛋白)。
     结论Wallerian变性的周围神经组织在体内和体外,对BMSCs均有趋化动员作用。SDF-1/CXCR4轴在Wallerian变性神经组织对BMSCs的趋化动员过程中发挥重要作用。
     在节段性损伤的神经或桥接节段性神经缺损的CEANA周围局部添加BMSCs,BMSCs可以迁移到再生神经内,并向神经干细胞及雪旺细胞方向分化,通过促进髓鞘再生和引导轴索生长,达到与直接向神经内注射BMSCs相当的修复效果。
     成功构建大鼠周围感觉神经与运动神经双向电泳图,并联合使用质谱技术鉴定了其中的大部分蛋白质。这些蛋白质有可能成为区分感觉和运动神经的特异性标记,同时可能在周围神经损伤后的趋化性再生过程中发挥重要作用。
OBJECTIVE: To observe the homing and migration of bone marrow derivedstem cell to Wallerian degenerated peripheral nerve;To investigate the characteristicsand mechanism of the phenomenon,especially the fate of migrated stem cell. Todetect differential protein expression in rat between saphenous nerve and motorbranch of femoral nerve, as dorsal root and ventral root, using two-dimensional gelelectrophoresis and mass spectrum and to determine specific biological markers ofsensory and motor nerve.
     METHODS:1. We measured the expression of CXCR4in BMSCs and theexpression of SDF-1in degenerated rat sciatic nerve with RT-PCR, Western blot,immunofluorescence methods.
     2. By using Transwell in vitro migration assay system, the effects of SDF-1andtissular extract from normal and degenerated rat sciatic nerve on BMSCs’ migrationwere observed, the influence of AMD3100treatment on BMSCs’ migration inducedby nerve tissular extract were also evaluated.
     3. The RFP transfected BMSCs were injected through tail vein into the SD ratswith sciatic nerve cut and anastomosised, and the migration of BMSCs to the injurednerve3days later. The influence of AMD3100treatment on BMSCs’ migrationinduced by degenerated nerve, were also evaluated.
     4. The RFP transfected BMSCs were injected in or applied around the segmentalfreeze-treated nerve or CEANA bridged to the segmental defect of rat sciatic nerve.12weeks later, the fate of transplanted RFP-BMSCs was observed and its effect ofpromoting nerve regeneration and repair was evaluated through functional assessmentand histological observation.
     5. A total of9Wistar rat were sacrificed. The segments of bilateral motorbranches to the quadriceps muscles and the saphenous nerves, ventral roots and dorsal roots of spinal at the level of L1~5were collected, separately. Total protein wasextracted from four kinds of nerve tissue, followed by two-dimensional gelelectrophoresis and silver staining, and the differential protein expression wasanalyzed using imagemaster2D platinum software. Protein peptide massspectrometry data of differential protein spots was obtained by nano ultra highperformance liquid chromatography electrospray ionization mass spectrometrytandem mass spectrometry. The National Center for Biotechnology Information(NCBI) protein database was retrieved by Mascot to identify protein type.
     RESULT:1. Western blot and Immunofluorescence analysis revealed thatBMSCs were CXCR4positive. The mRNA of CXCR4in BMSCs and SDF-1inWallerian degenerated nerve were successfully reversely transcribed by RT-PCR.
     2. Wallerian degenerated nerve tissular extract can induce the migration ofBMSCs, and this effect can be suppressed by AMD3100which is a blocker ofCXCR4.
     3. Injured and Wallerian degenerated nerve can induce the migration oftransplanted BMSCs, and this effect can be suppressed by AMD3100which is ablocker of CXCR4.
     4. The RFP-BMSCs transplanted around the freezed nerve or CEANA hadmigrated into regenerated nerve, with Nestin, S100, P0positive, as the cells directlyinjected into the freezed nerve or CEANA. Transplanting BMSCs in or around thefreezed nerve or CEANA, had equally increased contraction of triceps muscle,recovery rate of muscle, the number of sciatic nerve myelinated fibers and myelinthickness.
     5. Compared with the motor branches of femoral nerve,13protein spotsexhibited obviously differential expression in saphenous nerves (P<0.05). Comparedwith in ventral roots,16protein spots exhibited obviously differential expression indorsal roots (P<0.05). A total of26out of29protein spots with obvious differentialexpression were identified successfully, with peptide of matching score>34(P <0.05). Protein types were identified and included transgelin, Ig kappa chain precursor,plasma glutathione peroxidase precursor, aldose reductase, a glyceraldehyde- 3-phosphate dehydrogenase-like protein, lactoylglutathione lyase, adenylate kinaseisozyme1, Pol(yrC)-binding protein1, rCG31027and two unnamed protein product(gi|55628and gi|1334163).
     CONCLUSION: Wallerian degenerated nerve can induce the migration ofBMSCs, SDF-1/CXCR4axis play an important role in this process.
     Compared to directly injected BMSCs into acellular nerve, BMSCs suppliedaround injured nerve have the similar effect, by differentiated into Schwann cell andpromoting myelin formation.
     Through the proteomics comparison with2DGE andnanoUPLC-nano-ESI-MS/MS analysis between motor branch of femoral nerve andsaphenous nerve, as ventral roots and dorsal roots, a few proteins were found for thefirst time to be differentially expressed in sensory and motor nerve. These proteinsmay play roles in specific nerve regeneration.
引文
[1] Lago N,Rodriguez F J,Guzman M S et al. Effects of motor and sensory nerve transplants onamount and specificity of sciatic nerve regeneration. J Neurosci Res,2007,85(12):2800-2812
    [2] Kemp S W,Walsh S K,Zochodne D W et al. A novel method for establishing daily in vivoconcentration gradients of soluble nerve growth factor (NGF). J Neurosci Methods,2007,165(1):83-88
    [3] de Ruiter G C,Malessy M J,Alaid A O et al. Misdirection of regenerating motor axons afternerve injury and repair in the rat sciatic nerve model. Exp Neurol,2008,211(2):339-350
    [4] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [5] Zhao Q. Nerve regeneration in silicone tubes:a study of fibrin matrix formation andspecificity of muscle reinnervation. Lund,,1992,39
    [6] Lykissas M G,Batistatou A K,Charalabopoulos K A et al. The role of neurotrophins inaxonal growth, guidance, and regeneration. Curr Neurovasc Res,2007,4(2):143-151
    [7] Scholz J,Woolf C J. The neuropathic pain triad: neurons, immune cells and glia. NatNeurosci,2007,10(11):1361-1368
    [8]陈继营,卢世璧.神经生长因子和再生室收集液对培养神经组织的趋化作用.中华实验外科杂志,2000,17(2):169-170
    [9]陈继营,卢世璧.再生室收集液体中神经生长因子的浓度.中华手外科杂志,2000,16(1):46-48
    [10]陈继营,卢世璧.趋化性模型的建立及神经生长因子的趋化作用.中华显微外科杂志,2000,23(1):46-48
    [11]陈继营,卢世璧.再生室收集液及变性神经对共培养背根神经节的趋化作用.中华外科杂志,2000,38(3):208-211
    [12]李涛,洪光祥,李进等. MSCs静脉移植对周围神经再生的作用.中华手外科杂志,2007,23(1):4-7
    [13] Jackson J S,Golding J P,Chapon C et al. Homing of stem cells to sites of inflammatorybrain injury after intracerebral and intravenous administration: a longitudinal imaging study.Stem Cell Res Ther,2010,1(2):17
    [14] Coronel M F,Musolino P L,Villar M J. Selective migration and engraftment of bone marrowmesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction.Neurosci Lett,2006,405(1-2):5-9
    [15] Sanchez-Ramos J,Song S,Cardozo-Pelaez F et al. Adult bone marrow stromal cellsdifferentiate into neural cells in vitro. Exp Neurol,2000,164(2):247-256
    [16] Coronel M F,Musolino P L,Villar M J. Selective migration and engraftment of bone marrowmesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction.Neurosci Lett,2006,405(1-2):5-9
    [17] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [18] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [1] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [2] Zhao Q. Nerve regeneration in silicone tubes:a study of fibrin matrix formation andspecificity of muscle reinnervation. Lund,,1992,39
    [3]李涛,洪光祥,李进等. MSCs静脉移植对周围神经再生的作用.中华手外科杂志,2007,23(1):4-7
    [4] Jackson J S,Golding J P,Chapon C et al. Homing of stem cells to sites of inflammatorybrain injury after intracerebral and intravenous administration: a longitudinal imaging study.Stem Cell Res Ther,2010,1(2):17
    [5] Pereira R F,Halford K W,O'Hara M D et al. Cultured adherent cells from marrow can serveas long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc NatlAcad Sci U S A,1995,92(11):4857-4861
    [6] Kadiyala S,Young R G,Thiede M A et al. Culture expanded canine mesenchymal stem cellspossess osteochondrogenic potential in vivo and in vitro. Cell Transplant,1997,6(2):125-134
    [7] Richards M,Huibregtse B A,Caplan A I et al. Marrow-derived progenitor cell injectionsenhance new bone formation during distraction. J Orthop Res,1999,17(6):900-908
    [8] Dennis J E,Merriam A,Awadallah A et al. A quadripotential mesenchymal progenitor cellisolated from the marrow of an adult mouse. J Bone Miner Res,1999,14(5):700-709
    [9] Munoz-Elias G,Woodbury D,Black I B. Marrow stromal cells, mitosis, and neuronaldifferentiation: stem cell and precursor functions. Stem Cells,2003,21(4):437-448
    [10] Ferrari G,Cusella-De A G,Coletta M et al. Muscle regeneration by bone marrow-derivedmyogenic progenitors. Science,1998,279(5356):1528-1530
    [11] LaBarge M A,Blau H M. Biological progression from adult bone marrow to mononucleatemuscle stem cell to multinucleate muscle fiber in response to injury. Cell,2002,111(4):589-601
    [12] Ferrari G,Cusella-De A G,Coletta M et al. Muscle regeneration by bone marrow-derivedmyogenic progenitors. Science,1998,279(5356):1528-1530
    [13] LaBarge M A,Blau H M. Biological progression from adult bone marrow to mononucleatemuscle stem cell to multinucleate muscle fiber in response to injury. Cell,2002,111(4):589-601
    [14] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [15] Brzoska M, Geiger H, Gauer S et al. Epithelial differentiation of human adiposetissue-derived adult stem cells. Biochem Biophys Res Commun,2005,330(1):142-150
    [16] Nakagami H,Morishita R,Maeda K et al. Adipose tissue-derived stromal cells as a noveloption for regenerative cell therapy. J Atheroscler Thromb,2006,13(2):77-81
    [17] Talens-Visconti R,Bonora A,Jover R et al. Human mesenchymal stem cells from adiposetissue: Differentiation into hepatic lineage. Toxicol In Vitro,2007,21(2):324-329
    [18] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [19] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [20] Yoshimura H,Muneta T,Nimura A et al. Comparison of rat mesenchymal stem cells derivedfrom bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res,2007,327(3):449-462
    [21] Aquino J B,Hjerling-Leffler J,Koltzenburg M et al. In vitro and in vivo differentiation ofboundary cap neural crest stem cells into mature Schwann cells. Exp Neurol,2006,198(2):438-449
    [22] Murakami T,Fujimoto Y,Yasunaga Y et al. Transplanted neuronal progenitor cells in aperipheral nerve gap promote nerve repair. Brain Res,2003,974(1-2):17-24
    [23] MacDonald S C,Fleetwood I G,Hochman S et al. Functional motor neurons differentiatingfrom mouse multipotent spinal cord precursor cells in culture and after transplantation intotransected sciatic nerve. J Neurosurg,2003,98(5):1094-1103
    [24] Heine W,Conant K,Griffin J W et al. Transplanted neural stem cells promote axonalregeneration through chronically denervated peripheral nerves. Exp Neurol,2004,189(2):231-240
    [25] Friedenstein A J,Gorskaja J F,Kulagina N N. Fibroblast precursors in normal and irradiatedmouse hematopoietic organs. Exp Hematol,1976,4(5):267-274
    [26] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [27] Cheng F C,Tai M H,Sheu M L et al. Enhancement of regeneration with glia cellline-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cellsafter sciatic nerve crush injury. J Neurosurg,2010,112(4):868-879
    [28] Tohill M,Terenghi G. Stem-cell plasticity and therapy for injuries of the peripheral nervoussystem. Biotechnol Appl Biochem,2004,40(Pt1):17-24
    [29] Ashjian P H,Elbarbary A S,Edmonds B et al. In vitro differentiation of human processedlipoaspirate cells into early neural progenitors. Plast Reconstr Surg,2003,111(6):1922-1931
    [30] Friedenstein A J. Precursor cells of mechanocytes. Int Rev Cytol,1976,47:327-359
    [31] Brelot A,Heveker N,Montes M et al. Identification of residues of CXCR4critical for humanimmunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem,2000,275(31):23736-23744
    [32] Chen F,Chen S,Tao K et al. Marrow-derived osteoblasts seeded into porous natural coral toprefabricate a vascularised bone graft in the shape of a human mandibular ramus:experimental study in rabbits. Br J Oral Maxillofac Surg,2004,42(6):532-537
    [33] Ji J F,He B P,Dheen S T et al. Interactions of chemokines and chemokine receptors mediatethe migration of mesenchymal stem cells to the impaired site in the brain after hypoglossalnerve injury. Stem Cells,2004,22(3):415-427
    [34] Honczarenko M,Le Y,Swierkowski M et al. Human bone marrow stromal cells express adistinct set of biologically functional chemokine receptors. Stem Cells,2006,24(4):1030-1041
    [1] Cuevas P,Carceller F,Dujovny M et al. Peripheral nerve regeneration by bone marrowstromal cells. Neurol Res,2002,24(7):634-638
    [2] Brohlin M,Mahay D,Novikov L N et al. Characterisation of human mesenchymal stem cellsfollowing differentiation into Schwann cell-like cells. Neurosci Res,2009,64(1):41-49
    [3] Wang J,Ding F,Gu Y et al. Bone marrow mesenchymal stem cells promote cell proliferationand neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262:7-15
    [4] Chen X,Li Y,Wang L et al. Ischemic rat brain extracts induce human marrow stromal cellgrowth factor production. Neuropathology,2002,22(4):275-279
    [5] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [6] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [7] Gleichmann M,Gillen C,Czardybon M et al. Cloning and characterization of SDF-1gamma,a novel SDF-1chemokine transcript with developmentally regulated expression in thenervous system. Eur J Neurosci,2000,12(6):1857-1866
    [8] Huang C,Gu H,Yu Q et al. Sca-1+cardiac stem cells mediate acute cardioprotection viaparacrine factor SDF-1following myocardial ischemia/reperfusion. PLoS One,2011,6(12):e29246
    [9] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [10]朱洁.趋化因子SDF-1和fractalkine诱导经静脉注射移植的人骨髓间充质干细胞向缺血性脑损伤区的迁移:[博士学位论文].:第三军医大学,2009
    [11]曹阳. SDF-1/CXCR4对大鼠骨髓基质细胞迁移的影响及在脊髓损伤中的应用:[博士学位论文].:中国医科大学,2006
    [12]陈军. SDF-1/CXCR4轴参与骨髓间充质干细胞修复大鼠急性心肌梗死的实验研究:[博士学位论文].:华中科技大学,2009
    [13]柳晓霞,胡坚方. SDF-1/CXCR4介导骨髓干细胞归巢至损伤肝脏的研究进展.实用临床医学,2010(4):124-127
    [14] Tashiro K,Tada H,Heilker R et al. Signal sequence trap: a cloning strategy for secretedproteins and type I membrane proteins. Science,1993,261(5121):600-603
    [15]杨志峰,杨清玲,陈昌杰.趋化因子SDF-1与受体CXCR4的研究进展.分子诊断与治疗杂志,2011(1):58-61
    [16] Wong D,Korz W. Translating an Antagonist of Chemokine Receptor CXCR4: from bench tobedside. Clin Cancer Res,2008,14(24):7975-7980
    [17] Busillo J M,Benovic J L. Regulation of CXCR4signaling. Biochim Biophys Acta,2007,1768(4):952-963
    [18] Kucia M,Jankowski K,Reca R et al. CXCR4-SDF-1signalling, locomotion, chemotaxis andadhesion. J Mol Histol,2004,35(3):233-245
    [19] Ganju R K,Brubaker S A,Meyer J et al. The alpha-chemokine, stromal cell-derivedfactor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4receptor and activatesmultiple signal transduction pathways. J Biol Chem,1998,273(36):23169-23175
    [20] Zhao M,Discipio R G,Wimmer A G et al. Regulation of CXCR4-mediated nucleartranslocation of extracellular signal-related kinases1and2. Mol Pharmacol,2006,69(1):66-75
    [21] Vila-Coro A J,Rodriguez-Frade J M,Martin D A A et al. The chemokine SDF-1alphatriggers CXCR4receptor dimerization and activates the JAK/STAT pathway. FASEB J,1999,13(13):1699-1710
    [22] Moriguchi M,Hissong B D,Gadina M et al. CXCL12signaling is independent of Jak2andJak3. J Biol Chem,2005,280(17):17408-17414
    [23] Raffaghello L,Cocco C,Corrias M V et al. Chemokines in neuroectodermal tumourprogression and metastasis. Semin Cancer Biol,2009,19(2):97-102
    [24]周瑞明,曾荣. SDF-1/CXCR4拮抗剂AMD3100应用方面的研究进展.广东医学院学报,2010(2):205-207
    [25] Fricker S P,Anastassov V,Cox J et al. Characterization of the molecular pharmacology ofAMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4.Biochem Pharmacol,2006,72(5):588-596
    [26] Kajiyama H,Shibata K,Terauchi M et al. Involvement of SDF-1alpha/CXCR4axis in theenhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer,2008,122(1):91-99
    [27] Fransen S, Bridger G, Whitcomb J M et al. Suppression of dualtropic humanimmunodeficiency virus type1by the CXCR4antagonist AMD3100is associated withefficiency of CXCR4use and baseline virus composition. Antimicrob Agents Chemother,2008,52(7):2608-2615
    [28] Lukacs N W,Berlin A,Schols D et al. AMD3100, a CxCR4antagonist, attenuates allergiclung inflammation and airway hyperreactivity. Am J Pathol,2002,160(4):1353-1360
    [29] Matthys P,Hatse S,Vermeire K et al. AMD3100, a potent and specific antagonist of thestromal cell-derived factor-1chemokine receptor CXCR4, inhibits autoimmune jointinflammation in IFN-gamma receptor-deficient mice. J Immunol,2001,167(8):4686-4692
    [1] Shea G K,Tsui A Y,Chan Y S et al. Bone marrow-derived Schwann cells achieve fatecommitment--a prerequisite for remyelination therapy. Exp Neurol,2010,224(2):448-458
    [2] Chen Q,Long Y,Yuan X et al. Protective effects of bone marrow stromal cell transplantationin injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res,2005,80(5):611-619
    [3] Chen X,Li Y,Wang L et al. Ischemic rat brain extracts induce human marrow stromal cellgrowth factor production. Neuropathology,2002,22(4):275-279
    [4] Wang X,Luo E,Li Y et al. Schwann-like mesenchymal stem cells within vein graft facilitatefacial nerve regeneration and remyelination. Brain Res,2011,1383:71-80
    [5] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [6] Hu X,Dai S,Wu W J et al. Stromal cell derived factor-1alpha confers protection againstmyocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1alpha CXCR4axis. Circulation,2007,116(6):654-663
    [7] Huang C,Gu H,Zhang W et al. SDF-1/CXCR4mediates acute protection of cardiac functionthrough myocardial STAT3signaling following global ischemia/reperfusion injury. Am JPhysiol Heart Circ Physiol,2011,301(4):H1496-H1505
    [8] Shichinohe H,Kuroda S,Lee J B et al. In vivo tracking of bone marrow stromal cellstransplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain ResProtoc,2004,13(3):166-175
    [9] Mahmood A,Lu D,Lu M et al. Treatment of traumatic brain injury in adult rats withintravenous administration of human bone marrow stromal cells. Neurosurgery,2003,53(3):697-702,702-703
    [10] Zhang J,Li Y,Lu M et al. Bone marrow stromal cells reduce axonal loss in experimentalautoimmune encephalomyelitis mice. J Neurosci Res,2006,84(3):587-595
    [11] Seyfried D,Ding J,Han Y et al. Effects of intravenous administration of human bonemarrow stromal cells after intracerebral hemorrhage in rats. J Neurosurg,2006,104(2):313-318
    [12] Wu J,Sun Z,Sun H S et al. Intravenously administered bone marrow cells migrate todamaged brain tissue and improve neural function in ischemic rats. Cell Transplant,2008,16(10):993-1005
    [13] Fandel T M, Albersen M, Lin G et al. Recruitment of intracavernously injectedadipose-derived stem cells to the major pelvic ganglion improves erectile function in a ratmodel of cavernous nerve injury. Eur Urol,2012,61(1):201-210
    [14] Parr A M,Tator C H,Keating A. Bone marrow-derived mesenchymal stromal cells for therepair of central nervous system injury. Bone Marrow Transplant,2007,40(7):609-619
    [15] Shen L H,Li Y,Chen J et al. Intracarotid transplantation of bone marrow stromal cellsincreases axon-myelin remodeling after stroke. Neuroscience,2006,137(2):393-399
    [16] Gleichmann M,Gillen C,Czardybon M et al. Cloning and characterization of SDF-1gamma,a novel SDF-1chemokine transcript with developmentally regulated expression in thenervous system. Eur J Neurosci,2000,12(6):1857-1866
    [17] Ceradini D J,Kulkarni A R,Callaghan M J et al. Progenitor cell trafficking is regulated byhypoxic gradients through HIF-1induction of SDF-1. Nat Med,2004,10(8):858-864
    [18] Stumm R K,Rummel J,Junker V et al. A dual role for the SDF-1/CXCR4chemokinereceptor system in adult brain: isoform-selective regulation of SDF-1expression modulatesCXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focalischemia. J Neurosci,2002,22(14):5865-5878
    [1] Diao E,Vannuyen T. Techniques for primary nerve repair. Hand Clin,2000,16(1):53-66
    [2] Millesi H. Techniques for nerve grafting. Hand Clin,2000,16(1):73-91
    [3] Millesi H. Bridging defects: autologous nerve grafts. Acta Neurochir Suppl,2007,100:37-38
    [4] Vanderhooft E. Functional outcomes of nerve grafts for the upper and lower extremities.Hand Clin,2000,16(1):93-104
    [5] Ding F,Wu J,Yang Y et al. Use of tissue-engineered nerve grafts consisting of achitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrowmesenchymal cells for bridging50-mm dog sciatic nerve gaps. Tissue Eng Part A,2010,16(12):3779-3790
    [6] Fansa H,Keilhoff G,Wolf G et al. Tissue Engineering of Peripheral Nerves: A Comparisonof Venous and Acellular Muscle Grafts with Cultured Schwann Cells. Plast Reconstr Surg,2001,107(2):495-496
    [7] Lin H,Liu F,Zhang C et al. Characterization of nerve conduits seeded with neurons andSchwann cells derived from hair follicle neural crest stem cells. Tissue Eng Part A,2011,17(13-14):1691-1698
    [8] Wang J,Ding F,Gu Y et al. Bone marrow mesenchymal stem cells promote cell proliferationand neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262:7-15
    [9] Zhang Y,Luo H,Zhang Z et al. A nerve graft constructed with xenogeneic acellular nervematrix and autologous adipose-derived mesenchymal stem cells. Biomaterials,2010,31(20):5312-5324
    [10] Sun X H,Che Y Q,Tong X J et al. Improving nerve regeneration of acellular nerve allograftsseeded with SCs bridging the sciatic nerve defects of rat. Cell Mol Neurobiol,2009,29(3):347-353
    [11] Lin H,Liu F,Zhang C et al. Pluripotent hair follicle neural crest stem-cell-derived neuronsand schwann cells functionally repair sciatic nerves in rats. Mol Neurobiol,2009,40(3):216-223
    [12] Hu J,Zhu Q T,Liu X L et al. Repair of extended peripheral nerve lesions in rhesus monkeysusing acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells.Exp Neurol,2007,204(2):658-666
    [13] Wang D,Liu X L,Zhu J K et al. Bridging small-gap peripheral nerve defects using acellularnerve allograft implanted with autologous bone marrow stromal cells in primates. BrainRes,2008,1188:44-53
    [14] Walsh S,Biernaskie J,Kemp S W et al. Supplementation of acellular nerve grafts with skinderived precursor cells promotes peripheral nerve regeneration. Neuroscience,2009,164(3):1097-1107
    [15] Wang D,Liu X L,Zhu J K et al. Repairing large radial nerve defects by acellular nerveallografts seeded with autologous bone marrow stromal cells in a monkey model. JNeurotrauma,2010,27(10):1935-1943
    [16] Wang D,Liu X L,Zhu J K et al. Bridging small-gap peripheral nerve defects using acellularnerve allograft implanted with autologous bone marrow stromal cells in primates. BrainRes,2008,1188:44-53
    [17] Zhao Z,Wang Y,Peng J et al. Repair of nerve defect with acellular nerve graft supplementedby bone marrow stromal cells in mice. Microsurgery,2011,31(5):388-394
    [18]赵喆.以天然神经细胞外基质为支架构建组织工程神经修复周围神经缺损:[博士学位论文].:中国人民解放军军医进修学院,2011
    [19] Sondell M,Lundborg G,Kanje M. Regeneration of the rat sciatic nerve into allografts madeacellular through chemical extraction. Brain Res,1998,795(1-2):44-54
    [20] Trumble T,Stanislaw J. Immunology of peripheral nerves and response to trauma. J OrthopRes,1991,9(3):367-373
    [21] Fasano V A,Peirone S M,Zeme S et al. Cryoanalgesia. Ultrastructural study on cryolyticlesion of sciatic nerve in rat and rabbit. Acta Neurochir Suppl (Wien),1987,39:177-180
    [22]赵曙光,李辉,范慧敏.低温冷冻神经损伤与再生研究.同济大学学报(医学版),2010(4):15-18
    [23] Yu H,Peng J,Guo Q et al. Improvement of peripheral nerve regeneration in acellular nervegrafts with local release of nerve growth factor. Microsurgery,2009,29(4):330-336
    [24] Guerette D,Khan P A,Savard P E et al. Molecular evolution of type VI intermediatefilament proteins. BMC Evol Biol,2007,7:164
    [25] Michalczyk K,Ziman M. Nestin structure and predicted function in cellular cytoskeletalorganisation. Histol Histopathol,2005,20(2):665-671
    [26] Cocchia D,Miani N. Immunocytochemical localization of the brain-specific S-100protein inthe pituitary gland of adult rat. J Neurocytol,1980,9(6):771-782
    [27] Cocchia D. Immunocytochemical localization of S-100protein in the brain of adult rat. Anultrastructural study. Cell Tissue Res,1981,214(3):529-540
    [28]张殿英,姜保国,傅忠国等.周围神经损伤后S-100蛋白的分布和变化研究.中国矫形外科杂志,2002(4):36-38
    [29] Kim S,Jeon T J,Oberai A et al. Transmembrane glycine zippers: physiological andpathological roles in membrane proteins. Proc Natl Acad Sci U S A,2005,102(40):14278-14283
    [30] Plotkowski M L,Kim S,Phillips M L et al. Transmembrane domain of myelin protein zerocan form dimers: possible implications for myelin construction. Biochemistry,2007,46(43):12164-12173
    [31] Chaplan S R,Bach F W,Pogrel J W et al. Quantitative assessment of tactile allodynia in therat paw. J Neurosci Methods,1994,53(1):55-63
    [1] Chiu D T,Smahel J,Chen L et al. Neurotropism revisited. Neurol Res,2004,26(4):381-387
    [2] Yoshii S,Shima M,Oka M et al. Nerve regeneration along collagen filament and thepresence of distal nerve stump. Neurol Res,2004,26(2):145-150
    [3] Saito I,Oka Y,Odaka M. Promoting nerve regeneration through long gaps using a smallnerve tissue graft. Surg Neurol,2003,59(3):148-154,154-155
    [4]王冠军.化学去细胞异体神经促神经再生及趋化性生长实验研究:[博士学位论文].:中国人民解放军军医进修学院,2007
    [5] Brushart T M. Motor axons preferentially reinnervate motor pathways. J Neurosci,1993,13(6):2730-2738
    [6] Robinson G A,Madison R D. Developmentally regulated changes in femoral nerveregeneration in the mouse and rat. Exp Neurol,2006,197(2):341-346
    [7] Brushart T M. Preferential reinnervation of motor nerves by regenerating motor axons. JNeurosci,1988,8(3):1026-1031
    [8]王鸿丽,刘锋,李卫华等. NanoUPLC-nano-ESI-MS/MS鉴定二维凝胶银染后蛋白质点的方法.军事医学,2011(7):541-545
    [9]田佳鑫.腹泻康治疗脾虚泄泻证的疗效与作用机制研究:[硕士学位论文].:中国人民解放军军事医学科学院,2007
    [10] Clauser K R,Hall S C,Smith D M et al. Rapid mass spectrometric peptide sequencing andmass matching for characterization of human melanoma proteins isolated bytwo-dimensional PAGE. Proc Natl Acad Sci U S A,1995,92(11):5072-5076
    [11] Shevchenko A,Jensen O N,Podtelejnikov A V et al. Linking genome and proteome by massspectrometry: large-scale identification of yeast proteins from two dimensional gels. ProcNatl Acad Sci U S A,1996,93(25):14440-14445
    [12] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    [13] Marko-Varga G,Fehniger T E. Proteomics and disease--the challenges for technology anddiscovery. J Proteome Res,2004,3(2):167-178
    [14] Lopez M F,Berggren K,Chernokalskaya E et al. A comparison of silver stain and SYPRORuby Protein Gel Stain with respect to protein detection in two-dimensional gels andidentification by peptide mass profiling. Electrophoresis,2000,21(17):3673-3683
    [15] Yates J R. Database searching using mass spectrometry data. Electrophoresis,1998,19(6):893-900
    [16] Nishida W,Kitami Y,Abe M et al. Gene cloning and nucleotide sequence of SM22alphafrom the chicken gizzard smooth muscle. Biochem Int,1991,23(4):663-668
    [17] Lees-Miller J P,Heeley D H,Smillie L B et al. Isolation and characterization of an abundantand novel22-kDa protein (SM22) from chicken gizzard smooth muscle. J Biol Chem,1987,262(7):2988-2993
    [18] Solway J,Seltzer J,Samaha F F et al. Structure and expression of a smooth musclecell-specific gene, SM22alpha. J Biol Chem,1995,270(22):13460-13469
    [19]丁灿,吕家高,王伟. SM22α基因的调控及其在基因治疗中的应用进展.神经损伤与功能重建,2009(6):438-440
    [20] Lawson D,Harrison M,Shapland C. Fibroblast transgelin and smooth muscle SM22alpha arethe same protein, the expression of which is down-regulated in many cell lines. Cell MotilCytoskeleton,1997,38(3):250-257
    [21] Nair R R,Solway J,Boyd D D. Expression cloning identifies transgelin (SM22) as a novelrepressor of92-kDa type IV collagenase (MMP-9) expression. J Biol Chem,2006,281(36):26424-26436
    [22]谷娟,严谨,吴卫华等.醛糖还原酶的研究进展.中南大学学报(医学版),2010(4):395-400
    [23] Nishimura C,Matsuura Y,Kokai Y et al. Cloning and expression of human aldose reductase.J Biol Chem,1990,265(17):9788-9792
    [24] Bansal V,Kalita J,Misra U K. Diabetic neuropathy. Postgrad Med J,2006,82(964):95-100
    [25] Boel E,Selmer J,Flodgaard H J et al. Diabetic late complications: will aldose reductaseinhibitors or inhibitors of advanced glycosylation endproduct formation hold promise? JDiabetes Complications,1995,9(2):104-129
    [26] Hotta N,Akanuma Y,Kawamori R et al. Long-term clinical effects of epalrestat, an aldosereductase inhibitor, on diabetic peripheral neuropathy: the3-year, multicenter, comparativeAldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care,2006,29(7):1538-1544
    [27] Ramirez M A,Borja N L. Epalrestat: an aldose reductase inhibitor for the treatment ofdiabetic neuropathy. Pharmacotherapy,2008,28(5):646-655
    [28] Hotta N,Toyota T,Matsuoka K et al. Clinical efficacy of fidarestat, a novel aldose reductaseinhibitor, for diabetic peripheral neuropathy: a52-week multicenter placebo-controlleddouble-blind parallel group study. Diabetes Care,2001,24(10):1776-1782
    [29] Lebherz H G, Rutter W J. Glyceraldehyde-3-phosphate dehydrogenase variants inphyletically diverse organisms. Science,1967,157(3793):1198-1200
    [30] Barber R D,Harmer D W,Coleman R A et al. GAPDH as a housekeeping gene: analysis ofGAPDH mRNA expression in a panel of72human tissues. Physiol Genomics,2005,21(3):389-395
    [1] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    [2] Bowman J E,Frischer H,Ajmar F et al. Population, family and biochemical investigation ofhuman adenylate kinase polymorphism. Nature,1967,214(5093):1156-1158
    [3] Singer J D,Brock D J. Half-normal adenylate kinase activity in three generations. Ann HumGenet,1971,35(1):109-114
    [4] Aasheim H C,Loukianova T,Deggerdal A et al. Tissue specific expression and cDNAstructure of a human transcript encoding a nucleic acid binding [oligo(dC)] protein related tothe pre-mRNA binding protein K. Nucleic Acids Res,1994,22(6):959-964
    [5] Leffers H,Dejgaard K,Celis J E. Characterisation of two major cellular poly(rC)-bindinghuman proteins, each containing three K-homologous (KH) domains. Eur J Biochem,1995,230(2):447-453
    [6]胡德庆,杨晓明. PCBP1:一种在多水平上参与基因表达调控的蛋白因子.军事医学科学院院刊,2007(3):268-271
    [7] Ostareck-Lederer A, Ostareck D H. Control of mRNA translation and stability inhaematopoietic cells: the function of hnRNPs K and E1/E2. Biol Cell,2004,9(66):407-411
    [8] Berry A M,Flock K E,Loh H H et al. Molecular basis of cellular localization of poly Cbinding protein1in neuronal cells. Biochem Biophys Res Commun,2006,349(4):1378-1386
    [9] Huo L R,Ju W,Yan M et al. Identification of differentially expressed transcripts andtranslatants targeted by knock-down of endogenous PCBP1. Biochim Biophys Acta,2010,1804(10):1954-1964
    [10] Berry A M,Flock K E,Loh H H et al. Molecular basis of cellular localization of poly Cbinding protein1in neuronal cells. Biochem Biophys Res Commun,2006,349(4):1378-1386
    [11] Cobb B S,Morales-Alcelay S,Kleiger G et al. Targeting of Ikaros to pericentromericheterochromatin by direct DNA binding. Genes Dev,2000,14(17):2146-2160
    [1] Lago N,Rodriguez F J,Guzman M S et al. Effects of motor and sensory nerve transplants onamount and specificity of sciatic nerve regeneration. J Neurosci Res,2007,85(12):2800-2812
    [2] Kemp S W,Walsh S K,Zochodne D W et al. A novel method for establishing daily in vivoconcentration gradients of soluble nerve growth factor (NGF). J Neurosci Methods,2007,165(1):83-88
    [3] de Ruiter G C,Malessy M J,Alaid A O et al. Misdirection of regenerating motor axons afternerve injury and repair in the rat sciatic nerve model. Exp Neurol,2008,211(2):339-350
    [4] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [5] Zhao Q. Nerve regeneration in silicone tubes:a study of fibrin matrix formation andspecificity of muscle reinnervation. Lund,,1992,39
    [6] Lykissas M G,Batistatou A K,Charalabopoulos K A et al. The role of neurotrophins inaxonal growth, guidance, and regeneration. Curr Neurovasc Res,2007,4(2):143-151
    [7] Scholz J,Woolf C J. The neuropathic pain triad: neurons, immune cells and glia. NatNeurosci,2007,10(11):1361-1368
    [8]陈继营,卢世璧.神经生长因子和再生室收集液对培养神经组织的趋化作用.中华实验外科杂志,2000,17(2):169-170
    [9]陈继营,卢世璧.再生室收集液体中神经生长因子的浓度.中华手外科杂志,2000,16(1):46-48
    [10]陈继营,卢世璧.趋化性模型的建立及神经生长因子的趋化作用.中华显微外科杂志,2000,23(1):46-48
    [11]陈继营,卢世璧.再生室收集液及变性神经对共培养背根神经节的趋化作用.中华外科杂志,2000,38(3):208-211
    [12]李涛,洪光祥,李进等. MSCs静脉移植对周围神经再生的作用.中华手外科杂志,2007,23(1):4-7
    [13] Jackson J S,Golding J P,Chapon C et al. Homing of stem cells to sites of inflammatorybrain injury after intracerebral and intravenous administration: a longitudinal imaging study.Stem Cell Res Ther,2010,1(2):17
    [14] Coronel M F,Musolino P L,Villar M J. Selective migration and engraftment of bone marrowmesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction.Neurosci Lett,2006,405(1-2):5-9
    [15] Sanchez-Ramos J,Song S,Cardozo-Pelaez F et al. Adult bone marrow stromal cellsdifferentiate into neural cells in vitro. Exp Neurol,2000,164(2):247-256
    [16] Coronel M F,Musolino P L,Villar M J. Selective migration and engraftment of bone marrowmesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerve constriction.Neurosci Lett,2006,405(1-2):5-9
    [17] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [18] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [1] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [2] Zhao Q. Nerve regeneration in silicone tubes:a study of fibrin matrix formation andspecificity of muscle reinnervation. Lund,,1992,39
    [3]李涛,洪光祥,李进等. MSCs静脉移植对周围神经再生的作用.中华手外科杂志,2007,23(1):4-7
    [4] Jackson J S,Golding J P,Chapon C et al. Homing of stem cells to sites of inflammatorybrain injury after intracerebral and intravenous administration: a longitudinal imaging study.Stem Cell Res Ther,2010,1(2):17
    [5] Pereira R F,Halford K W,O'Hara M D et al. Cultured adherent cells from marrow can serveas long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc NatlAcad Sci U S A,1995,92(11):4857-4861
    [6] Kadiyala S,Young R G,Thiede M A et al. Culture expanded canine mesenchymal stem cellspossess osteochondrogenic potential in vivo and in vitro. Cell Transplant,1997,6(2):125-134
    [7] Richards M,Huibregtse B A,Caplan A I et al. Marrow-derived progenitor cell injectionsenhance new bone formation during distraction. J Orthop Res,1999,17(6):900-908
    [8] Dennis J E,Merriam A,Awadallah A et al. A quadripotential mesenchymal progenitor cellisolated from the marrow of an adult mouse. J Bone Miner Res,1999,14(5):700-709
    [9] Munoz-Elias G,Woodbury D,Black I B. Marrow stromal cells, mitosis, and neuronaldifferentiation: stem cell and precursor functions. Stem Cells,2003,21(4):437-448
    [10] Ferrari G,Cusella-De A G,Coletta M et al. Muscle regeneration by bone marrow-derivedmyogenic progenitors. Science,1998,279(5356):1528-1530
    [11] LaBarge M A,Blau H M. Biological progression from adult bone marrow to mononucleatemuscle stem cell to multinucleate muscle fiber in response to injury. Cell,2002,111(4):589-601
    [12] Ferrari G,Cusella-De A G,Coletta M et al. Muscle regeneration by bone marrow-derivedmyogenic progenitors. Science,1998,279(5356):1528-1530
    [13] LaBarge M A,Blau H M. Biological progression from adult bone marrow to mononucleatemuscle stem cell to multinucleate muscle fiber in response to injury. Cell,2002,111(4):589-601
    [14] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [15] Brzoska M, Geiger H, Gauer S et al. Epithelial differentiation of human adiposetissue-derived adult stem cells. Biochem Biophys Res Commun,2005,330(1):142-150
    [16] Nakagami H,Morishita R,Maeda K et al. Adipose tissue-derived stromal cells as a noveloption for regenerative cell therapy. J Atheroscler Thromb,2006,13(2):77-81
    [17] Talens-Visconti R,Bonora A,Jover R et al. Human mesenchymal stem cells from adiposetissue: Differentiation into hepatic lineage. Toxicol In Vitro,2007,21(2):324-329
    [18] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [19] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [20] Yoshimura H,Muneta T,Nimura A et al. Comparison of rat mesenchymal stem cells derivedfrom bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res,2007,327(3):449-462
    [21] Aquino J B,Hjerling-Leffler J,Koltzenburg M et al. In vitro and in vivo differentiation ofboundary cap neural crest stem cells into mature Schwann cells. Exp Neurol,2006,198(2):438-449
    [22] Murakami T,Fujimoto Y,Yasunaga Y et al. Transplanted neuronal progenitor cells in aperipheral nerve gap promote nerve repair. Brain Res,2003,974(1-2):17-24
    [23] MacDonald S C,Fleetwood I G,Hochman S et al. Functional motor neurons differentiatingfrom mouse multipotent spinal cord precursor cells in culture and after transplantation intotransected sciatic nerve. J Neurosurg,2003,98(5):1094-1103
    [24] Heine W,Conant K,Griffin J W et al. Transplanted neural stem cells promote axonalregeneration through chronically denervated peripheral nerves. Exp Neurol,2004,189(2):231-240
    [25] Friedenstein A J,Gorskaja J F,Kulagina N N. Fibroblast precursors in normal and irradiatedmouse hematopoietic organs. Exp Hematol,1976,4(5):267-274
    [26] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [27] Cheng F C,Tai M H,Sheu M L et al. Enhancement of regeneration with glia cellline-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cellsafter sciatic nerve crush injury. J Neurosurg,2010,112(4):868-879
    [28] Tohill M,Terenghi G. Stem-cell plasticity and therapy for injuries of the peripheral nervoussystem. Biotechnol Appl Biochem,2004,40(Pt1):17-24
    [29] Ashjian P H,Elbarbary A S,Edmonds B et al. In vitro differentiation of human processedlipoaspirate cells into early neural progenitors. Plast Reconstr Surg,2003,111(6):1922-1931
    [30] Friedenstein A J. Precursor cells of mechanocytes. Int Rev Cytol,1976,47:327-359
    [31] Brelot A,Heveker N,Montes M et al. Identification of residues of CXCR4critical for humanimmunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem,2000,275(31):23736-23744
    [32] Chen F,Chen S,Tao K et al. Marrow-derived osteoblasts seeded into porous natural coral toprefabricate a vascularised bone graft in the shape of a human mandibular ramus:experimental study in rabbits. Br J Oral Maxillofac Surg,2004,42(6):532-537
    [33] Ji J F,He B P,Dheen S T et al. Interactions of chemokines and chemokine receptors mediatethe migration of mesenchymal stem cells to the impaired site in the brain after hypoglossalnerve injury. Stem Cells,2004,22(3):415-427
    [34] Honczarenko M,Le Y,Swierkowski M et al. Human bone marrow stromal cells express adistinct set of biologically functional chemokine receptors. Stem Cells,2006,24(4):1030-1041
    [1] Cuevas P,Carceller F,Dujovny M et al. Peripheral nerve regeneration by bone marrowstromal cells. Neurol Res,2002,24(7):634-638
    [2] Brohlin M,Mahay D,Novikov L N et al. Characterisation of human mesenchymal stem cellsfollowing differentiation into Schwann cell-like cells. Neurosci Res,2009,64(1):41-49
    [3] Wang J,Ding F,Gu Y et al. Bone marrow mesenchymal stem cells promote cell proliferationand neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262:7-15
    [4] Chen X,Li Y,Wang L et al. Ischemic rat brain extracts induce human marrow stromal cellgrowth factor production. Neuropathology,2002,22(4):275-279
    [5] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [6] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [7] Gleichmann M,Gillen C,Czardybon M et al. Cloning and characterization of SDF-1gamma,a novel SDF-1chemokine transcript with developmentally regulated expression in thenervous system. Eur J Neurosci,2000,12(6):1857-1866
    [8] Huang C,Gu H,Yu Q et al. Sca-1+cardiac stem cells mediate acute cardioprotection viaparacrine factor SDF-1following myocardial ischemia/reperfusion. PLoS One,2011,6(12):e29246
    [9] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [10]朱洁.趋化因子SDF-1和fractalkine诱导经静脉注射移植的人骨髓间充质干细胞向缺血性脑损伤区的迁移:[博士学位论文].:第三军医大学,2009
    [11]曹阳. SDF-1/CXCR4对大鼠骨髓基质细胞迁移的影响及在脊髓损伤中的应用:[博士学位论文].:中国医科大学,2006
    [12]陈军. SDF-1/CXCR4轴参与骨髓间充质干细胞修复大鼠急性心肌梗死的实验研究:[博士学位论文].:华中科技大学,2009
    [13]柳晓霞,胡坚方. SDF-1/CXCR4介导骨髓干细胞归巢至损伤肝脏的研究进展.实用临床医学,2010(4):124-127
    [14] Tashiro K,Tada H,Heilker R et al. Signal sequence trap: a cloning strategy for secretedproteins and type I membrane proteins. Science,1993,261(5121):600-603
    [15]杨志峰,杨清玲,陈昌杰.趋化因子SDF-1与受体CXCR4的研究进展.分子诊断与治疗杂志,2011(1):58-61
    [16] Wong D,Korz W. Translating an Antagonist of Chemokine Receptor CXCR4: from bench tobedside. Clin Cancer Res,2008,14(24):7975-7980
    [17] Busillo J M,Benovic J L. Regulation of CXCR4signaling. Biochim Biophys Acta,2007,1768(4):952-963
    [18] Kucia M,Jankowski K,Reca R et al. CXCR4-SDF-1signalling, locomotion, chemotaxis andadhesion. J Mol Histol,2004,35(3):233-245
    [19] Ganju R K,Brubaker S A,Meyer J et al. The alpha-chemokine, stromal cell-derivedfactor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4receptor and activatesmultiple signal transduction pathways. J Biol Chem,1998,273(36):23169-23175
    [20] Zhao M,Discipio R G,Wimmer A G et al. Regulation of CXCR4-mediated nucleartranslocation of extracellular signal-related kinases1and2. Mol Pharmacol,2006,69(1):66-75
    [21] Vila-Coro A J,Rodriguez-Frade J M,Martin D A A et al. The chemokine SDF-1alphatriggers CXCR4receptor dimerization and activates the JAK/STAT pathway. FASEB J,1999,13(13):1699-1710
    [22] Moriguchi M,Hissong B D,Gadina M et al. CXCL12signaling is independent of Jak2andJak3. J Biol Chem,2005,280(17):17408-17414
    [23] Raffaghello L,Cocco C,Corrias M V et al. Chemokines in neuroectodermal tumourprogression and metastasis. Semin Cancer Biol,2009,19(2):97-102
    [24]周瑞明,曾荣. SDF-1/CXCR4拮抗剂AMD3100应用方面的研究进展.广东医学院学报,2010(2):205-207
    [25] Fricker S P,Anastassov V,Cox J et al. Characterization of the molecular pharmacology ofAMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4.Biochem Pharmacol,2006,72(5):588-596
    [26] Kajiyama H,Shibata K,Terauchi M et al. Involvement of SDF-1alpha/CXCR4axis in theenhanced peritoneal metastasis of epithelial ovarian carcinoma. Int J Cancer,2008,122(1):91-99
    [27] Fransen S, Bridger G, Whitcomb J M et al. Suppression of dualtropic humanimmunodeficiency virus type1by the CXCR4antagonist AMD3100is associated withefficiency of CXCR4use and baseline virus composition. Antimicrob Agents Chemother,2008,52(7):2608-2615
    [28] Lukacs N W,Berlin A,Schols D et al. AMD3100, a CxCR4antagonist, attenuates allergiclung inflammation and airway hyperreactivity. Am J Pathol,2002,160(4):1353-1360
    [29] Matthys P,Hatse S,Vermeire K et al. AMD3100, a potent and specific antagonist of thestromal cell-derived factor-1chemokine receptor CXCR4, inhibits autoimmune jointinflammation in IFN-gamma receptor-deficient mice. J Immunol,2001,167(8):4686-4692
    [1] Shea G K,Tsui A Y,Chan Y S et al. Bone marrow-derived Schwann cells achieve fatecommitment--a prerequisite for remyelination therapy. Exp Neurol,2010,224(2):448-458
    [2] Chen Q,Long Y,Yuan X et al. Protective effects of bone marrow stromal cell transplantationin injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res,2005,80(5):611-619
    [3] Chen X,Li Y,Wang L et al. Ischemic rat brain extracts induce human marrow stromal cellgrowth factor production. Neuropathology,2002,22(4):275-279
    [4] Wang X,Luo E,Li Y et al. Schwann-like mesenchymal stem cells within vein graft facilitatefacial nerve regeneration and remyelination. Brain Res,2011,1383:71-80
    [5] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [6] Hu X,Dai S,Wu W J et al. Stromal cell derived factor-1alpha confers protection againstmyocardial ischemia/reperfusion injury: role of the cardiac stromal cell derived factor-1alpha CXCR4axis. Circulation,2007,116(6):654-663
    [7] Huang C,Gu H,Zhang W et al. SDF-1/CXCR4mediates acute protection of cardiac functionthrough myocardial STAT3signaling following global ischemia/reperfusion injury. Am JPhysiol Heart Circ Physiol,2011,301(4):H1496-H1505
    [8] Shichinohe H,Kuroda S,Lee J B et al. In vivo tracking of bone marrow stromal cellstransplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain ResProtoc,2004,13(3):166-175
    [9] Mahmood A,Lu D,Lu M et al. Treatment of traumatic brain injury in adult rats withintravenous administration of human bone marrow stromal cells. Neurosurgery,2003,53(3):697-702,702-703
    [10] Zhang J,Li Y,Lu M et al. Bone marrow stromal cells reduce axonal loss in experimentalautoimmune encephalomyelitis mice. J Neurosci Res,2006,84(3):587-595
    [11] Seyfried D,Ding J,Han Y et al. Effects of intravenous administration of human bonemarrow stromal cells after intracerebral hemorrhage in rats. J Neurosurg,2006,104(2):313-318
    [12] Wu J,Sun Z,Sun H S et al. Intravenously administered bone marrow cells migrate todamaged brain tissue and improve neural function in ischemic rats. Cell Transplant,2008,16(10):993-1005
    [13] Fandel T M, Albersen M, Lin G et al. Recruitment of intracavernously injectedadipose-derived stem cells to the major pelvic ganglion improves erectile function in a ratmodel of cavernous nerve injury. Eur Urol,2012,61(1):201-210
    [14] Parr A M,Tator C H,Keating A. Bone marrow-derived mesenchymal stromal cells for therepair of central nervous system injury. Bone Marrow Transplant,2007,40(7):609-619
    [15] Shen L H,Li Y,Chen J et al. Intracarotid transplantation of bone marrow stromal cellsincreases axon-myelin remodeling after stroke. Neuroscience,2006,137(2):393-399
    [16] Gleichmann M,Gillen C,Czardybon M et al. Cloning and characterization of SDF-1gamma,a novel SDF-1chemokine transcript with developmentally regulated expression in thenervous system. Eur J Neurosci,2000,12(6):1857-1866
    [17] Ceradini D J,Kulkarni A R,Callaghan M J et al. Progenitor cell trafficking is regulated byhypoxic gradients through HIF-1induction of SDF-1. Nat Med,2004,10(8):858-864
    [18] Stumm R K,Rummel J,Junker V et al. A dual role for the SDF-1/CXCR4chemokinereceptor system in adult brain: isoform-selective regulation of SDF-1expression modulatesCXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focalischemia. J Neurosci,2002,22(14):5865-5878
    [1] Diao E,Vannuyen T. Techniques for primary nerve repair. Hand Clin,2000,16(1):53-66
    [2] Millesi H. Techniques for nerve grafting. Hand Clin,2000,16(1):73-91
    [3] Millesi H. Bridging defects: autologous nerve grafts. Acta Neurochir Suppl,2007,100:37-38
    [4] Vanderhooft E. Functional outcomes of nerve grafts for the upper and lower extremities.Hand Clin,2000,16(1):93-104
    [5] Ding F,Wu J,Yang Y et al. Use of tissue-engineered nerve grafts consisting of achitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrowmesenchymal cells for bridging50-mm dog sciatic nerve gaps. Tissue Eng Part A,2010,16(12):3779-3790
    [6] Fansa H,Keilhoff G,Wolf G et al. Tissue Engineering of Peripheral Nerves: A Comparisonof Venous and Acellular Muscle Grafts with Cultured Schwann Cells. Plast Reconstr Surg,2001,107(2):495-496
    [7] Lin H,Liu F,Zhang C et al. Characterization of nerve conduits seeded with neurons andSchwann cells derived from hair follicle neural crest stem cells. Tissue Eng Part A,2011,17(13-14):1691-1698
    [8] Wang J,Ding F,Gu Y et al. Bone marrow mesenchymal stem cells promote cell proliferationand neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262:7-15
    [9] Zhang Y,Luo H,Zhang Z et al. A nerve graft constructed with xenogeneic acellular nervematrix and autologous adipose-derived mesenchymal stem cells. Biomaterials,2010,31(20):5312-5324
    [10] Sun X H,Che Y Q,Tong X J et al. Improving nerve regeneration of acellular nerve allograftsseeded with SCs bridging the sciatic nerve defects of rat. Cell Mol Neurobiol,2009,29(3):347-353
    [11] Lin H,Liu F,Zhang C et al. Pluripotent hair follicle neural crest stem-cell-derived neuronsand schwann cells functionally repair sciatic nerves in rats. Mol Neurobiol,2009,40(3):216-223
    [12] Hu J,Zhu Q T,Liu X L et al. Repair of extended peripheral nerve lesions in rhesus monkeysusing acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells.Exp Neurol,2007,204(2):658-666
    [13] Wang D,Liu X L,Zhu J K et al. Bridging small-gap peripheral nerve defects using acellularnerve allograft implanted with autologous bone marrow stromal cells in primates. BrainRes,2008,1188:44-53
    [14] Walsh S,Biernaskie J,Kemp S W et al. Supplementation of acellular nerve grafts with skinderived precursor cells promotes peripheral nerve regeneration. Neuroscience,2009,164(3):1097-1107
    [15] Wang D,Liu X L,Zhu J K et al. Repairing large radial nerve defects by acellular nerveallografts seeded with autologous bone marrow stromal cells in a monkey model. JNeurotrauma,2010,27(10):1935-1943
    [16] Wang D,Liu X L,Zhu J K et al. Bridging small-gap peripheral nerve defects using acellularnerve allograft implanted with autologous bone marrow stromal cells in primates. BrainRes,2008,1188:44-53
    [17] Zhao Z,Wang Y,Peng J et al. Repair of nerve defect with acellular nerve graft supplementedby bone marrow stromal cells in mice. Microsurgery,2011,31(5):388-394
    [18]赵喆.以天然神经细胞外基质为支架构建组织工程神经修复周围神经缺损:[博士学位论文].:中国人民解放军军医进修学院,2011
    [19] Sondell M,Lundborg G,Kanje M. Regeneration of the rat sciatic nerve into allografts madeacellular through chemical extraction. Brain Res,1998,795(1-2):44-54
    [20] Trumble T,Stanislaw J. Immunology of peripheral nerves and response to trauma. J OrthopRes,1991,9(3):367-373
    [21] Fasano V A,Peirone S M,Zeme S et al. Cryoanalgesia. Ultrastructural study on cryolyticlesion of sciatic nerve in rat and rabbit. Acta Neurochir Suppl (Wien),1987,39:177-180
    [22]赵曙光,李辉,范慧敏.低温冷冻神经损伤与再生研究.同济大学学报(医学版),2010(4):15-18
    [23] Yu H,Peng J,Guo Q et al. Improvement of peripheral nerve regeneration in acellular nervegrafts with local release of nerve growth factor. Microsurgery,2009,29(4):330-336
    [24] Guerette D,Khan P A,Savard P E et al. Molecular evolution of type VI intermediatefilament proteins. BMC Evol Biol,2007,7:164
    [25] Michalczyk K,Ziman M. Nestin structure and predicted function in cellular cytoskeletalorganisation. Histol Histopathol,2005,20(2):665-671
    [26] Cocchia D,Miani N. Immunocytochemical localization of the brain-specific S-100protein inthe pituitary gland of adult rat. J Neurocytol,1980,9(6):771-782
    [27] Cocchia D. Immunocytochemical localization of S-100protein in the brain of adult rat. Anultrastructural study. Cell Tissue Res,1981,214(3):529-540
    [28]张殿英,姜保国,傅忠国等.周围神经损伤后S-100蛋白的分布和变化研究.中国矫形外科杂志,2002(4):36-38
    [29] Kim S,Jeon T J,Oberai A et al. Transmembrane glycine zippers: physiological andpathological roles in membrane proteins. Proc Natl Acad Sci U S A,2005,102(40):14278-14283
    [30] Plotkowski M L,Kim S,Phillips M L et al. Transmembrane domain of myelin protein zerocan form dimers: possible implications for myelin construction. Biochemistry,2007,46(43):12164-12173
    [31] Chaplan S R,Bach F W,Pogrel J W et al. Quantitative assessment of tactile allodynia in therat paw. J Neurosci Methods,1994,53(1):55-63
    [1] Chiu D T,Smahel J,Chen L et al. Neurotropism revisited. Neurol Res,2004,26(4):381-387
    [2] Yoshii S,Shima M,Oka M et al. Nerve regeneration along collagen filament and thepresence of distal nerve stump. Neurol Res,2004,26(2):145-150
    [3] Saito I,Oka Y,Odaka M. Promoting nerve regeneration through long gaps using a smallnerve tissue graft. Surg Neurol,2003,59(3):148-154,154-155
    [4]王冠军.化学去细胞异体神经促神经再生及趋化性生长实验研究:[博士学位论文].:中国人民解放军军医进修学院,2007
    [5] Brushart T M. Motor axons preferentially reinnervate motor pathways. J Neurosci,1993,13(6):2730-2738
    [6] Robinson G A,Madison R D. Developmentally regulated changes in femoral nerveregeneration in the mouse and rat. Exp Neurol,2006,197(2):341-346
    [7] Brushart T M. Preferential reinnervation of motor nerves by regenerating motor axons. JNeurosci,1988,8(3):1026-1031
    [8]王鸿丽,刘锋,李卫华等. NanoUPLC-nano-ESI-MS/MS鉴定二维凝胶银染后蛋白质点的方法.军事医学,2011(7):541-545
    [9]田佳鑫.腹泻康治疗脾虚泄泻证的疗效与作用机制研究:[硕士学位论文].:中国人民解放军军事医学科学院,2007
    [10] Clauser K R,Hall S C,Smith D M et al. Rapid mass spectrometric peptide sequencing andmass matching for characterization of human melanoma proteins isolated bytwo-dimensional PAGE. Proc Natl Acad Sci U S A,1995,92(11):5072-5076
    [11] Shevchenko A,Jensen O N,Podtelejnikov A V et al. Linking genome and proteome by massspectrometry: large-scale identification of yeast proteins from two dimensional gels. ProcNatl Acad Sci U S A,1996,93(25):14440-14445
    [12] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    [13] Marko-Varga G,Fehniger T E. Proteomics and disease--the challenges for technology anddiscovery. J Proteome Res,2004,3(2):167-178
    [14] Lopez M F,Berggren K,Chernokalskaya E et al. A comparison of silver stain and SYPRORuby Protein Gel Stain with respect to protein detection in two-dimensional gels andidentification by peptide mass profiling. Electrophoresis,2000,21(17):3673-3683
    [15] Yates J R. Database searching using mass spectrometry data. Electrophoresis,1998,19(6):893-900
    [16] Nishida W,Kitami Y,Abe M et al. Gene cloning and nucleotide sequence of SM22alphafrom the chicken gizzard smooth muscle. Biochem Int,1991,23(4):663-668
    [17] Lees-Miller J P,Heeley D H,Smillie L B et al. Isolation and characterization of an abundantand novel22-kDa protein (SM22) from chicken gizzard smooth muscle. J Biol Chem,1987,262(7):2988-2993
    [18] Solway J,Seltzer J,Samaha F F et al. Structure and expression of a smooth musclecell-specific gene, SM22alpha. J Biol Chem,1995,270(22):13460-13469
    [19]丁灿,吕家高,王伟. SM22α基因的调控及其在基因治疗中的应用进展.神经损伤与功能重建,2009(6):438-440
    [20] Lawson D,Harrison M,Shapland C. Fibroblast transgelin and smooth muscle SM22alpha arethe same protein, the expression of which is down-regulated in many cell lines. Cell MotilCytoskeleton,1997,38(3):250-257
    [21] Nair R R,Solway J,Boyd D D. Expression cloning identifies transgelin (SM22) as a novelrepressor of92-kDa type IV collagenase (MMP-9) expression. J Biol Chem,2006,281(36):26424-26436
    [22]谷娟,严谨,吴卫华等.醛糖还原酶的研究进展.中南大学学报(医学版),2010(4):395-400
    [23] Nishimura C,Matsuura Y,Kokai Y et al. Cloning and expression of human aldose reductase.J Biol Chem,1990,265(17):9788-9792
    [24] Bansal V,Kalita J,Misra U K. Diabetic neuropathy. Postgrad Med J,2006,82(964):95-100
    [25] Boel E,Selmer J,Flodgaard H J et al. Diabetic late complications: will aldose reductaseinhibitors or inhibitors of advanced glycosylation endproduct formation hold promise? JDiabetes Complications,1995,9(2):104-129
    [26] Hotta N,Akanuma Y,Kawamori R et al. Long-term clinical effects of epalrestat, an aldosereductase inhibitor, on diabetic peripheral neuropathy: the3-year, multicenter, comparativeAldose Reductase Inhibitor-Diabetes Complications Trial. Diabetes Care,2006,29(7):1538-1544
    [27] Ramirez M A,Borja N L. Epalrestat: an aldose reductase inhibitor for the treatment ofdiabetic neuropathy. Pharmacotherapy,2008,28(5):646-655
    [28] Hotta N,Toyota T,Matsuoka K et al. Clinical efficacy of fidarestat, a novel aldose reductaseinhibitor, for diabetic peripheral neuropathy: a52-week multicenter placebo-controlleddouble-blind parallel group study. Diabetes Care,2001,24(10):1776-1782
    [29] Lebherz H G, Rutter W J. Glyceraldehyde-3-phosphate dehydrogenase variants inphyletically diverse organisms. Science,1967,157(3793):1198-1200
    [30] Barber R D,Harmer D W,Coleman R A et al. GAPDH as a housekeeping gene: analysis ofGAPDH mRNA expression in a panel of72human tissues. Physiol Genomics,2005,21(3):389-395
    [1] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities ofprotein utilizing the principle of protein-dye binding. Anal Biochem,1976,72:248-254
    [2] Bowman J E,Frischer H,Ajmar F et al. Population, family and biochemical investigation ofhuman adenylate kinase polymorphism. Nature,1967,214(5093):1156-1158
    [3] Singer J D,Brock D J. Half-normal adenylate kinase activity in three generations. Ann HumGenet,1971,35(1):109-114
    [4] Aasheim H C,Loukianova T,Deggerdal A et al. Tissue specific expression and cDNAstructure of a human transcript encoding a nucleic acid binding [oligo(dC)] protein related tothe pre-mRNA binding protein K. Nucleic Acids Res,1994,22(6):959-964
    [5] Leffers H,Dejgaard K,Celis J E. Characterisation of two major cellular poly(rC)-bindinghuman proteins, each containing three K-homologous (KH) domains. Eur J Biochem,1995,230(2):447-453
    [6]胡德庆,杨晓明. PCBP1:一种在多水平上参与基因表达调控的蛋白因子.军事医学科学院院刊,2007(3):268-271
    [7] Ostareck-Lederer A, Ostareck D H. Control of mRNA translation and stability inhaematopoietic cells: the function of hnRNPs K and E1/E2. Biol Cell,2004,9(66):407-411
    [8] Berry A M,Flock K E,Loh H H et al. Molecular basis of cellular localization of poly Cbinding protein1in neuronal cells. Biochem Biophys Res Commun,2006,349(4):1378-1386
    [9] Huo L R,Ju W,Yan M et al. Identification of differentially expressed transcripts andtranslatants targeted by knock-down of endogenous PCBP1. Biochim Biophys Acta,2010,1804(10):1954-1964
    [10] Berry A M,Flock K E,Loh H H et al. Molecular basis of cellular localization of poly Cbinding protein1in neuronal cells. Biochem Biophys Res Commun,2006,349(4):1378-1386
    [11] Cobb B S,Morales-Alcelay S,Kleiger G et al. Targeting of Ikaros to pericentromericheterochromatin by direct DNA binding. Genes Dev,2000,14(17):2146-2160
    [1] Gaudet A D,Popovich P GRamer M S, Wallerian degeneration: Gaining perspective oninflammatory events after peripheral nerve injury. J Neuroinflammation,2011,8(1):110
    [2] Dubovy P, Wallerian degeneration and peripheral nerve conditions for both axonalregeneration and neuropathic pain induction. Ann Anat,2011,193(4):267-275
    [3] Mellick R SCavanagh J B, Changes in blood vessel permeability during degeneration andregeneration in peripheral nerves. Brain,1968,91(1):141-160
    [4] Olsson Y, Studies on vascular permeability in peripheral nerves. I. Distribution ofcirculating fluorescent serum albumin in normal, crushed and sectioned rat sciatic nerve.Acta Neuropathol,1966,7(1):1-15
    [5] Salonen V, Aho H, Roytta M et al., Quantitation of Schwann cells and endoneurialfibroblast-like cells after experimental nerve trauma. Acta Neuropathol,1988,75(4):331-336
    [6] Siironen J,Collan YRoytta M, Axonal reinnervation does not influence Schwann cellproliferation after rat sciatic nerve transection. Brain Res,1994,654(2):303-311
    [7] Hall S, Nerve repair: a neurobiologist's view. J Hand Surg Br,2001,26(2):129-136
    [8] Terenghi G, Calder J S, Birch R et al., A morphological study of Schwann cells andaxonal regeneration in chronically transected human peripheral nerves. J Hand Surg Br,1998,23(5):583-587
    [9] Lundborg G, ed. Regeneration and experimental nerve repair. Nerve injury and repair.2004, Philadelphia: Elsevier Churchill Livingstone.114-167.
    [10] Perry V HBrown M C, Role of macrophages in peripheral nerve degeneration and repair.Bioessays,1992,14(6):401-406
    [11] Taskinen H SRoytta M, The dynamics of macrophage recruitment after nerve transection.Acta Neuropathol,1997,93(3):252-259
    [12] Chen Z L,Yu W MStrickland S, Peripheral regeneration. Annu Rev Neurosci,2007,30(209-233
    [13] Colognato H,ffrench-Constant CFeltri M L, Human diseases reveal novel roles for neurallaminins. Trends Neurosci,2005,28(9):480-486
    [14] Gardiner N J, Fernyhough P, Tomlinson D R et al., Alpha7integrin mediates neuriteoutgrowth of distinct populations of adult sensory neurons. Mol Cell Neurosci,2005,28(2):229-240
    [15] Nodari A, Previtali S C, Dati G et al., Alpha6beta4integrin and dystroglycan cooperate tostabilize the myelin sheath. J Neurosci,2008,28(26):6714-6719
    [16] Fu S YGordon T, The cellular and molecular basis of peripheral nerve regeneration. MolNeurobiol,1997,14(1-2):67-116
    [17] Markus A,Patel T DSnider W D, Neurotrophic factors and axonal growth. Curr OpinNeurobiol,2002,12(5):523-531
    [18] Walsh SMidha R, Practical considerations concerning the use of stem cells for peripheralnerve repair. Neurosurg Focus,2009,26(2):E2
    [19] Azizi S A, Stokes D, Augelli B J et al., Engraftment and migration of human bonemarrow stromal cells implanted in the brains of albino rats--similarities to astrocyte grafts.Proc Natl Acad Sci U S A,1998,95(7):3908-3913
    [20] Aquino J B, Hjerling-Leffler J, Koltzenburg M et al., In vitro and in vivo differentiationof boundary cap neural crest stem cells into mature Schwann cells. Exp Neurol,2006,198(2):438-449
    [21] Murakami T, Fujimoto Y, Yasunaga Y et al., Transplanted neuronal progenitor cells in aperipheral nerve gap promote nerve repair. Brain Res,2003,974(1-2):17-24
    [22] MacDonald S C, Fleetwood I G, Hochman S et al., Functional motor neuronsdifferentiating from mouse multipotent spinal cord precursor cells in culture and aftertransplantation into transected sciatic nerve. J Neurosurg,2003,98(5):1094-1103
    [23] Heine W, Conant K, Griffin J W et al., Transplanted neural stem cells promote axonalregeneration through chronically denervated peripheral nerves. Exp Neurol,2004,189(2):231-240
    [24] Hu Y F, Gourab K, Wells C et al., Epidermal neural crest stem cell(EPI-NCSC)--mediated recovery of sensory function in a mouse model of spinal cordinjury. Stem Cell Rev,2010,6(2):186-198
    [25] Lin H, Liu F, Zhang C et al., Characterization of nerve conduits seeded with neurons andSchwann cells derived from hair follicle neural crest stem cells. Tissue Eng Part A,2011,17(13-14):1691-1698
    [26] Friedenstein A J,Gorskaja J FKulagina N N, Fibroblast precursors in normal andirradiated mouse hematopoietic organs. Exp Hematol,1976,4(5):267-274
    [27] Pittenger M F, Mackay A M, Beck S C et al., Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [28] Maltman D J,Hardy S APrzyborski S A, Role of mesenchymal stem cells in neurogenesisand nervous system repair. Neurochem Int,2011,59(3):347-356
    [29] Cheng F C, Tai M H, Sheu M L et al., Enhancement of regeneration with glia cellline-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stemcells after sciatic nerve crush injury. J Neurosurg,2009,112(4):868-879
    [30] Tohill MTerenghi G, Stem-cell plasticity and therapy for injuries of the peripheralnervous system. Biotechnol Appl Biochem,2004,40(Pt1):17-24
    [31] Ashjian P H, Elbarbary A S, Edmonds B et al., In vitro differentiation of humanprocessed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg,2003,111(6):1922-1931
    [32] Dezawa M, Takahashi I, Esaki M et al., Sciatic nerve regeneration in rats induced bytransplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci,2001,14(11):1771-1776
    [33] Keilhoff G, Stang F, Goihl A et al., Transdifferentiated mesenchymal stem cells asalternative therapy in supporting nerve regeneration and myelination. Cell Mol Neurobiol,2006,26(7-8):1235-1252
    [34] Hu J, Zhu Q T, Liu X L et al., Repair of extended peripheral nerve lesions in rhesusmonkeys using acellular allogenic nerve grafts implanted with autologous mesenchymalstem cells. Exp Neurol,2007,204(2):658-666
    [35] Keilhoff G, Goihl A, Stang F et al., Peripheral nerve tissue engineering: autologousSchwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng,2006,12(6):1451-1465
    [36] Shimizu S, Kitada M, Ishikawa H et al., Peripheral nerve regeneration by the in vitrodifferentiated-human bone marrow stromal cells with Schwann cell property. BiochemBiophys Res Commun,2007,359(4):915-920
    [37] Tohill M, Mantovani C, Wiberg M et al., Rat bone marrow mesenchymal stem cellsexpress glial markers and stimulate nerve regeneration. Neurosci Lett,2004,362(3):200-203
    [38] Wang D, Liu X L, Zhu J K et al., Bridging small-gap peripheral nerve defects usingacellular nerve allograft implanted with autologous bone marrow stromal cells inprimates. Brain Res,2008,1188(44-53
    [39] Lin H, Liu F, Zhang C et al., Characterization of nerve conduits seeded with neurons andSchwann cells derived from hair follicle neural crest stem cells. Tissue Eng Part A,17(13-14):1691-1698
    [40] Zuk P A, Zhu M, Mizuno H et al., Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng,2001,7(2):211-228
    [41] Schaffler ABuchler C, Concise review: adipose tissue-derived stromal cells--basic andclinical implications for novel cell-based therapies. Stem Cells,2007,25(4):818-827
    [42] Billon N,Monteiro M CDani C, Developmental origin of adipocytes: new insights into apending question. Biol Cell,2008,100(10):563-575
    [43] Kaewkhaw R,Scutt A MHaycock J W, Anatomical site influences the differentiation ofadipose-derived stem cells for Schwann-cell phenotype and function. Glia,2011,59(5):734-749
    [44] Wang H S, Hung S C, Peng S T et al., Mesenchymal stem cells in the Wharton's jelly ofthe human umbilical cord. Stem Cells,2004,22(7):1330-1337
    [45] Troyer D LWeiss M L, Wharton's jelly-derived cells are a primitive stromal cellpopulation. Stem Cells,2008,26(3):591-599
    [46] Raio L, Ghezzi F, Di Naro E et al., Sonographic measurement of the umbilical cord andfetal anthropometric parameters. Eur J Obstet Gynecol Reprod Biol,1999,83(2):131-135
    [47] Baksh D,Yao RTuan R S, Comparison of proliferative and multilineage differentiationpotential of human mesenchymal stem cells derived from umbilical cord and bonemarrow. Stem Cells,2007,25(6):1384-1392
    [48] Ennis J, Gotherstrom C, Le Blanc K et al., In vitro immunologic properties of humanumbilical cord perivascular cells. Cytotherapy,2008,10(2):174-181
    [49] Yoo K H, Jang I K, Lee M W et al., Comparison of immunomodulatory properties ofmesenchymal stem cells derived from adult human tissues. Cell Immunol,2009,259(2):150-156
    [50] Fu Y S, Cheng Y C, Lin M Y et al., Conversion of human umbilical cord mesenchymalstem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeuticapplication for Parkinsonism. Stem Cells,2006,24(1):115-124
    [51] Koh S H, Kim K S, Choi M R et al., Implantation of human umbilical cord-derivedmesenchymal stem cells as a neuroprotective therapy for ischemic stroke in rats. BrainRes,2008,1229(233-248
    [52] Weiss M L, Medicetty S, Bledsoe A R et al., Human umbilical cord matrix stem cells:preliminary characterization and effect of transplantation in a rodent model of Parkinson'sdisease. Stem Cells,2006,24(3):781-792
    [53] Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al., Adult bone marrow stromal cellsdifferentiate into neural cells in vitro. Exp Neurol,2000,164(2):247-256
    [54] Cuevas P, Carceller F, Dujovny M et al., Peripheral nerve regeneration by bone marrowstromal cells. Neurol Res,2002,24(7):634-638
    [55] Brohlin M, Mahay D, Novikov L N et al., Characterisation of human mesenchymal stemcells following differentiation into Schwann cell-like cells. Neurosci Res,2009,64(1):41-49
    [56] Lin W, Chen X, Wang X et al., Adult rat bone marrow stromal cells differentiate intoSchwann cell-like cells in vitro. In Vitro Cell Dev Biol Anim,2008,44(1-2):31-40
    [57] Dezawa M, Central and peripheral nerve regeneration by transplantation of Schwanncells and transdifferentiated bone marrow stromal cells. Anat Sci Int,2002,77(1):12-25
    [58] Dore J J, DeWitt J C, Setty N et al., Multiple signaling pathways converge to regulatebone-morphogenetic-protein-dependent glial gene expression. Dev Neurosci,2009,31(6):473-486
    [59] Dezawa M, Kanno H, Hoshino M et al., Specific induction of neuronal cells from bonemarrow stromal cells and application for autologous transplantation. J Clin Invest,2004,113(12):1701-1710
    [60] Chen Y,Teng F YTang B L, Coaxing bone marrow stromal mesenchymal stem cellstowards neuronal differentiation: progress and uncertainties. Cell Mol Life Sci,2006,63(14):1649-1657
    [61] Shea G K, Tsui A Y, Chan Y S et al., Bone marrow-derived Schwann cells achieve fatecommitment-a prerequisite for remyelination therapy. Exp Neurol,2010,224(2):448-458
    [62] Joseph N M, Mukouyama Y S, Mosher J T et al., Neural crest stem cells undergomultilineage differentiation in developing peripheral nerves to generate endoneurialfibroblasts in addition to Schwann cells. Development,2004,131(22):5599-5612
    [63] Wang J, Ding F, Gu Y et al., Bone marrow mesenchymal stem cells promote cellproliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262(7-15
    [64] Chen Q, Long Y, Yuan X et al., Protective effects of bone marrow stromal celltransplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res,2005,80(5):611-619
    [65] Chen X, Li Y, Wang L et al., Ischemic rat brain extracts induce human marrow stromalcell growth factor production. Neuropathology,2002,22(4):275-279
    [66] Ribeiro-Resende V T, Pimentel-Coelho P M, Mesentier-Louro L A et al., Trophic activityderived from bone marrow mononuclear cells increases peripheral nerve regeneration byacting on both neuronal and glial cell populations. Neuroscience,2009,159(2):540-549
    [67] Lopatina T, Kalinina N, Karagyaur M et al., Adipose-derived stem cells stimulateregeneration of peripheral nerves: BDNF secreted by these cells promotes nerve healingand axon growth de novo. PLoS One,2011,6(3):e17899
    [68] Batistatou AGreene L A, Aurintricarboxylic acid rescues PC12cells and sympatheticneurons from cell death caused by nerve growth factor deprivation: correlation withsuppression of endonuclease activity. J Cell Biol,1991,115(2):461-471
    [69] Inagaki N,Thoenen HLindholm D, TrkA tyrosine residues involved in NGF-inducedneurite outgrowth of PC12cells. Eur J Neurosci,1995,7(6):1125-1133
    [70] Honma Y, Araki T, Gianino S et al., Artemin is a vascular-derived neurotropic factor fordeveloping sympathetic neurons. Neuron,2002,35(2):267-282
    [71] Xu Y, Liu Z, Liu L et al., Neurospheres from rat adipose-derived stem cells could beinduced into functional Schwann cell-like cells in vitro. BMC Neurosci,2008,9(21
    [72] Garbay B, Heape A M, Sargueil F et al., Myelin synthesis in the peripheral nervous system.Prog Neurobiol,2000,61(3):267-304
    [73] Morgan L,Jessen K RMirsky R, The effects of cAMP on differentiation of culturedSchwann cells: progression from an early phenotype (04+) to a myelin phenotype (P0+,GFAP-, N-CAM-, NGF-receptor-) depends on growth inhibition. J Cell Biol,1991,112(3):457-467
    [74] Lavdas A A, Franceschini I, Dubois-Dalcq M et al., Schwann cells genetically engineeredto express PSA show enhanced migratory potential without impairment of theirmyelinating ability in vitro. Glia,2006,53(8):868-878
    [75] Xu Y, Liu L, Li Y et al., Myelin-forming ability of Schwann cell-like cells induced fromrat adipose-derived stem cells in vitro. Brain Res,2008,1239(49-55
    [76] Wang X, Luo E, Li Y et al., Schwann-like mesenchymal stem cells within vein graftfacilitate facial nerve regeneration and remyelination. Brain Res,2011,1383(71-80
    [77] Millesi H,Meissl GBerger A, The interfascicular nerve-grafting of the median and ulnarnerves. J Bone Joint Surg Am,1972,54(4):727-750
    [78] Vanderhooft E, Functional outcomes of nerve grafts for the upper and lower extremities.Hand Clin,2000,16(1):93-104, ix
    [79] Midha R M, MS, ed. Peripheral nerve suture techniques. Neurosurgical OperativeAtlas. Vol. AANA Publishing.1999: Chicago.261-269.
    [80] Battiston B, Geuna S, Ferrero M et al., Nerve repair by means of tubulization: literaturereview and personal clinical experience comparing biological and synthetic conduits forsensory nerve repair. Microsurgery,2005,25(4):258-267
    [81] Borkenhagen M, Stoll R C, Neuenschwander P et al., In vivo performance of a newbiodegradable polyester urethane system used as a nerve guidance channel. Biomaterials,1998,19(23):2155-2165
    [82] Krarup C, Archibald S JMadison R D, Factors that influence peripheral nerveregeneration: an electrophysiological study of the monkey median nerve. Ann Neurol,2002,51(1):69-81
    [83] Ding F, Wu J, Yang Y et al., Use of tissue-engineered nerve grafts consisting of achitosan/poly(lactic-co-glycolic acid)-based scaffold included with bone marrowmesenchymal cells for bridging50-mm dog sciatic nerve gaps. Tissue Eng Part A,2010,16(12):3779-3790
    [84] Sun F, Zhou K, Mi W J et al., Combined use of decellularized allogeneic artery conduitswith autologous transdifferentiated adipose-derived stem cells for facial nerveregeneration in rats. Biomaterials,2011,32(32):8118-8128
    [85] Fansa H, Keilhoff G, Wolf G et al., Tissue engineering of peripheral nerves: A comparisonof venous and acellular muscle grafts with cultured Schwann cells. Plast Reconstr Surg,2001,107(2):485-494; discussion495-486
    [86] Hudson T W,Liu S YSchmidt C E, Engineering an improved acellular nerve graft viaoptimized chemical processing. Tissue Eng,2004,10(9-10):1346-1358
    [87] Lundborg G, Dahlin L B, Danielsen N et al., Nerve regeneration in silicone chambers:influence of gap length and of distal stump components. Exp Neurol,1982,76(2):361-375
    [88] Di Summa P G, Kalbermatten D F, Pralong E et al., Long-term in vivo regeneration ofperipheral nerves through bioengineered nerve grafts. Neuroscience,2011,181(278-291
    [89] Walsh S, Biernaskie J, Kemp S W et al., Supplementation of acellular nerve grafts withskin derived precursor cells promotes peripheral nerve regeneration. Neuroscience,2009,164(3):1097-1107
    [90] Wang D, Liu X L, Zhu J K et al., Repairing large radial nerve defects by acellular nerveallografts seeded with autologous bone marrow stromal cells in a monkey model. JNeurotrauma,2010,27(10):1935-1943
    [91] Mohseny A BHogendoorn P C, Concise review: mesenchymal tumors: when stem cellsgo mad. Stem Cells,2011,29(3):397-403
    [92] Lapidot T,Dar AKollet O, How do stem cells find their way home? Blood,2005,106(6):1901-1910
    [93] Ji J F, He B P, Dheen S T et al., Interactions of chemokines and chemokine receptorsmediate the migration of mesenchymal stem cells to the impaired site in the brain afterhypoglossal nerve injury. Stem Cells,2004,22(3):415-427
    [94] Theiss H D, Vallaster M, Rischpler C et al., Dual stem cell therapy after myocardialinfarction acts specifically by enhanced homing via the SDF-1/CXCR4axis. Stem CellRes,2011,7(3):244-255
    [95] Otsuru S, Tamai K, Yamazaki T et al., Circulating bone marrow-derived osteoblastprogenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derivedfactor-1pathway. Stem Cells,2008,26(1):223-234
    [96] Lee C H, Cook J L, Mendelson A et al., Regeneration of the articular surface of the rabbitsynovial joint by cell homing: a proof of concept study. Lancet,2010,376(9739):440-448
    [97] Jackson J S, Golding J P, Chapon C et al., Homing of stem cells to sites of inflammatorybrain injury after intracerebral and intravenous administration: a longitudinal imagingstudy. Stem Cell Res Ther,2010,1(2):17
    [98] Patel J R, McCandless E E, Dorsey D et al., CXCR4promotes differentiation ofoligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A,2010,107(24):11062-11067
    [99] Coronel M F,Musolino P LVillar M J, Selective migration and engraftment of bonemarrow mesenchymal stem cells in rat lumbar dorsal root ganglia after sciatic nerveconstriction. Neurosci Lett,2006,405(1-2):5-9
    [100] Fandel T M, Albersen M, Lin G et al., Recruitment of Intracavernously InjectedAdipose-Derived Stem Cells to the Major Pelvic Ganglion Improves Erectile Function ina Rat Model of Cavernous Nerve Injury. Eur Urol,2011,
    [101] Zhao Z, Wang Y, Peng J et al., Repair of nerve defect with acellular nerve graftsupplemented by bone marrow stromal cells in mice. Microsurgery,2011,31(5):388-394
    [102] Gleichmann M, Gillen C, Czardybon M et al., Cloning and characterization ofSDF-1gamma, a novel SDF-1chemokine transcript with developmentally regulatedexpression in the nervous system. Eur J Neurosci,2000,12(6):1857-1866
    [1] Lago N,Rodriguez F J,Guzman M S et al. Effects of motor and sensory nerve transplants onamount and specificity of sciatic nerve regeneration. J Neurosci Res,2007,85(12):2800-2812
    [2] Kemp S W,Walsh S K,Zochodne D W et al. A novel method for establishing daily in vivoconcentration gradients of soluble nerve growth factor (NGF). J Neurosci Methods,2007,165(1):83-88
    [3] de Ruiter G C,Malessy M J,Alaid A O et al. Misdirection of regenerating motor axons afternerve injury and repair in the rat sciatic nerve model. Exp Neurol,2008,211(2):339-350
    [4]陈继营,卢世璧.神经生长因子和再生室收集液对培养神经组织的趋化作用.中华实验外科杂志,2000,17(2):169-170
    [5]陈继营,卢世璧.再生室收集液体中神经生长因子的浓度.中华手外科杂志,2000,16(1):46-48
    [6]陈继营,卢世璧.趋化性模型的建立及神经生长因子的趋化作用.中华显微外科杂志,2000,23(1):46-48
    [7]陈继营,卢世璧.再生室收集液及变性神经对共培养背根神经节的趋化作用.中华外科杂志,2000,38(3):208-211
    [8] Pittenger M F,Mackay A M,Beck S C et al. Multilineage potential of adult humanmesenchymal stem cells. Science,1999,284(5411):143-147
    [9] Blau H M,Brazelton T R,Weimann J M. The evolving concept of a stem cell: entity orfunction? Cell,2001,105(7):829-841
    [10] Toma C,Pittenger M F,Cahill K S et al. Human mesenchymal stem cells differentiate to acardiomyocyte phenotype in the adult murine heart. Circulation,2002,105(1):93-98
    [11] Saito T,Kuang J Q,Bittira B et al. Xenotransplant cardiac chimera: immune tolerance ofadult stem cells. Ann Thorac Surg,2002,74(1):19-24,24
    [12] Bartholomew A,Sturgeon C,Siatskas M et al. Mesenchymal stem cells suppress lymphocyteproliferation in vitro and prolong skin graft survival in vivo. Exp Hematol,2002,30(1):42-48
    [13] Honczarenko M,Le Y,Swierkowski M et al. Human bone marrow stromal cells express adistinct set of biologically functional chemokine receptors. Stem Cells,2006,24(4):1030-1041
    [14] Aiuti A,Webb I J,Bleul C et al. The chemokine SDF-1is a chemoattractant for humanCD34+hematopoietic progenitor cells and provides a new mechanism to explain themobilization of CD34+progenitors to peripheral blood. J Exp Med,1997,185(1):111-120
    [15] Muller A,Homey B,Soto H et al. Involvement of chemokine receptors in breast cancermetastasis. Nature,2001,410(6824):50-56
    [16] Yamaguchi J,Kusano K F,Masuo O et al. Stromal cell-derived factor-1effects on ex vivoexpanded endothelial progenitor cell recruitment for ischemic neovascularization.Circulation,2003,107(9):1322-1328
    [17] Broxmeyer H E,Kohli L,Kim C H et al. Stromal cell-derived factor-1/CXCL12directlyenhances survival/antiapoptosis of myeloid progenitor cells through CXCR4and G(alpha)iproteins and enhances engraftment of competitive, repopulating stem cells. J Leukoc Biol,2003,73(5):630-638
    [18] Dziembowska M,Tham T N,Lau P et al. A role for CXCR4signaling in survival andmigration of neural and oligodendrocyte precursors. Glia,2005,50(3):258-269
    [19] Jaleel M A,Tsai A C,Sarkar S et al. Stromal cell-derived factor-1(SDF-1) signallingregulates human placental trophoblast cell survival. Mol Hum Reprod,2004,10(12):901-909
    [20] Guo Y,Hangoc G,Bian H et al. SDF-1/CXCL12enhances survival and chemotaxis ofmurine embryonic stem cells and production of primitive and definitive hematopoieticprogenitor cells. Stem Cells,2005,23(9):1324-1332
    [21] Son B R,Marquez-Curtis L A,Kucia M et al. Migration of bone marrow and cord bloodmesenchymal stem cells in vitro is regulated by stromal-derived factor-1-CXCR4andhepatocyte growth factor-c-met axes and involves matrix metalloproteinases. Stem Cells,2006,24(5):1254-1264
    [22] Jackson J S,Golding J P,Chapon C et al. Homing of stem cells to sites of inflammatorybrain injury after intracerebral and intravenous administration: a longitudinal imaging study.Stem Cell Res Ther,2010,1(2):17
    [23] Lykissas M G,Batistatou A K,Charalabopoulos K A et al. The role of neurotrophins inaxonal growth, guidance, and regeneration. Curr Neurovasc Res,2007,4(2):143-151
    [24] Chen J,Li Y,Wang L et al. Therapeutic benefit of intracerebral transplantation of bonemarrow stromal cells after cerebral ischemia in rats. J Neurol Sci,2001,189(1-2):49-57
    [25] Zhao L R,Duan W M,Reyes M et al. Human bone marrow stem cells exhibit neuralphenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats.Exp Neurol,2002,174(1):11-20
    [26] Kurozumi K,Nakamura K,Tamiya T et al. BDNF gene-modified mesenchymal stem cellspromote functional recovery and reduce infarct size in the rat middle cerebral arteryocclusion model. Mol Ther,2004,9(2):189-197
    [27] Kopen G C,Prockop D J,Phinney D G. Marrow stromal cells migrate throughout forebrainand cerebellum, and they differentiate into astrocytes after injection into neonatal mousebrains. Proc Natl Acad Sci U S A,1999,96(19):10711-10716
    [28] Garbuzova-Davis S,Willing A E,Zigova T et al. Intravenous administration of humanumbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution,migration, and differentiation. J Hematother Stem Cell Res,2003,12(3):255-270
    [29] Allers C,Sierralta W D,Neubauer S et al. Dynamic of distribution of human bonemarrow-derived mesenchymal stem cells after transplantation into adult unconditioned mice.Transplantation,2004,78(4):503-508
    [30] Furuya T,Hashimoto M,Koda M et al. Treatment of rat spinal cord injury with a Rho-kinaseinhibitor and bone marrow stromal cell transplantation. Brain Res,2009,1295:192-202
    [31] Black I B,Woodbury D. Adult rat and human bone marrow stromal stem cells differentiateinto neurons. Blood Cells Mol Dis,2001,27(3):632-636
    [32]顾平,娄淑杰,王铭维等.骨髓基质细胞条件培养液对中脑神经干细胞分化的影响.第二军医大学学报,2003(3):295-297
    [33] Hill W D,Hess D C,Martin-Studdard A et al. SDF-1(CXCL12) is upregulated in theischemic penumbra following stroke: association with bone marrow cell homing to injury. JNeuropathol Exp Neurol,2004,63(1):84-96
    [34] Ni H T,Hu S,Sheng W S et al. High-level expression of functional chemokine receptorCXCR4on human neural precursor cells. Brain Res Dev Brain Res,2004,152(2):159-169
    [35] Patel J R, McCandless E E, Dorsey D et al. CXCR4promotes differentiation ofoligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A,2010,107(24):11062-11067
    [36] Lundborg G,Dahlin L,Danielsen N et al. Trophism, tropism, and specificity in nerveregeneration. J Reconstr Microsurg,1994,10(5):345-354
    [37] Zhao Q. Nerve regeneration in silicone tubes:a study of fibrin matrix formation andspecificity of muscle reinnervation. Lund,,1992,39
    [38] Gleichmann M,Gillen C,Czardybon M et al. Cloning and characterization of SDF-1gamma,a novel SDF-1chemokine transcript with developmentally regulated expression in thenervous system. Eur J Neurosci,2000,12(6):1857-1866
    [39] Patel J R, McCandless E E, Dorsey D et al. CXCR4promotes differentiation ofoligodendrocyte progenitors and remyelination. Proc Natl Acad Sci U S A,2010,107(24):11062-11067
    [40] Fandel T M, Albersen M, Lin G et al. Recruitment of intracavernously injectedadipose-derived stem cells to the major pelvic ganglion improves erectile function in a ratmodel of cavernous nerve injury. Eur Urol,2012,61(1):201-210
    [41]李涛,洪光祥,李进等. MSCs静脉移植对周围神经再生的作用.中华手外科杂志,2007,23(1):4-7
    [42] Zhao Z,Wang Y,Peng J et al. Repair of nerve defect with acellular nerve graft supplementedby bone marrow stromal cells in mice. Microsurgery,2011,31(5):388-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700