纳米碳纤维及其负载贵金属催化剂的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接乙醇和甲酸燃料电池作为小功率便携式电子设备未来潜在的动力源在近年来越来越引起人们的关注。目前,乙醇和甲酸氧化催化剂的低活性及高成本是阻碍直接乙醇和甲酸燃料电池商业化的主要因素。因此,开发高效的乙醇和甲酸氧化催化剂以提高催化活性从而降低贵金属的负载量具有重要意义。
     采用大比表面积的载体材料锚定贵金属催化剂是提高催化剂性能的常用方法。作为一种新型碳材料,纳米碳纤维(carbon nanofiber, CNF)因为其独特的电子及结构特性,例如高的电导率及中孔结构,作为催化剂载体材料具有巨大的潜力。而且,CNF的织构及结构特性,例如直径,边面原子与基面原子的比例等都是可调控的,这为调控负载贵金属在CNF上的沉积和CNF与负载贵金属的相互作用提供了途径。
     本研究的目的在于以CNF为催化剂载体,选择合适的合成方法开发高效的乙醇和甲酸氧化电催化剂。同时,也研究了CNF作为催化剂对氧的电催化还原性能。目前得到的主要研究结果如下:
     (1)采用电泳沉积技术制备了由相互缠绕的CNF形成的具有开孔结构的CNF膜。研究了采用脉冲电沉积法负载在CNF膜上的Pd纳米粒子对乙醇在碱性溶液中的电催化氧化性能。循环伏安测试表明,电泳沉积联合脉冲电沉积技术制备的这种新型催化剂对乙醇在KOH溶液中的电化学氧化具有良好的催化活性。这种高的催化活性可归因于高度分散在具有三维网状结构的CNF膜上的Pd纳米粒子可以为乙醇氧化提供大的可接触电化学活性面积及CNF膜的结构和电子特性。
     (2)分别采用传统的粉末工艺及电泳沉积联合脉冲电沉积的工艺制备了两种Pd/CNF修饰的玻碳(glassy carbon, GC)电极:Pd/CNF/GC-C和Pd/CNF/GC-E,研究了电极制备方法对电极的乙醇催化氧化性能的影响。场发射扫描电镜及高分辨透射电镜的表征结果表明Pd纳米粒子在两个电极中都比较均匀地分散在CNFs上,X-射线衍射结果表明Pd/CNF/GC-E电极中Pd纳米粒子的粒径要稍大于Pd/CNF/GC-C电极中Pd纳米粒子的粒径。循环伏安测试表明Pd/CNF/GC-E电极对乙醇在碱性溶液中的电化学活性要高于Pd/CNF/GC-C电极,尽管Pd/CNF/GC-C电极有较高的Pd载量及较小的粒径。Pd/CNF/GC-E电极比Pd/CNF/GC-C电极的性能要好,归因于Pd催化剂在前者的利用率比后者高,这通过对两个电极电化学活性面积的测试得到证实。另外,计时安培测试表明Pd/CNF/GC-E电极对乙醇电催化氧化的稳定性要好于Pd/CNF/GC-C电极。
     (3)制备了板式、鱼骨式和管式CNF负载的Pd电催化剂,考察了CNF的微结构对电催化剂催化乙醇氧化活性的影响。在同样的制备条件下,Pd纳米粒子在板式、鱼骨式和管式CNF上分别呈现均匀致密、松散随意和聚集的分散状态。这种分散状态的差异可能是CNF微结构的不同造成的。管式CNF表面暴露的主要是基面原子,其与负载Pd纳米粒子的相互作用较弱,在这种较弱的相互作用下Pd粒子倾向于聚集。板式和鱼骨式CNF表面暴露的主要是高能端面原子,其可以锚定负载的Pd纳米粒子从而防止Pd粒子的聚集。电化学测试的结果表明鱼骨式CNF负载的Pd纳米粒子对乙醇氧化具有最好的催化活性,而板式CNF负载的Pd纳米粒子对乙醇氧化具有最好的催化稳定性。
     (4)分别以柠檬酸钠和硼氢化钠为稳定剂和还原剂合成了CNF负载的Pd催化剂。发现通过改变合成溶液的pH值可以很方便地调节负载Pd纳米粒子的粒径和分布。随着合成溶液的pH值从3.2增至6.0,CNF负载的Pd纳米粒子在CNF上的分散变得越来越均匀,平均粒径从5.8 nm降至3.6 nm。然而,当合成溶液的pH值继续增至6.5时,CNF负载的Pd粒子的平均粒径增大,而且Pd/CNF催化剂中有PdO的生成。对Pd/CNF催化剂的电化学测试表明在溶液的pH值为6时合成的Pd/CNF催化剂对甲酸氧化具有最好的催化活性及稳定性,这可归因于其小的粒径及均匀的粒径分布。
     (5)分别以柠檬酸钠和硼氢化钠为稳定剂和还原剂合成了CNF负载的PdAu催化剂,XRD测试的结果表明合成溶液中四氢呋喃的添加有助于Au与Pd合金化程度的提高。电化学测试的结果表明在适当的Pd/Au质量比下,合金化程度高的PdAu/CNF催化剂对甲酸电催化氧化的活性及稳定性均高于合金化程度低的PdAu/CNF催化剂及Pd/CNF催化剂。PdAu/CNF催化剂对甲酸的催化活性受到多重因素的影响,只有当催化剂的粒径及合金化程度同时兼顾时PdAu/CNF催化剂才有较优的催化性能。
     (6)CNF在混酸(浓硫酸+浓硝酸)和氨水中的超声处理分别在CNF表面成功地引入了含氧和含氮基团。循环伏安测试的结果表明含氧基团的引入使得CNF对氧的电催化还原活性有显著提高,而含氮基团的引入使得CNF的氧电催化还原活性有进一步提高。鱼骨式CNF对氧的电催化还原性能要好于相应的管式CNF。以上的研究表明CNF的微结构及表面性质都对CNF的氧电催化还原活性具有影响,而后者的影响更显著。
Recently, interest in the development of direct ethanol and formic acid fuel cells has considerably increased because they are considered as promising future power sources for small portable electronics. However, the low activity and high cost of the ethanol and formic acid oxidation electrocatalysts are still major obstacles impeding the commercialization of direct ethanol and formic acid fuel cells. Therefore, it is of great importance to develop highly efficient ethanol and formic acid oxidation electrocatalysts which serve to improve the electrocatalytic activity and decrease the amount of noble metal catalyst required.
     The support materials with large surface area are often employed to anchor noble metal catalysts so as to improve the performance of catalysts. As a novel type of carbon material, carbon nanofibers (CNFs) are promising electrocatalyst supports due to their unique electrical and structural properties such as high electrical conductivity and well-developed mesopores. What's more, the texture and microstructure of CNFs, such as the diameter and the ratio of edge atoms to basal atoms, are tunable and controllable, which provides a means to adjust the deposition of and the interaction with the supported noble metals.
     The aim of this research has been to develop highly efficient electrocatalysts for ethanol and formic acid oxidation by using CNF as the catalyst support and following certain synthesis procedures. Also, CNF as the electrocatalyst for oxygen reduction is explored. The main results of the research achieved up to now are as follows:
     (1) A network-like CNF film with an open porous structure formed by the open space between entangled CNFs is fabricated by electrophoretic deposition technique. The performance of the CNF film as an electrocatalyst in the presence of pulse electrodeposited Pd nanoparticles for ethanol oxidation in alkaline media has been investigated. Cyclic voltammetric analyses show that the novel electrocatalyst prepared by electrophoretic deposition in conjunction with pulse electrodeposition technique has good electrocatalytic activity and stability for ethanol oxidation in KOH solution. This is believed to be due to the high dispersion of Pd nanoparticles on the CNF film with a three-dimensional network structure which can provide a large number of available Pd active sites for ethanol oxidation, and to the structural and electrical properties of the CNF film.
     (2) Two Pd/CNF modified glassy carbon (GC) electrodes, Pd/CNF/GC-C and Pd/CNF/GC-E, are fabricated by the conventional powder type method and by the electrophoretic deposition in conjunction with pulse electrodeposition method, respectively, and the effect of electrode fabrication methods on the electrode performance for ethanol oxidation has been investigated. Field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) show that Pd particles are uniformly dispersed on CNFs at each electrode and X-ray diffraction (XRD) reveals that the average Pd particle size of the Pd/CNF/GC-E electrode is slightly larger than that of the Pd/CNF/GC-C electrode. Cyclic voltammetric analyses show that the electrocatalytic activity of Pd/CNF/GC-E electrode is better than that of Pd/CNF/GC-C electrode for ethanol oxidation in alkaline media, although the Pd/CNF/GC-C electrode has higher Pd loading and smaller particle size. This is believed to be due to the higher utilization of Pd catalyst on Pd/CNF/GC-E electrode than on Pd/CNF/GC-C electrode, which is confirmed by the electrochemically active surface area measurements. In addition, chronopotentiometric analyses show the long-term operation stability of Pd/CNF/GC-E electrode is better than that of Pd/CNF/GC-C electrode.
     (3) Platelet CNF (p-CNF), fish-bone CNF (f-CNF) and tubular CNF (t-CNF) supported Pd electrocatalysts are prepared and the effect of CNF microstructure on the electrocatalytic activity of the electrocatalysts for ethanol oxidation has been investigated. Under the same preparation conditions, the Pd particles display a uniform dense distribution, a loose random distribution and an agglomerated distribution on p-CNFs, f-CNFs and t-CNFs, respectively. The diffrence in distrubution of Pd particles may result from the different microstrucutures of CNF supports. It is known that the exposed surfaces of t-CNFs are dominantly occupied by basal atoms, which have a weak interaction with the supported particles. Under the weak interation, particles tend to agglomerate with each other. While the exposed surfaces of p-CNFs and f-CNFs are dominantly occupied by energetic edge atoms, which may serve as anchoring sites for Pd particles and prevent the particles from agglomeration. The results of the electrochemical characterization also indicate that the microstructure of CNF significantly influences the electrocatalyst performance and f-CNF supported Pd electrocatalyst possesses the best electrocatalytic activity while p-CNF supported Pd electrocatalyst possesses the best electrocatalytic stability for ethanol oxidation in KOH solution.
     (4) CNF supported Pd nanoparticles are synthesized with sodium citrate and sodium borohydride served as the stabilizing and reducing agent, respectively. The size and distribution of the supported Pd nanoparticles can be readily controlled by adjusting the pH value of the synthesis solution. Analyses of the obtained Pd/CNF catalysts indicate that the supported Pd nanoparticles become more uniform in size and the average particle size is decreased from 5.8 to 3.6 nm with pH value of the synthesis solution increasing from 3.2 to 6.0. However, the particle size is increased and the PdO phase is formed in the synthesized Pd/CNF catalyst when the pH value is further increased to 6.5. Electrochemical characterization shows that the Pd/CNF catalyst synthesized at pH 6 exhibits the highest electrocatalytic activity and stability for formic acid oxidation due to its small particle size and uniform size distribution.
     (5) CNF supported PdAu nanoparticles are synthesized with sodium citrate and sodium borohydride served as the stabilizing and reducing agent, respectively. XRD characterization indicates that the alloying degree of the synthesized PdAu nanoparticles can be improved by the addition of tetrahydrofuran to the synthesis solution. The results of electrochemical characterization indicate that the CNF supported high-alloying PdAu catalyst with a proper mass ratio of Pd to Au possesses better electrocatalytic activity and stability for formic acid oxidation than either the CNF supported low-alloying PdAu catalyst or the CNF supported Pd alone catalyst. The electrocatalytic activity of PdAu/CNF catalyst for formic acid oxidation is affected by multiple factors, and the highly active PdAu/CNF catalyst can be obtained only by taking into account both the particle size and the alloying degree of the catalyst.
     (6) Oxygen-and nitrogen-containing functional groups are successfully introduced onto the CNF surface by sonochemical treatment in mix acids (concentrated sulfuric acid and nitric acid) and ammonium hydroxide, respectively. The cyclic voltammetric results show that the electrocatalytic activity of CNF for oxygen reduction is significantly improved by the introduction of oxygen-containing functional groups and is further improved by the additional introduction of nitrogen-containing functional groups. The f-CNF-based electrodes have higher electrocatalytic activity for oxygen reduction than their t-CNF-based counterparts. The above results indicate that the micro structure and the surface property of CNF both have an effect on the electrocatalytic activity of CNF for oxygen reduction, while the latter have a dominant effect.
引文
[1]衣宝廉.燃料电池---原理技术应用[M].北京:化学工业出版社,2003
    [2]毛宗强.燃料电池[M].北京:化学工业出版社,2005
    [3]Bianchini C, Shen P K. Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells [J]. Chemical Reviews.2009,109 (9):4183-4206
    [4]Antolini E. Catalysts for direct ethanol fuel cells [J]. Journal of Power Sources.2007, 170(1):1-12
    [5]Perez J M, Beden B, Hahn F, et al. "In situ" infrared reflectance spectroscopic study of the early stages of ethanol adsorption at a platinum electrode in acid medium [J]. Journal of electroanalytical chemistry and interfacial electrochemistry.1989,262 (1-2): 251-261
    [6]De Souza J P I, Queiroz S L, Bergamaski K, et al. Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes, a study using dems and in-situ FTIR techniques [J]. The Journal of Physical Chemistry B.2002,106 (38):9825-9830
    [7]陈国良,周志有,甄春花,等.Pt及其修饰电极上乙醇吸附和氧化的CV和EQCM研究[J].化学学报.2001,59(8):1253-1257
    [8]陈国良,陈声培,周志有,等.乙醇在碳载Pt纳米薄膜电极上吸附和氧化过程研究——ii.酸性介质中EQCM和原位FTIR反射光谱[J].电化学.2001,7(1):96-101
    [9]Willsau J, Heitbaum J. Elementary steps of ethanol oxidation on pt in sulfuric acid as evidenced by isotope labelling [J]. Journal of electroanalytical chemistry and interfacial electrochemistry.1985,194 (1):27-35
    [10]Iwasita T, Pastor E. A dems and ftir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum [J]. Electrochimica Acta.1994,39 (4):531-537
    [11]Bittins-Cattaneo B, Wilhelm S, Cattaneo E, et al. Intermediates and products of ethanol oxidation on platinum in acid solution [J]. Berichte der Bunsen-Gesellschaft für Physikalische Chemie.1988,92:1210-1218
    [12]Lamy C, Belgsir E, Leger J. Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC) [J]. Journal of Applied Electrochemistry.2001,31 (7):799-809
    [13]Tremiliosi-Filho G, Gonzalez E, Motheo A, et al. Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism [J]. Journal of Electroanalytical Chemistry.1998,444 (1):31-39
    [14]Wang Q, Sun G, Jiang L, et al. Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts:in situ FTIR spectroscopy and on-line DEMS studies [J]. Physical Chemistry Chemical Physics.2007,9 (21):2686-2696
    [15]Camara G, Iwasita T. Parallel pathways of ethanol oxidation:the effect of ethanol concentration [J]. Journal of Electroanalytical Chemistry.2005,578 (2):315-321
    [16]Camara G A, de Lima R B, Iwasita T. The influence of ptru atomic composition on the yields of ethanol oxidation:a study by in situ FTIR spectroscopy [J]. Journal of Electroanalytical Chemistry.2005,585 (1):128-131
    [17]钟新仙.有机物改性直接醇类燃料电池电催化剂研究[D].长沙:湖南大学,2008
    [18]Xu C, Cheng L, Shen P, et al. Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media [J]. Electrochemistry Communications.2007,9 (5):997-1001
    [19]Singh R N, Singh A, Anindita. Electrocatalytic activity of binary and ternary composite films of Pd, MWCNT, and Ni for ethanol electro-oxidation in alkaline solutions [J]. Carbon.2009,47 (1):271-278
    [20]Zhu L D, Zhao T S, Xu J B, et al. Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media [J]. Journal of Power Sources.2009, 187(1):80-84
    [21]Li Y S, Zhao T S, Liang Z X. Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells [J]. Journal of Power Sources.2009,187 (2):387-392
    [22]Xu C, Shen P. Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media [J]. Chemical Communications.2004,2004 (19):2238-2239
    [23]Xu C, Shen P, Ji X, et al. Enhanced activity for ethanol electrooxidation on Pt-MgO/C catalysts [J]. Electrochemistry Communications.2005,7 (12):1305-1308
    [24]Xu C, Liu Y, Yuan D. Pt and Pd supported on carbon microspheres for alcohol electrooxidation in alkaline media [J]. International Journal of Electrochemical Science.2007,2:674-680
    [25]Bagchi J, Bhattacharya S K. The effect of composition of Ni-supported Pt-Ru binary anode catalysts on ethanol oxidation for fuel cells [J]. Journal of Power Sources.2007, 163 (2):661-670
    [26]Shen P, Xu C. Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts [J]. Electrochemistry Communications.2006,8 (1):184-188
    [27]Xu C, Tian Z, Shen P, et al. Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media [J]. Electrochimica Acta. 2008,53 (5):2610-2618
    [28]Xu C, Shen P, Liu Y. Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide [J]. Journal of Power Sources.2007,164 (2):527-531
    [29]Chu D B, Wang J, Wang S X, et al. High activity of Pd-In2O3/CNTs electrocatalyst for electro-oxidation of ethanol [J]. Catalysis Communications.2009,10 (6):955-958
    [30]Zheng H T, Li Y, Chen S, et al. Effect of support on the activity of Pd electrocatalyst for ethanol oxidation [J]. Journal of Power Sources.2006,163 (1):371-375
    [31]Hu F, Shen P, Li Y, et al. Highly stable Pd-based catalytic nanoarchitectures for low temperature fuel cells [J]. Fuel Cells.2008,8 (6):429-435
    [32]Hu F, Ding F, Song S, et al. Pd electrocatalyst supported on carbonized TiO2 nanotube for ethanol oxidation [J]. Journal of Power Sources.2006,163 (1):415-419
    [33]Hu F P, Shen P K. Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst [J]. Journal of Power Sources.2007,173 (2): 877-881
    [34]Qin Y-H, Yang H-H, Zhang X-S, et al. Effect of carbon nanofibers microstructure on electrocatalytic activities of Pd electrocatalysts for ethanol oxidation in alkaline medium [J]. International Journal of Hydrogen Energy.2010,35 (15):7667-7674
    [35]Qin Y-H, Yang H-H, Zhang X-S, et al. Electrophoretic deposition of network-like carbon nanofibers as a palladium catalyst support for ethanol oxidation in alkaline media [J]. Carbon.2010,48 (12):3323-3329
    [36]Yan Z, Hu Z, Chen C, et al. Hollow carbon hemispheres supported Pd electrocatalyst at improved performance for alcohol oxidation [J]. Journal of Power Sources.2010:
    [37]Yan Z, Meng H, Shi L, et al. Synthesis of mesoporous hollow carbon hemispheres as highly efficient Pd electrocatalyst support for ethanol oxidation [J]. Electrochemistry Communications.2010,12 (5):689-692
    [38]Bambagioni V, Bianchini C, Filippi J, et al. Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials [J]. Chemsuschem.2009,2 (1):99-112
    [39]Xu C, Wang H, Shen P, et al. Highly ordered Pd nanowire arrays as effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells [J]. Advanced Materials.2007,19 (23):4256-4259
    [40]Nie M, Tang H, Wei Z, et al. Highly efficient AuPd-WC/C electrocatalyst for ethanol oxidation [J]. Electrochemistry Communications.2007,9 (9):2375-2379
    [41]Zheng H T, Chen S, Shen P K. Spontaneous formation of platinum particles on electrodeposited palladium [J]. Electrochemistry Communications.2007,9 (7): 1563-1566
    [42]Shen S Y, Zhao T S, Xu J B, et al. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells [J]. Journal of Power Sources.2010,195 (4):1001-1006
    [43]Maiyalagan T, Scott K. Performance of carbon nanofiber supported Pd-Ni catalysts for electro-oxidation of ethanol in alkaline medium [J]. Journal of Power Sources.2010, 195 (16):5246-5251
    [44]Bagchi J, Bhattacharya S K. Electrocatalytic activity of binary palladium ruthenium anode catalyst on Ni-support for ethanol alkaline fuel cells [J]. Transition Metal Chemistry.2007,32 (1):47-55
    [45]New york spot price, http://www.kitco.com/market/
    [46]Rice C, Ha S, Masel RI, et al. Direct formic acid fuel cells [J]. Journal of Power Sources.2002,111(1):83-89
    [47]Rice C, Ha S, Masel R I, et al. Catalysts for direct formic acid fuel cells [J]. Journal of Power Sources.2003,115 (2):229-235
    [48]Conway B, Dzieciuch M. New approaches to the study of electrochemical decarboxylation and the kolbe reaction:part Ⅱ. the model reaction with trifluoroacetate and comparisons with aqueous solution behavior [J]. Canadian Journal of Chemistry.1963,41 (1):38-54
    [49]Capon A, Parson R. The oxidation of formic acid at noble metal electrodes:I. Review of previous work [J]. Journal of Electroanalytical Chemistry.1973,44 (1):1-7
    [50]Capon A, Parsons R. The oxidation of formic acid on noble metal electrodes:IⅡ. A comparison of the behaviour of pure electrodes [J]. Journal of electroanalytical chemistry and interfacial electrochemistry.1973,44 (2):239-254
    [51]Capon A, Parsons R. The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes [J]. Journal of electroanalytical chemistry and interfacial electrochemistry.1973,45 (2):205-231
    [52]Chen Y, Heinen M, Jusys Z, et al. Kinetics and mechanism of the electrooxidation of formic acid-spectroelectrochemical studies in a flow cell [J]. Angewandte Chemie International Edition.2006,45 (6):981-985
    [53]Samjeske G, Miki A, Ye S, et al. Mechanistic study of electrocatalytic oxidation of formic acid at platinum in acidic solution by time-resolved surface-enhanced infrared absorption spectroscopy [J]. The Journal of Physical Chemistry B.2006,110 (33): 16559-16566
    [54]Samjeske G, Miki A, Ye S, et al. Potential oscillations in galvanostatic electrooxidation of formic acid on platinum:a time-resolved surface-enhanced infrared study [J]. The Journal of Physical Chemistry B.2005,109 (49):23509-23516
    [55]Chen Y, Heinen M, Jusys Z, et al. Bridge-bonded formate:active intermediate or spectator species in formic acid oxidation on a Pt film electrode? [J]. Langmuir.2006, 22(25):10399-10408
    [56]Arenz M, Stamenkovic V, Schmidt T, et al. The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces [J]. Physical Chemistry Chemical Physics. 2003,5 (19):4242-4251
    [57]Li H, Sun G, Jiang Q, et al. Synthesis of highly dispersed Pd/C electro-catalyst with high activity for formic acid oxidation [J]. Electrochemistry Communications.2007,9 (6):1410-1415
    [58]Waszczuk P, Barnard T M, Rice C, et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid [J]. Electrochemistry Communications.2002,4 (7): 599-603
    [59]Chen W, Kim J, Sun S, et al. Electro-oxidation of formic acid catalyzed by FePt nanoparticles [J]. Physical Chemistry Chemical Physics.2006,8 (23):2779-2786
    [60]Choi J-H, Jeong K-J, Dong Y, et al. Electro-oxidation of methanol and formic acid on PtRu and PtAu for direct liquid fuel cells [J]. Journal of Power Sources.2006,163 (1): 71-75
    [61]Gojkovic S L, Tripkovic A V, Stevanovic R M, et al. High activity of Pt4Mo alloy for the electrochemical oxidation of formic acid [J]. Langmuir.2007,23 (25): 12760-12764
    [62]Kristian N, Yan Y, Wang X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation [J]. Chem Commun.2007:
    [63]Yi Q, Chen A, Huang W, et al. Titanium-supported nanoporous bimetallic Pt-Ir electrocatalysts for formic acid oxidation [J]. Electrochemistry Communications.2007, 9(7):1513-1518
    [64]Lee H, Habas S E, Somorjai G A, et al. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid [J]. Journal of the American Chemical Society.2008,130 (16):5406-5407
    [65]Wang S, Kristian N, Jiang S, et al. Controlled deposition of Pt on Au nanorods and their catalytic activity towards formic acid oxidation [J]. Electrochemistry Communications.2008,10 (7):961-964
    [66]Xu J B, Zhao T S, Liang Z X. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells [J]. Journal of Power Sources.2008,185 (2):857-861
    [67]Zhang S, Shao Y, Yin G, et al. Electrostatic self-assembly of a Pt-around-Au nanocomposite with high activity towards formic acid oxidation [J]. Angewandte Chemie International Edition.2010,49 (12):2211-2214
    [68]Tateishi N, Yahikozawa K, Nishimura K, et al. Electrochemical properties of ultra-fine palladium particles for adsorption and absorption of hydrogen in an aqueous HClO4 solution [J]. Electrochimica Acta.1991,36 (7):1235-1240
    [69]Ha S, Larsen R, Masel R I. Performance characterization of Pd/C nanocatalyst for direct formic acid fuel cells [J]. Journal of Power Sources.2005,144 (1):28-34
    [70]Zhu Y, Khan Z, Masel R I. The behavior of palladium catalysts in direct formic acid fuel cells [J]. Journal of Power Sources.2005,139 (1-2):15-20
    [71]Jayashree R S, Spendelow J S, Yeom J, et al. Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells [J]. Electrochimica Acta.2005,50 (24):4674-4682
    [72]Liu Z, Hong L, Tham M P, et al. Nanostructured Pt/c and Pd/c catalysts for direct formic acid fuel cells [J]. Journal of Power Sources.2006,161 (2):831-835
    [73]Ge J, Xing W, Xue X, et al. Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell (DFAFC) application:from Pd hollow nanospheres to Pd nanoparticles [J]. The Journal of Physical Chemistry C.2007,111 (46):17305-17310
    [74]Wang S, Wang X, Jiang S. Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells [J]. Nanotechnology. 2008,19:455602
    [75]Yang S, Zhang X, Mi H, et al. Pd nanoparticles supported on functionalized multi-walled carbon nanotubes (MWCNTs) and electrooxidation for formic acid [J]. Journal of Power Sources.2008,175 (1):26-32
    [76]Zhou W, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid [J]. The Journal of Physical Chemistry C.2008,112 (10):3789-3793
    [77]Wang X-M, Xia Y-Y. Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation [J]. Electrochimica Acta.2009,54 (28): 7525-7530
    [78]Mazumder V, Sun S. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation [J]. J Am Chem Soc.2009,131 (13):4588-4589
    [79]Cheng N, Lv H, Wang W, et al. An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation [J]. Journal of Power Sources. 2010,195(21):7246-7249
    [80]Hu C, Bai Z, Yang L, et al. Preparation of high performance Pd catalysts supported on untreated multi-walled carbon nanotubes for formic acid oxidation [J]. Electrochimica Acta.2010,55 (20):6036-6041
    [81]Larsen R, Ha S, Zakzeski J, et al. Unusually active palladium-based catalysts for the electrooxidation of formic acid [J]. Journal of Power Sources.2006,157 (1):78-84
    [82]Wang R, Liao S, Ji S. High performance Pd-based catalysts for oxidation of formic acid [J]. Journal of Power Sources.2008,180 (1):205-208
    [83]Wang X, Xia Y. Electrocatalytic performance of PdCo-C catalyst for formic acid oxidation [J]. Electrochemistry Communications.2008,10(10):1644-1646
    [84]Morales-Acosta D, Ledesma-Garcia J, Godinez L A, et al. Development of Pd and Pd-Co catalysts supported on multi-walled carbon nanotubes for formic acid oxidation [J]. Journal of Power Sources.2010,195 (2):461-465
    [85]Zhou W, Lee J Y. Highly active core-shell Au@Pd catalyst for formic acid electrooxidation [J]. Electrochemistry Communications.2007,9 (7):1725-1729
    [86]Park I-S, Lee K-S, Yoo S J, et al. Electrocatalytic properties of Pd clusters on Au nanoparticles in formic acid electro-oxidation [J]. Electrochimica Acta.2010,55 (14): 4339-4345
    [87]Wang X, Tang Y, Gao Y, et al. Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell [J]. Journal of Power Sources.2008,175 (2):784-788
    [88]Zhang L, Tang Y, Bao J, et al. A carbon-supported Pd-P catalyst as the anodic catalyst in a direct formic acid fuel cell [J]. Journal of Power Sources.2006,162 (1):177-179
    [89]Yang G, Chen Y, Zhou Y, et al. Preparation of carbon supported Pd-P catalyst with high content of element phosphorus and its electrocatalytic performance for formic acid oxidation [J]. Electrochemistry Communications.2010,12 (3):492-495
    [90]Kruusenberg Ⅰ, Leis J, Arulepp M, et al. Oxygen reduction on carbon nanomaterial-modified glassy carbon electrodes in alkaline solution [J]. Journal of Solid State Electrochemistry.2010,14 (7):1269-1277
    [91]褚有群.碳基氧电极的制备及其在碱性溶液中的电化学性能研究[D].杭州:浙江工业大学,2004
    [92]查全性.电极过程动力学导论[M].北京:科学出版社,2002
    [93]Inaba M, Kinumoto T, Kiriake M, et al. Gas crossover and membrane degradation in polymer electrolyte fuel cells [J]. Electrochimica Acta.2006,51 (26):5746-5753
    [94]郑俊生.纳米碳纤维微结构的电催化效应:氧的阴极还原性能[D].上海:华东理工大学,2008
    [95]Raistrick I D. Electrode assembly for use in a solid polymer electrolyte fuel cell [P]. US:4876115,1989
    [96]Zeliger H I. Fuel cell performance as a function of catalyst surface area [J]. Journal of the Electrochemical Society.1967,114:144
    [97]Bett J, Lundquist J, Washington E, et al. Platinum crystallite size considerations for electrocatalytic oxygen reduction-I [J]. Electrochimica Acta.1973,18 (5):343-348
    [98]Vogel W, Baris J. The reduction of oxygen on platium black in acid electrolytes [J]. Electrochimica Acta.1977,22(11):1259-1263
    [99]Kunz H, Gruver G. The catalytic activity of platinum supported on carbon for electrochemical oxygen reduction in phosphoric acid [J]. Journal of the Electrochemical Society.1975,122:1279
    [100]Blurton K, Greenberg P, Oswin H, et al. The electrochemical activity of dispersed platinum [J]. Journal of the Electrochemical Society.1972,119:559
    [101]Peuckert M, Yoneda T, Dalla Betta R, et al. Oxygen reduction on small supported platinum particles [J]. Journal of the Electrochemical Society.1986,133:944
    [102]Ghosh T, Leonard B M, Zhou Q, et al. Pt alloy and intermetallic phases with V, Cr, Mn, Ni, and Cu:synthesis as nanomaterials and possible applications as fuel cell catalysts [J]. Chemistry of Materials.2010,22 (7):2190-2202
    [103]Mukerjee S, Srinivasan S. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells [J]. Journal of Electroanalytical Chemistry.1993,357 (1-2):201-224
    [104]Xiong L, Kannan A M, Manthiram A. Pt-M (M=Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells [J]. Electrochemistry Communications.2002,4 (11):898-903
    [105]李文震.直接甲醇燃料电池阴极碳载铂基催化剂的研究[D].大连:中科院大连化学物理研究所,2003
    [106]Fernandez J L, Raghuveer V, Manthiram A, et al. Pd-Ti and Pd-Co-Au electrocatalysts as a replacement for platinum for oxygen reduction in proton exchange membrane fuel cells [J]. Journal of the American Chemical Society.2005,127 (38):13100-13101
    [107]Raghuveer V, Manthiram A, Bard A. Pd-Co-Mo electrocatalyst for the oxygen reduction reaction in proton exchange membrane fuel cells [J]. The Journal of Physical Chemistry B.2005,109 (48):22909-22912
    [108]Wang Y, Balbuena P B. Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines [J]. The Journal of Physical Chemistry B. 2005,109(40):18902-18906
    [109]Fernandez J L, Walsh D A, Bard A J. Thermodynamic guidelines for the design of bimetallic catalysts for oxygen electroreduction and rapid screening by scanning electrochemical microscopy. M-Co (M:Pd, Ag, Au) [J]. Journal of the American Chemical Society.2005,127 (1):357-365
    [110]Jasinski R. A new fuel cell cathode catalyst [J]. Nature.1964,201 (4925):1212-1213
    [111]Vante N A, Tributsch H. Energy conversion catalysis using semiconducting transition metal cluster compounds [J].1986:
    [112]Solorza-Feria O, Ellmer K, Giersig M, et al. Novel low-temperature synthesis of semiconducting transition metal chalcogenide electrocatalyst for multielectron charge transfer:molecular oxygen reduction [J]. Electrochimica Acta.1994,39 (11-12): 1647-1653
    [113]Meadowcroft D. Low-cost oxygen electrode material [J]. Nature.1970,226 (5248): 847-848
    [114]Chakkaravarthy C, Waheed A, Udupa H. Zinc-air alkaline batteries-A review [J]. Journal of Power Sources.1981,6 (3):203-228
    [115]Gong K, Du F, Xia Z, et al. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction [J]. Science.2009,323 (5915):760-764
    [116]Qu L, Liu Y, Baek J-B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells [J]. ACS Nano.2010,4 (3): 1321-1326
    [117]Hughes T. Manufacture of carbon filaments [P]. US:405480,1889
    [118]Rodriguez N, Kim M, Baker R. Carbon nanofibers:a unique catalyst support medium [J]. The Journal of Physical Chemistry.1994,98 (50):13108-13111
    [119]Shaikhutdinov S, Avdeeva L, Novgorodov B, et al. Nickel catalysts supported on carbon nanofibers:structure and activity in methane decomposition [J]. Catalysis Letters.1997,47 (1):35-42
    [120]Chambers A, Park C, Baker R T K, et al. Hydrogen storage in graphite nanofibers [J]. The Journal of Physical Chemistry B.1998,102 (22):4253-4256
    [121]Zhang M, Zhao J H, Wu Z, et al. Large-area synthesis of carbon nanofiber films [J]. Journal of Materials Science Letters.1998,17 (24):2109-2111
    [122]Correia A, Gil A, Garcia N, et al. Atomic force microscopy study of vapor-grown carbon fibers:evidence of nanofiber structure [J]. Journal of Thermoplastic Composite Materials.1999,12 (5):373-387
    [123]de Jong K P, Geus J W. Carbon nanofibers:catalytic synthesis and applications [J]. Catalysis Reviews.2000,42 (4):481-510
    [124]Serp P, Corrias M, Kalck P. Carbon nanotubes and nanofibers in catalysis [J]. Applied Catalysis A:General.2003,253 (2):337-358
    [125]Banks C, Davies T, Wildgoose G, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes:edge-plane sites and tube ends are the reactive sites [J]. Chemical Communications.2005,2005 (7):829-841
    [126]Banks C, Compton R. New electrodes for old:From carbon nanotubes to edge plane pyrolytic graphite [J]. The Analyst.2006,131 (1):15-21
    [127]赵铁均.纳米碳纤维的微结构控制和调变及相关催化性能研究[D].上海:华东理工大学,2004
    [128]隋志军.纳米碳纤维在催化丙烷氧化脱氢中的研究[D].上海:华东理工大学,2005
    [129]Menon M, Andriotis A, Froudakis G. Curvature dependence of the metal catalyst atom interaction with carbon nanotubes walls [J]. Chemical Physics Letters.2000,320 (5-6): 425-434
    [130]Alcaide F, Alvarez G, Miguel O, et al. Pt supported on carbon nanofibers as electrocatalyst for low temperature polymer electrolyte membrane fuel cells [J]. Electrochemistry Communications.2009,11 (5):1081-1084
    [131]Lee K, Zhang J J, Wang H J, et al. Progress in the synthesis of carbon nanotube-and nanofiber-supported Pt electrocatalysts for PEM fuel cell catalysis [J]. Journal of Applied Electrochemistry.2006,36 (5):507-522
    [132]Zheng J-S, Zhang X-S, Li P, et al. Effect of carbon nanofiber micro structure on oxygen reduction activity of supported palladium electrocatalyst [J]. Electrochemistry Communications.2007,9 (5):895-900
    [133]Zheng J-S, Wang M-X, Zhang X-S, et al. Platinum/carbon nanofiber nanocomposite synthesized by electrophoretic deposition as electrocatalyst for oxygen reduction [J]. Journal of Power Sources.2008,175 (1):211-216
    [134]Steigerwalt E S, Deluga G A, Lukehart C M. Rapid preparation of Pt-Ru/graphitic carbon nanofiber nanocomposites as dmfc anode catalysts using microwave processing [J]. Journal of Nanoscience and Nanotechnology.2003,3 (3):247-251
    [135]Steigerwalt E S, Deluga G A, Cliffel D E, et al. A Pt-Ru/graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst [J]. The Journal of Physical Chemistry B.2001,105 (34):8097-8101
    [136]Li Z Z, Cui X L, Zhang X S, et al. Pt/carbon nanofiber nanocomposites as electrocatalysts for direct methanol fuel cells:prominent effects of carbon nanofiber nanostructures [J]. Journal of Nanoscience and Nanotechnology.2009,9 (4): 2316-2323
    [137]Bessel C A, Laubernds K, Rodriguez N M, et al. Graphite nanofibers as an electrode for fuel cell applications [J]. The Journal of Physical Chemistry B.2001,105 (6): 1115-1118
    [138]Steigerwalt E S, Deluga G A, Lukehart C M. Pt-Ru/carbon fiber nanocomposites: synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells. A search for exceptional performance [J]. The Journal of Physical Chemistry B. 2002,106 (4):760-766
    [139]Maiyalagan T. Pt-Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation [J]. Journal of Solid State Electrochemistry.2008,13 (10):1561-1566
    [140]周静红.应用于Ta加氢精制的Pd/CNF新型催化剂设计及性能研究[D].上海:华东理工大学,2007
    [141]Cropper M A J, Geiger S, Jollie D M. Fuel cells:a survey of current developments [J]. Journal of Power Sources.2004,131 (1-2):57-61
    [142]Prabhuram J, Manoharan R. Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid [J]. Journal of Power Sources. 1998,74(1):54-61
    [143]Lee C-H, Lee C-W, Kim D-I, et al. Characteristics of methanol oxidation on Pt-Ru catalysts supported by HOPG in sulfuric acid [J]. International Journal of Hydrogen Energy.2002,27 (4):445-450
    [144]Wang J, Xi J, Bai Y, et al. Structural designing of Pt-CeO2/CNTs for methanol electro-oxidation [J]. Journal of Power Sources.2007,164 (2):555-560
    [145]Savadogo O, Lee K, Oishi K, et al. New palladium alloys catalyst for the oxygen reduction reaction in an acid medium [J]. Electrochemistry Communications.2004,6 (2):105-109
    [146]Liu J, Ye J, Xu C, et al. Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti [J]. Electrochemistry Communications.2007,9 (9):2334-2339
    [147]Thompson S, Jordan L, Forsyth M. Platinum electrodeposition for polymer electrolyte membrane fuel cells [J]. Electrochimica Acta.2001,46 (10-11):1657-1663
    [148]Wang C, Waje M, Wang X, et al. Proton exchange membrane fuel cells with carbon nanotube based electrodes [J]. Nano Letters.2004,4 (2):345-348
    [149]Wu M-S, Huang C-Y, Jow J-J. Electrophoretic deposition of network-like carbon nanofiber as a conducting substrate for nanostructured nickel oxide electrode [J]. Electrochemistry Communications.2009,11 (4):779-782
    [150]Girishkumar G, Vinodgopal K, Kamat P V. Carbon nanostructures in portable fuel cells:single-walled carbon nanotube electrodes for methanol oxidation and oxygen reduction [J]. The Journal of Physical Chemistry B.2004,108 (52):19960-19966
    [151]Boccaccini A R, Cho J, Roether J A, et al. Electrophoretic deposition of carbon nanotubes [J]. Carbon.2006,44 (15):3149-3160
    [152]Pei S F, Du J H, Zeng Y, et al. The fabrication of a carbon nanotube transparent conductive film by electrophoretic deposition and hot-pressing transfer [J]. Nanotechnology.2009,20 (23):
    [153]Cho J, Konopka K, Rozniatowski K, et al. Characterisation of carbon nanotube films deposited by electrophoretic deposition [J]. Carbon.2009,47 (1):58-67
    [154]Choi K, Kim H, Lee T. Electrode fabrication for proton exchange membrane fuel cells by pulse electrodeposition [J]. Journal of Power Sources.1998,75 (2):230-235
    [155]周绍民.金属电沉积原理与研究方法[M].上海:上海科学技术出版社,1987
    [156]Zhou J-H, Sui Z-J, Li P, et al. Structural characterization of carbon nanofibers formed from different carbon-containing gases [J]. Carbon.2006,44 (15):3255-3262
    [157]Xing Y. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sonochemically-treated carbon nanotubes [J]. The Journal of Physical Chemistry B.2004,108 (50):19255-19259
    [158]Van Tassel J, Randall C. Potential for integration of electrophoretic deposition into electronic device manufacture; demonstrations using silver/palladium [J]. Journal of Materials Science.2004,39 (3):867-879
    [159]Jiang L, Gao L, Sun J. Production of aqueous colloidal dispersions of carbon nanotubes [J]. Journal of Colloid and Interface Science.2003,260 (1):89-94
    [160]Antolini E. Carbon supports for low-temperature fuel cell catalysts [J]. Applied Catalysis B:Environmental.2009,88 (1-2):1-24
    [161]Liu J, Rinzler A G, Dai H, et al. Fullerene pipes [J]. Science.1998,280 (5367): 1253-1256
    [162]Xing Y, Li L, Chusuei C C, et al. Sonochemical oxidation of multiwalled carbon nanotubes [J]. Langmuir.2005,21 (9):4185-4190
    [163]Hull R V, Li L, Xing Y, et al. Pt nanoparticle binding on functionalized multiwalled carbon nanotubes [J]. Chemistry of Materials.2006,18 (7):1780-1788
    [164]Li L, Xing Y. Pt-Ru nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts [J]. The Journal of Physical Chemistry C.2007,111 (6):2803-2808
    [165]Russ B, Talbot J. An analysis of the binder formation in electrophoretic deposition [J]. Journal of the Electrochemical Society.1998,145 (1253):
    [166]Du C, Pan N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition [J]. Nanotechnology.2006,17 (21):5314-5318
    [167]T. G. Ros A J v D, J. W. Geus, D. C. Koningsberger,. Modification of carbon nanofibres for the immobilization of metal complexes:a case study with rhodium and anthranilic acid [J]. Chemistry-A European Journal.2002,8 (13):2868-2878
    [168]Tijmen G. Ros A J v D, John W. Geus, Diederik C. Koningsberger,. Surface oxidation of carbon nanofibres [J]. Chemistry-A European Journal.2002,8 (5):1151-1162
    [169]Tijmen George Ros A J v D, John Wilhelm Geus, Diederik Christiaan Koningsberger,. Surface structure of untreated parallel and fishbone carbon nanofibres:an infrared study [J]. ChemPhysChem.2002,3 (2):209-214
    [170]Mawhinney D B, Naumenko V, Kuznetsova A, et al. Infrared spectral evidence for the etching of carbon nanotubes:ozone oxidation at 298 k [J]. Journal of the American Chemical Society.2000,122 (10):2383-2384
    [171]Shaffer M, Fan X, Windle A. Dispersion and packing of carbon nanotubes [J]. Carbon. 1998,36(11):1603-1612
    [172]Melanitis N, Tetlow P, Galiotis C. Characterization of pan-based carbon fibres with laser raman spectroscopy [J]. Journal of Materials Science.1996,31 (4):851-860
    [173]Pham-Huu C, Keller N, Ehret G, et al. Carbon nanofiber supported palladium catalyst for liquid-phase reactions:an active and selective catalyst for hydrogenation of cinnamaldehyde into hydrocinnamaldehyde [J]. Journal of Molecular Catalysis A: Chemical.2001,170(1-2):155-163
    [174]Liang Z X, Zhao T S, Xu J B, et al. Mechanism study of the ethanol oxidation reaction on palladium in alkaline media [J]. Electrochimica Acta.2009,54 (8):2203-2208
    [175]He Q, Chen W, Mukerjee S, et al. Carbon-supported PdM (M=Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media [J]. Journal of Power Sources.2009,187 (2):298-304
    [176]Lamy C, Lima A, LeRhun V, et al. Recent advances in the development of direct alcohol fuel cells (DAFC) [J]. Journal of Power Sources.2002,105 (2):283-296
    [177]Maiyalagan T. Silicotungstic acid stabilized Pt-Ru nanoparticles supported on carbon nanofibers electrodes for methanol oxidation [J]. International Journal of Hydrogen Energy.2009,34 (7):2874-2879
    [178]Kim H, Subramanian N P, Popov B N. Preparation of PEM fuel cell electrodes using pulse electrodeposition [J]. Journal of Power Sources.2004,138 (1-2):14-24
    [179]Girishkumar G, Rettker M, Underhile R, et al. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells [J]. Langmuir.2005,21 (18):8487-8494
    [180]Zhao T, Zhu Y, Li P, et al. Effect of active metal composition on the yield and microstructure of carbon nanofiber [J]. Chinese Journal of Catalysis.2004,25 (10): 829-833
    [181]Huang T, Jiang R, Zhang D, et al. Ac impedance investigation of plating potentials on the catalytic activities of Pt nanocatalysts for methanol electrooxidation [J]. Journal of Solid State Electrochemistry.2010,14 (1):101-107
    [182]Wang Z H, Li J, Dong X Y, et al. Ethanol oxidation on a nichrome-supported spherical platinum microparticle electrocatalyst prepared by electrodeposition [J]. International Journal of Hydrogen Energy.2008,33 (21):6143-6149
    [183]Hsieh C-T, Lin J-Y, Wei J-L. Deposition and electrochemical activity of Pt-based bimetallic nanocatalysts on carbon nanotube electrodes [J]. International Journal of Hydrogen Energy.2009,34 (2):685-693
    [184]Zheng J-S, Zhang X-S, Li P, et al. Microstructure effect of carbon nanofiber on electrocatalytic oxygen reduction reaction [J]. Catalysis Today.2008,131 (1-4): 270-277
    [185]Wang Z-B, Chu Y-Y, Shao A-F, et al. Electrochemical impedance studies of electrooxidation of methanol and formic acid on Pt/C catalyst in acid medium [J]. Journal of Power Sources.2009,190 (2):336-340
    [186]Wang J, Chen Y, Liu H, et al. Synthesis of pd nano wire networks by a simple template-free and surfactant-free method and their application in formic acid electrooxidation [J]. Electrochemistry Communications.2010,12 (2):219-222
    [187]Zhang X-G, Arikawa T, Murakami Y, et al. Electrocatalytic oxidation of formic acid on ultrafine palladium particles supported on a glassy carbon [J]. Electrochimica Acta. 1995,40(12):1889-1897
    [188]Wallnofer E, Perchthaler M, Hacker V, et al. Optimisation of carbon nanofiber based electrodes for polymer electrolyte membrane fuel cells prepared by a sedimentation method [J]. Journal of Power Sources.2009,188 (1):192-198
    [189]Shao Y, Liu J, Wang Y, et al. Novel catalyst support materials for PEM fuel cells: current status and future prospects [J]. Journal of Materials Chemistry.2009,19 (1): 46-59
    [190]Chen X, Hou Y, Wang H, et al. Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for suzuki coupling reactions [J]. The Journal of Physical Chemistry C.2008,112 (22):8172-8176
    [191]Li Y, Boone E, El-Sayed M A. Size effects of PVP-Pd nanoparticles on the catalytic suzuki reactions in aqueous solution [J]. Langmuir.2002,18 (12):4921-4925
    [192]Jana N, Gearheart L, Murphy C. Seeding growth for size control of 5-40 nm diameter gold nanoparticles [J]. Langmuir.2001,17 (22):6782-6786
    [193]Qin Y-H, Li H-C, Yang H-H, et al. Effect of electrode fabrication methods on the electrode performance for ethanol oxidation [J]. Journal of Power Sources.2011,196 (1):159-163
    [194]Turkevich J, Stevenson P, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold [J]. Discussions of the Faraday Society.1951,11:55-75
    [195]Turkevich J, Stevenson P, Hillier J. The formation of colloidal gold [J]. The Journal of Physical Chemistry.1953,57 (7):670-673
    [196]Turkevich J, Kim G. Palladium:Preparation and catalytic properties of particles of uniform size [J]. Science.1970,169 (3948):873
    [197]Turkevich J, Miner Jr R, Babenkova L. Further studies on the synthesis of finely divided platinum [J]. The Journal of Physical Chemistry.1986,90 (20):4765-4767
    [198]Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions [J]. Nature.1973,241 (105):20-22
    [199]Ji X, Song X, Li J, et al. Size control of gold nanocrystals in citrate reduction:the third role of citrate [J]. Journal of the American Chemical Society.2007,129 (45): 13939-13948
    [200]Henglein A, Giersig M. Reduction of Pt (Ⅱ) by H2:effects of citrate and NaOH and reaction mechanism [J]. The Journal of Physical Chemistry B.2000,104 (29): 6767-6772
    [201]Belin T, Epron F. Characterization methods of carbon nanotubes:a review [J]. Materials Science and Engineering B.2005,119 (2):105-118
    [202]Li W, Liang C, Zhou W, et al. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells [J]. The Journal of Physical Chemistry B.2003,107 (26):6292-6299
    [203]Elding L. Palladium(II) halide complexes. I. Stabilities and spectra of palladium(II) chloro and bromo aqua complexes [J]. Inorganica Chimica Acta.1972,6:647-651
    [204]van Middlesworth J M, Wood S A. The stability of palladium(II) hydroxide and hydroxy-chloride complexes:an experimental solubility study at 25-85℃ and 1 bar [J]. Geochimica et Cosmo chimica Acta.1999,63 (11-12):1751-1765
    [205]Qin Y-H, Yue J, Yang H-H, et al. Synthesis of highly dispersed and active palladium/carbon nanofiber catalyst for formic acid electrooxidation [J]. Journal of Power Sources.2011,196 (10):4609-4612
    [206]Guo J W, Zhao T S, Prabhuram J, et al. Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells [J]. Electrochimica Acta.2005,51 (4): 754-763
    [207]Silvestre-Albero J, Rupprechter G, Freund H-J. Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts:effect of Pd particle size [J]. Journal of Catalysis.2006,240 (1):58-65
    [208]Yudanov I V, Sahnoun R, Neyman K M, et al. Co adsorption on Pd nanoparticles: density functional and vibrational spectroscopy studies [J]. The Journal of Physical Chemistry B.2003,107 (1):255-264
    [209]Larsen R, Zakzeski J, Masel R. Unexpected activity of palladium on vanadia catalysts for formic acid electro-oxidation [J]. Electrochemical and Solid-State Letters.2005,8: A291
    [210]Wilcoxon J, Abrams B. Synthesis, structure and properties of metal nanoclusters [J]. Chemical Society Reviews.2006,35 (11):1162-1194
    [211]王新,唐亚文,陆天虹.不同状态Au对甲酸在Pd催化剂上电催化性能的影响[J].电化学.2008,14(001):6-8
    [212]Suo Y, Hsing IM. Synthesis of bimetallic pdau nanoparticles for formic acid oxidation [J]. Electrochimica Acta.2011,56 (5):2174-2183
    [213]Xu C, Tian Z, Chen Z, et al. Pd/C promoted by Au for 2-propanol electrooxidation in alkaline media [J]. Electrochemistry Communications.2008,10 (2):246-249
    [214]Chen Y, Tang Y, Liu C, et al. Room temperature preparation of carbon supported Pt-Ru catalysts [J]. Journal of Power Sources.2006,161 (1):470-473
    [215]Hammer B, N rskov J. Electronic factors determining the reactivity of metal surfaces [J]. Surface Science.1995,343 (3):211-220
    [216]Greeley J, Norskov J K. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys [J]. Surface Science.2005,592 (1-3): 104-111
    [217]Kruusenberg I, Alexeyeva N, Tammeveski K. The pH-dependence of oxygen reduction on multi-walled carbon nanotube modified glassy carbon electrodes [J]. Carbon.2009,47 (3):651-658
    [218]Banks C, Moore R, Davies T, et al. Investigation of modified basal plane pyrolytic graphite electrodes:Definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes [J]. Chemical Communications.2004,2004 (16):1804-1805
    [219]Wildgoose G, Banks C, Compton R. Metal nanoparticles and related materials supported on carbon nanotubes:methods and applications [J]. Small.2006,2 (2):
    [220]Gong K, Yan Y, Zhang M, et al. Electrochemistry and electroanalytical applications of carbon nanotubes:a review [J]. Analytical Sciences.2005,21 (12):1383-1393
    [221]Gong K, Chakrabarti S, Dai L. Electrochemistry at carbon nanotube electrodes:is the nanotube tip more active than the sidewall? [J]. Angewandte Chemie International Edition.2008,47 (29):5446-5450
    [222]Dumitrescu I, Wilson N R, Macpherson J V. Functionalizing single-walled carbon nanotube networks:effect on electrical and electrochemical properties [J]. The Journal of Physical Chemistry C.2007,111 (35):12944-12953
    [223]Holloway A, Wildgoose G, Compton R, et al. The influence of edge-plane defects and oxygen-containing surface groups on the voltammetry of acid-treated, annealed and "super-annealed" multiwalled carbon nanotubes [J]. Journal of Solid State Electrochemistry.2008,12 (10):1337-1348
    [224]Maldonado S, Morin S, Stevenson K J. Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping [J]. Carbon.2006,44 (8): 1429-1437
    [225]Wei D, Liu Y, Wang Y, et al. Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties [J]. Nano Letters.2009,9 (5):1752-1758
    [226]Ma X, Wang E. CN/carbon nanotube junctions synthesized by microwave chemical vapor deposition [J]. Applied Physics Letters.2001,78:978
    [227]Stephan O, Ajayan P, Colliex C, et al. Doping graphitic and carbon nanotube structures with boron and nitrogen [J]. Science.1994,266 (5191):1683
    [228]Zhang Y, Gu H, Suenaga K, et al. Heterogeneous growth of B-C-N nanotubes by laser ablation [J]. Chemical Physics Letters.1997,279 (5-6):264-269
    [229]Liang E, Ding P, Zhang H, et al. Synthesis and correlation study on the morphology and raman spectra of CNx nanotubes by thermal decomposition of ferrocene/ethylenediamine [J]. Diamond and Related Materials.2004,13 (1):69-73
    [230]Golberg D, Bando Y, Bourgeois L, et al. Large-scale synthesis and HRTEM analysis of single-walled B-and N-doped carbon nanotube bundles [J]. Carbon.2000,38 (14): 2017-2027
    [231]Suenaga K, Johansson M P, Hellgren N, et al. Carbon nitride nanotubulite densely-packed and well-aligned tubular nanostructures [J]. Chemical Physics Letters. 1999,300 (5-6):695-700
    [232]潘红,李忠,夏启斌,等.氨水改性活性炭纤维吸附苯乙烯的性能[J].功能材料.2008,39(002):324-327
    [233]丁良鑫,王士瑞,郑小龙,等.炭载体改性对炭载Pd催化剂电催化性能的影响[J].物理化学学报.2010,26(5):1311-1316
    [234]Toebes M L, van Dillen J A, de Jong K P. Synthesis of supported palladium catalysts [J]. Journal of Molecular Catalysis A:Chemical.2001,173 (1-2):75-98
    [235]Kundu S, Xia W, Busser W, et al. The formation of nitrogen-containing functional groups on carbon nanotube surfaces:a quantitative XPS and TPD study [J]. Physical Chemistry Chemical Physics.2010,12 (17):4351-4359
    [236]Neuhaeuser M, Hilgers H, Joeris P, et al. Raman spectroscopy measurements of DC-magnetron sputtered carbon nitride (a-C:N) thin films for magnetic hard disk coatings [J]. Diamond and Related Materials.2000,9 (8):1500-1505
    [237]Wei B, Zhang B, Johnson K. Nitrogen-induced modifications in microstructure and wear durability of ultrathin amorphous-carbon films [J]. Journal of Applied Physics. 1998,83 (5):2491-2499
    [238]Bard A, Faulkner L. Electrochemical methods:fundamentals and applications [M]. New York:John Wiley & Sons Inc.,2001
    [239]Xu J, Huang W, McCreery R L. Isotope and surface preparation effects on alkaline dioxygen reduction at carbon electrodes [J]. Journal of Electroanalytical Chemistry. 1996,410 (2):235-242
    [240]Jurmann G, Tammeveski K. Electroreduction of oxygen on multi-walled carbon nanotubes modified highly oriented pyrolytic graphite electrodes in alkaline solution [J]. Journal of Electroanalytical Chemistry.2006,597 (2):119-126
    [241]Zhang M, Yan Y, Gong K, et al. Electrostatic layer-by-layer assembled carbon nanotube multilayer film and its electrocatalytic activity for O2 reduction [J]. Langmuir.2004,20 (20):8781-8785

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700