若干种燃料电池催化剂的浸渍法制备及相关电催化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
燃料电池具有高效、清洁等优点,被认为是未来的备选能源之一。以氢为燃料的质子交换膜燃料电池(PEMFC)已经达到相当高的技术水平,但氢气储运的困难和安全问题成为其商品化的主要障碍。研究者们在企图解决这一问题的同时,开始寻求新的燃料,直接甲醇燃料电池(DMFC)和直接甲酸燃料电池(DFAFC)成为研究的热点。Pt/C、PtRu/C和Pd/C是上述三种燃料电池最常用的催化剂。无论何种燃料电池,都需要适于规模生产的高效电催化剂的制备方法。
     本论文工作对最适合批量生产的浸渍法进行较全面的研究,探究控制催化剂品质的关键,最终获得了高分散的PtRu/C、Pt/C和Pd/C催化剂,并对其物理化学性质及相关电催化进行了研究。主要的工作内容与结论如下:
     1、高分散、高载量PtRu/C催化剂的浸渍法制备及表征
     发展了一种简单的易实现规模化制备的催化剂合成方法,整个过程由“浸渍-干燥-氢气还原”三个步骤构成,无需过滤洗涤。即便采用含Cl-前驱体,也可获得分散度很高的金属载量为60wt%的PtRu/C催化剂。TEM分析表明,所制60wt%PtRu/C的金属粒径为1.5±0.5nm;通过EDAX, XRD, XPS和TGA/DTA等分析发现,制备的PtRu/C催化剂中含PtRu合金与非晶态RuOxHy。电催化研究表明,所制PtRu/C对甲醇氧化具有优越的性能,可能与催化剂中含非晶态RuOxHy有关。
     2、PtRu/C催化剂的热重分析
     热重分析(TGA)是文献中用于指认PtRu催化剂中RuOxHy组分的常用实验方法,通常将150-600℃下的催化剂失重归结为RuOxHy的失水。我们通过TG-FTIR联用分析发现,在上述温度区间催化剂失重的主要产物是C02,没有发现可以检测的H2O。因此此温度范围内催化剂的失重应该归因于碳载体在PtRu催化下的氧化,而且氧的来源主要是催化剂中Pt表面的氧与氧化钌中的氧。此研究对PtRu/C催化剂的热重行为产生了不同于文献的认识,TGA并非分析PtRu/C催化剂中非合金钌组分的有效方法。
     3、高分散Pt/C催化剂的浸渍法制备
     对Pt/C催化剂浸渍法制备过程中的关键实验参数进行探究,发现获得高分散Pt/C催化剂的关键因素包括:(1)采用大比表面积的载体有利于获得小粒径的Pt/C。(2)热浸渍和超声结合搅拌是我们的方法与传统浸渍法的重要区别,也是获得高分散Pt/C的关键。(3)氢气还原的温度须控制在80-150℃之间,过高的还原温度导致Pt粒径增大。(4)浸渍后凝胶态的含水量对Pt粒径有影响,水碳质量比在5-20范围内,催化剂的粒径为2.5nm左右。
     4、Pd/C催化剂的浸渍法制备
     以PdCl2为前体,采用浸渍法制备Pd/C催化剂很难获得高的分散度。研究发现,Cl-的存在和还原气体的种类是影响Pd/C粒径的两大因素。采用Pd(NO3)2为前体,并以Ar+H2混合气或CO代替纯氢气作为还原剂,可以显著提高Pd/C催化剂的分散度。优化条件下制得的20wt%Pd/C的Pd粒径为3.5nm,10wt%Pd/C的Pd粒径为2.7nm。
     5、Pd/C催化剂的电催化粒度效应研究
     对粒径分别为2.7、3.5、4.7、6.1、8.1nm的Pd/C催化剂进行氢氧化、氧还原、甲酸氧化等反应的粒度效应研究。结果表明,Pd粒径越小,催化剂与氧原子结合力越强,氧还原反应动力电流密度随着粒径增大而提高。对于氢氧化反应,随着粒径增加,反应交换电流密度增大;4.7nm Pd/C的氢氧化交换电流密度为0.21mAcm-2,约为Pt的百分之一。对于甲酸氧化反应,4.7nm的Pd/C催化剂具有最高的质量比活性和面积比活性。
Fuel cells are an efficient, green power source. The hydrogen powered proton-exchange-membrane fuel cells (PEMFC) has seen great advance in recent decades. However, the commercialization of PEMFC is still hampered by a few very challenging factors, among which is the storage and transportation of hydrogen. As an alternative resolution, direct methanol fuel cells (DMFC) and direct formic acid fuel cells (DFAFC) are developed to make use of the hydrogen-rich liquid fuels. In these types of fuel cells, the catalysts are somewhat different, involving Pt/C, PtRu/C, and Pd/C, but the synthetic method for catalysts may share common features. In particular, a simple and efficient method suitable for massive production is highly demanded.
     This thesis is designed to be an in-depth study of the impregnation preparation for PtRu/C, Pt/C, and Pd/C catalysts. Controlling parameters of this method have been systematically investigated, with rich characterizations on the resulting highly-dispersed catalysts. Relevant electrocatalytic processes, such as the methanol oxidation reaction (MOR), oxygen reduction reaction (ORR), hydrogen oxidation reaction (HOR), and formic-acid oxidation reaction (FAOR), are also studied. The main results are summarized as follows: 1. Preparation and characterization of highly dispersed PtRu/C catalysts
     An improved impregnation method was developed, involving three steps: impregnation, drying, and hydrogen reduction. According to HRTEM analyses, the resulting 60 wt% PtRu/C catalysts are highly dispersed with particle size of 1.5±0.5 nm. Further EDAX, XRD, XPS, and TGA/DTA characterizations show that in addition to PtRu alloy, the catalyst also contains amorphous RuOxHy, which turns out to be a key factor for the promotion in the catalytic activity (CA) toward the MOR. 2. Thermogravimetric analysis of PtRu/C catalysts
     The thermogravimetric analysis (TGA) was a commonly-adopted method to identify the presence of RuOxHy in PtRu/C catalysts; the weight loss between 150℃and 600℃has been assigned to the loss of structural water of RuOxHy. We have combined TGA and FTIR to unravel the origin of the weight loss within this temperature range, and found that the resulting gas was CO2 rather than H2O, which can only be attributed to the oxidation of the carbon support by the oxygen species on Pt surface or in the amorphous ruthenium component. This finding is opposite to the observation in previous reports, and points out that TGA may not be an adequate method for analyzing the amorphous ruthenium component in PtRu/C catalysts.
     3. Optimized preparation of highly dispersed Pt/C catalysts
     With systematic optimization on the impregnation method, we find the keys to achieve highly dispersed Pt/C catalysts, which include:(1) Large specific surface area of the carbon support is necessary. (2) The hot impregnation and the sonication are featured procedures of our method to achieve the high dispersion. (3) The temperature of hydrogen reduction is better to be 80-150℃, above which larger Pt particles will result. (4) The water content in the gel obtained from the impregnation step is a key factor; a water/carbon ratio of 5-20 results in a Pt particle size of ca.2.5 nm.
     4. Preparation of highly dispersed Pd/C catalysts
     We find that the precursor and the reducing atmosphere are key factors for attaining highly dispersed Pd/C catalysts. Using Pd(NO3)2, rather than PdCl2, as the precursor and Ar+H2 gas or CO instead of pure H2 as the reductant, the particle size of Pd can be 3.5nm and 2.7nm in 20wt% Pd/C and 10wt% Pd/C, respectively.
     5. Study on the particle size effects of Pd/C catalysts
     Pd/C catalysts with Pd particle size of 2.7,3.5,4.7,6.1, and 8.1 nm were used to study the particle size effects on fuel cell reactions. It was found that, the smaller the particle size of Pd, the stronger the adsorption of the Oads, and the lower the CA toward the ORR. For the HOR, larger Pd particles will give higher exchange current density (i0); the i0 on 4.7nm Pd/C is 0.21 mAcm-2, one hundredth of that of Pt. For the FAOR,4.7nm Pd/C exhibits the highest mass-specific and surface-specific CA.
引文
[1]衣宝廉,燃料电池—原理技术应用,北京,化学工业出版社,2003,6.
    [2]袁权,能源化学进展,北京:化学工业出版社,2005,113.
    [3]林维明,燃料电池系统,北京,化学工业出版社,1996,1.
    [4]EG&G. Technical Service Inc.. Science application international service, Fuel Cell Handbook (Sixth Edition), U.S.Department of energy (DOE),2002,11
    [5]王明涌,碳纳米管基直接醇类燃料电池电极研究,湖南大学硕士学位论文,湖南大学,2005
    [6]Carrette L, Friedrich K A, Stimming U, Fuel cells-fundamentals and applications, Fuel cell, 2001,1,5.
    [7]Chunshan S. Fuel processing for low-temperature and high-temperature fuel cells challenges, and opportunities for sustainable development in the 21st century, Catalysis Today,2002,77, 17.
    [8]Urban P M, Funke A, Muller J T, et al. Catalytic processes in solid polymer electrolyte fuel cell systems, Applied Catalysis A:General,2001,211,459.
    [9]刘建国,衣宝廉,魏昭彬.直接甲醇燃料电池的原理、进展和主要技术问题.电源技术2001,25,363.
    [10]K. C. Lauzze, D. J. Chmielewski, Power control of a polymer electrolyte membrane fuel cell, Ind. Eng. Chem. Res.,2006,45,4661.
    [11]R. Dillon, S. Srinivasan, A. S. Arico, et al. International Activities in DMFC R&D:Status of Technologies and Potential Applications, J. Power Sources.2004,127,112.
    [12]D. Kim, E. A. Cho, S. A.Hong, et al. Recent progress in passive direct methanol fuel cells at KIST,J. Power Sources,2004,130,172.
    [13]P. Agnolucci, Economics and market prospects of portable fuel cell, International Journal of Hydrogen Energy,2007,32,4319.
    [14]S. Wasmus, A. Kuver. Methanol Oxidation and direct methanol fuel cells:a selective review, J. Electroanal. Chem.,1999,461,14.
    [15]S. K. Kamarudin, W. R. W. Daud, S. L. Ho, et al. Overview on the challenges and developments of micro-direct methanol fuel cells, (DMFC), J. Power Sources.,2007,163, 743.
    [16]Young-Min Kim, Kyung-Won Park et al., A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC, Electrochemistry Communications,2003,5,571.
    [17]Ai Hua Tian, Ji-Young Kim, Jin Yi Shi et al., Surface-modified Nafion membrane by oleylamine-stabilized Pd nanoparticles for DMFC applications, Journal of Power Sources, 2007,167,302.
    [18]Ha S, Larsen R, Zhu Y, et al., Direct formic acid fuel cells with 600 mA-cm-2 at 0.4 V and 22 ℃, Fuel Cells,2004,4,337.
    [19]C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, J. Power Sources,2002,111,83.
    [20]Hal, Z. Dunbar, R.I. Masel, Characterization of a high performing passive direct formic acid fuel cell, J. Power Sources,2006,158,129.
    [21]Young-Woo Rhee, Su Y Ha, Richard I Masel, Crossover of formic acid through Nafion membranes, Journal of Power Sources,2003,117,35.
    [22]唐道平,碱性聚合物电解质燃料电池阳极Ni基催化剂研究,武汉大学博士论文,2009
    [23]H. I. Zeliger, Fuel cell performance as a function of catalyst surface area, J. Electrochem. Soc. 1967,114,144.
    [24]J. Bett, J. Lundquist, E. Washington, P. Stoneheart. Platinum crystallite size considerations for electrocatalytic oxygen reduction-I, Electrochimica acta,1973,18,343.
    [25]W. M. Vogel, J. M. Baris., The reduction of oxygen on platium black in acid electrolytes. Electrochimica Acta,1977,22,1259.
    [26]K. F. Bluton, P. Greenburg, G. H. Oswin, D. R. Rutt., The Electrochemical activity of dispersed platinum, J. Electrochem. Soc.,1972,119:489.
    [27]L. J. Brogeli. The influence of platinum crystallite size on the electrochemical reduction of oxygen in phosphoric acid. Electrochimica Acta,1978,23,489.
    [28]M. Peuckert, T. Yoneda, R. A. Dalla Betta, M. Bounart, Oxygen reduction on small supported platinum particles, J. Electrochem. Soc.,1986,133,944.
    [29]U. V. M. Jalan. Noble metal/vanadium alloy catalyst and method for making, S Patent,1980, 4,202,934.
    [30]D. A. Landsman, F. J. Luczak, Noble metal-chromium alloy catalysts and electrochemical cell, U. S. Patent,1982,4,316,944.
    [31]Qinggang He, Sanjeev Mukerjee, Electrocatalysis of oxygen reduction on carbon-supported PtCo catalysts prepared by water-in-oil micro-emulsion, Electrochimica Acta,2010,55, 1709.
    [32]M.A. Garcia-Contreras, S.M. Ferna'ndez-Valverde, J.R. Vargas-Garc, Pt, PtCo and PtNi electrocatalysts prepared by mechanical alloying for the oxygen reduction reaction in 0.5 M H2SO4, International journal of hydrogen energy,2008,33,6672.
    [33]N. Travitsky, T. Ripenbein, D. Golodnitsky, Y. Rosenberg, Pt-, PtNi-and PtCo-supported catalysts for oxygen reduction in PEM fuel cells, Journal of Power Sources,2006,161,782.
    [34]Jing-Shan Do, Ya-Ting Chen, Mei-Hua Lee, Effect of thermal annealing on the properties of Corich core-Ptrich shell/C oxygen reduction electrocatalyst, Journal of Power Sources,2007,172, 623.
    [35]S. Mukerjee, S. Srinvasan. Enhanced electrocatalysis of oxygen reduction on platinum alloys in proton exchange membrane fuel cells, J. Electroanal. Chem.,1993,357:201.
    [36]魏子栋,郭鹤同,唐致远,氧在Pt-Fe-Co/C合金催化剂上的还原,催化学报,1995,16,:141.
    [37]G. Tamizhmani, G. A. Capuano, Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel cells, J. Electrochem. Soc., 1994,141,968.
    [38]T. Ioroi, K. Yasuda, Platinum-Iridium alloys as oxygen reduction electrocatalysts for polymer electrolyte fuel cells, J. Electrochem.. Soc.,2005,152,1917.
    [39]Capenter M. K., Robert S. Conell, Dennis A Corrigan, The electrochromic properties of hydrous nickl oxide, Solar Energy Materials,1987,16,333.
    [40]Jusys Z, Behm RJ, Methanol oxidation on a carbon-supported Pt fuel cell catalyst-A kinetic and mechanistic study by differential electrochemical mass spectrometry, J. Phys. Chem. B 2001,105,10874.
    [41]Hogarth, M., Ralph, T., Catalysis for low temperature fuel cells, Platinum Metals Rev.2002, 46,146.
    [42]Wasmus, S., Kuver, A., Methanol oxidation and direct methanol fuel cells:a selective review J. Elctroanal. Chem,1999,461,14.
    [43]Lamy, C., Leger, J.-M. Interfacial Electrochemistry ed. by A. Wieckowski, Marcel Dekker, New York,1999,48,88.
    [44]Arico, A., Srinivasan, S., Antonucci, V., DMFCs:From fundamental aspects to technology development, Fuel Cells,2001,1,133.
    [45]McNicol, B., Rand, D., Williams, K., Direct methanol-air fuel cells for road transportation, J. Power Sources,1999,83,15.
    [46]K. L. Ley, R. X. Liu, C. Pu, Q. B. Fan, N. Leyarovska, C. Segre, E. S. Smotkin, Methanol Oxidation on Single-Phase Pt-Ru-Os Ternary Alloys, J. Electrochem. Soc.,1997,44,1543.
    [47]M. P. Hogarth, G. A. Hards, Direct Methanol Fuel Cells Technological Advances and Further Requirements, Platinum Metals Rev.,1996,40,150.
    [48]K. Franaszczuk, J. Sobkowski, The Influence of Ruthenium Adatoms on the Oxidation of Chemisorbed Species of Methanol on a Platinum Electrode by a Radionchemical Method, J. Electroanal. Chem.,1992,327,235.
    [49]M. Watanabe, S. Motoo, Electrocatalysis by Ad-atoms. Part III. Enhancement of the Oxidation of Carbon Monoxide on Platinum by Ruthenium Ad-atoms, J. Electroanal. Chem., 1975,60,275.
    [50]A. S. Arico, S. Srinivasan, V. Antonucci, DMFCs:From Fundamental Aspects to Technology Development, Fuel Cells,2001,1,1.
    [51]S. Wasmus, A. Kuver, Methanol oxidation and direct methanol fuel cells:a selective review, J. Electroanal. Chem,1999,461,14.
    [52]T. Frelink, W. Visscher, A. P. Cox, J. Van Veen, Ellipsometry and DEMS study of the electrooxidation of methanol at Pt and Ru-and Sn-promoted Pt, Electrochim. Acta,1995,40, 1537.
    [53]H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys, J. Phys. Chem.,1993,97,12020.
    [54]M. Watanabe, M. Uchida, S. Motoo, Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol, J. Electroanal. Chem.,1987,229,395.
    [55]T. Iwasita, H. Hoster, A. John-Anacker, W. F. Lin, W. Vielstich, Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution, Langmuir,2000,16, 522.
    [56]Iwasita T, NartF C, Vielstieh W., FTIR study of the catalytie activity of a 85:15 Pt-Ru alloy for methanol oxidation, Ber. Bunsenges. Phys. Chem.,1990,94,1030.
    [57]MukerjeeS, McbreenJ., Proc 2nd Intrernational Symp. On New Materials for Fuel Cells and Mordern Battery Systems, Montreal, Canada:O Savadoga, Prroberga,1977,548.
    [58]Gasteiger H A, Markovic N, Markovic N, Ross P N, Jr, Cairns E J,Temperature-department methanol Electro-oxidation on Well-characterized Pt-Ru alloys, J. Eleetrochem. Soc.,1994, 141,1795.
    [59]J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How to Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys!, J. Phys. Chem. B,2000,104,9772.
    [60]Rolison D. R., Catalytic nanoarchitectures-importance of nothing and the unimportance of periodicity, Science,2003,299,1698.
    [61]Rolison D. R., P. L. Hagans, K. E. Swider, J. W. Long, Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts:The importance of mixed electron/proton conductivity, Langmuir,1999,15,774.
    [62]E. V. Spinace, A. O. Neto, M. Linardi, Electro-oxidation of methanol and ethanol using PtRu/C electrocatalysts prepared by spontaneous deposition of platinum on carbon-supported ruthenium nanoparticles, J. Power Sources,2004,129,121.
    [63]Watanabe M, Furuuehi Y, Motoo S., Electroyatalysis by Ad-atoms:Part Ⅷ Preparation of Ad-electrodes with Tin Ad-atoms for methanol, formaldehyde and formic acid fuel cells, J. Electroanal. Chem.,1985,19,367.
    [64]Janssen M M P, Moolhuysen J, Platinum-tin Catalysts for Methanol Fuel Cells PrePared by A Novel Immersion Technique by Electrocodeposition and by Alloying, Electrochim Aeta,1976, 21,861.
    [65]Bittins-Csttaneo B. Iwasita T. Eletrocatalysis of methanol oxidation by adsorbed tin on Platinum, J. Electroanal. Chem.,1987,238,151.
    [66]Frelink T, Visscher W, Van Veen J A R., Effect of Sn on Pt/C catalysts for the Methanol electrooxidation, Eletrochimica Acta.,1994,39,1871.
    [67]Abdel Rahim M A, Khaalil M W, Hassan H B, Platinum-tin alloy eletrodes for direct methanol fuel cells, J. Appl. Electrochem.,2000,30,1151.
    [68]Campbell S A, Parsons R, Effect of Bi and Sn ad-atoms on Formic acid and oxidation at well defined Platinum surfaces, J. Chem. Soc. Farady Trans.,1992,88,833.
    [69]Arico A S, Antonucci V, Giordano N, Shukla A K et al., Methanol oxidation on carbon-supported Platinum-tin Electrodes in sulfuric Acid, J. Power Sources,1994,50,295.
    [70]Janssen M M P, Moolhuysen J, State and action of the tin atoms in Platinum-tin catalyst for methanol fuel cells, J. Cata.,1977,46,289.
    [71]Shukla A K, Arico A S, El-khatib et al., X-ray photoeletron spectroscopic study on the effect of Ru and Sn addition to platinized carbons, Appl. Surf. Sci.,1999,137,20.
    [72]Mikahailova A A, Osetrova N N, Vassiliev Y B, Electrocatalysis of methano oxidation on Pt-Sn bimetallic alloy, Electrochimiya.1977,13 518.
    [73]Shen P K, Tseung A C C, Anodic oxidation of methanol on Pt/WO3 in acidic media, J. Electroehem.soc.,1994,141,3082.
    [74]Shropshire J A, The catalyst of the electrochemical oxidation of formaldehyde and methanol by molybdates, J. Electrochem. Soc.,1965,112,465.
    [75]Kadirgan F, Beden B, Leger J M, Synergistic Effect in the electrocatalytic oxidation of methanol on platinum+palladium alloy electrode, J. Electroanal. Chem.,1981,125,89.
    [76]Beden B, Kadirgan F Lamy C, Leger J M, Electrocata]ytic oxidation of methanol on platinum-based binary electrodes, J. Electroanal. Chem.,1981,127,75.
    [77]Janssen M M P, Moolhuysen J, Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells, Electrochimiea Acta,1976,21,869.
    [78]Deivaraj T C, Chen W X, Lee J Y, Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol, J. Mater. Chem.,2003,13,2555.
    [79]Anderson A D, Deluga G A, Moore J T, Vergne M J et al., Preparation of Pt-Re/Vulean carbon nanocomposites using a single-source molecular preeursor and relative performance as a direct methanol fuel cell electrooxidation catalyst, J. Nanosci. Nanotechno.,2004,4, 809.
    [80]Choi J H, Park K W, park I S, Kim K, Lee J S, Sung Y E, A PtAu nanoparticle electrocatalyst for methanol electrooxidation in direct methanol fuelcells, J. Electrochem. Soc.,2006,153, 1812.
    [81]G6tz M, Wendt H, Binary and Ternary Anode Catalyst Formulations ineluding the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas, Electroehimica Acta, 1998,43,3637.
    [82]Gotz M, Wendt H, Composite electrocatalysts for anodic methanol and methanol-reformate oxidation, J. APPl. Electrochem.,2001,31,811.
    [83]Roth C, Goetz M, Fuess H, Synthesis and characterization of carbon-supported Pt-Ru-WOx catalysts by spectroscopic and diffraction methods, J. APPl. Electrochem.,2001,31,7793.
    [84]Gurau B, Viswanathan R. Lafrenz T J et al., Structural and electrochemical characterization of binary, ternary and quaternary Platinum alloy catalysts for methanol electro-oxidation, J. Phys. Chem. B,1998,102,9997.
    [85]Reddington E, Sapienza A, Gurau B, Viswanathan R et al., Combinatorial electrocatalyststry: a highly parallel, optical screening method for discovery of better eletrocatalysts, Science, 1998,280,1735.
    [86]Arico A S, Poltarzewski Z, Kim H, Morana A, Giordano N, Antonueci V, Investigation of carbon-supported quaternary Pt-Ru-Sn-W catalyst for direct methanol fuel cells, J. Power Sources,1995,55,159.
    [87]Xingwen Yu, Peter G. Pickup. Recent advances in direct formic acid fuel cells (DFAFC), J. Journal of Power Sources,2008,182,124.
    [88]Feliu, J. M.; Herrero, E. In Handbook of Fuel Cells:Fundamentals, Technology, Applications, Academic Press/Wiley:New York,2003,2,625.
    [89]Yu Zhu, Yongyin Kang, Zhiqing Zou, Qun Zhou et al., A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochemistry Communications,2008,10,802.
    [90]Zhaolin Liu, Liang Hong, Mun Pun Tham et al., Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells, Journal of Power Sources,2006,161,831.
    [91]Yange Suo, I-Ming Hsing, Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation, Electrochimica Acta,2009,55, 210.
    [92]Weijiang Zhou and Jim Yang Lee, Particle Size Effects in Pd-Catalyzed Electrooxidation of
    Formic Acid, J. Phys. Chem. C,2008,112,3789.
    [93]Yunjie Huang, Xiaochun Zhou, Jianhui Liao et al., Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid, Electrochemistry Communications, 2008,10,1155.
    [94]Xu J B, Zhao T S, Liang Z X. Carbon supported platinum-gold alloy catalyst for direct formic acid fuel cells, Journal of Power Sources,2009,11,28.
    [95]Xin Wang, Yawen Tang, Ying Gao, et al., Carbon-supported Pd-Ir catalyst as anodic catalyst in direct formic acid fuel cell, Journal of Power Sources,2008,175,784.
    [96]Weijiang Zhou, Jim Yang Lee, Highly active core-shell Au@Pd catalyst for formic acid electrooxidation, J. Electrochem. Commun.,2007,9,1725.
    [97]江红,冯兰英,朱红等,掺杂Fe元素对Pd/C催化剂性能的影响,无机材料学报,2008,23.847.
    [98]Hills, C.; Mack, N.; Nuzzo, R, The Size-Dependent Structural Phase Behaviors of Supported Bimetallic (Pt-Ru) Nanoparticles, J. Phys. Chem. B,2003,107,2626.
    [99]Steigerwalt, E.; Deluga, G.; Lukehart, C, Pt-Ru/Carbon fiber nanocomposites:synthesis, characterization, and performance as anode catalysts of direct methanol fuel cells, a search for exceptional performance, J. Phys. Chem. B,2002,106,760.
    [100]Steigerwalt, E., Deluga, G, Cliffel, D, Lukehart, C, A Pt-Ru/Graphitic carbon nanofiber nanocomposite exhibiting high relative performance as a direct-methanol fuel cell anode catalyst, J. Phys. Chem. B,2001,105,8097.
    [101]Che, G.; Lakeshmi, B.; Martin, C.; Fisher, E, Metal-nanocluster-filled carbon nanotubes: catalytic properties and possible applications in electrochemical energy storage and production, Langmuir,1999,15,750.
    [102]Che, G; Lakeshmi, B.; Fisher, E.; Martin, C., Carbon nanotubule membranes for electrochemical energy storage and production, Nature,1998,393,346.
    [103]Fujiwara, N.; Shiozaki, Y.; Tanimitsu, T.; Yasuda, K.; Miyazaki, Y, Electrochemistry,2002, 70,988.
    [104]Antolini, E.; Cardellini, F., Formation of carbon supported PtRu alloys:an XRD analysis, J. Alloy Comp.2001,315,118.
    [105]Takasu, Y, Fujiwara, T. Murakami, Y. Sasaki, K, Oguri, M, Asaki, T, Sugimoto, W, Effect of
    structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol, J. Electrochem. Soc.2000,147,4421.
    [106]H.Bonnemann, W.Brijoux, R.Brinknlann. et al., Formation of Colloidal Transition Mateals in Organic Phase and Their Application in Catalysts, Angew. Chem. Int. Ed Eng.,1991,30, 1312.
    [107]T.J.Schmidt, Z. Jusys et al., On the CO tolerance of novel collidal PdAu carbon elecrtocatalysts, J. of Elecrtoanal. Chem.,2001,501,132.
    [108]T. J. Schmit, M. Noeske, H. A. Gasteiger et al., Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation:stripping voltammetry and rotating didk measurements, Langmuir,1997,13,259.
    [109]Xiong L, Manthiram A, Catalytic Activity of Pt-Ru Alloys Synthesized by a Mieroemulsion Method in Direct Methanol Fuel Cells, Solid State Ionics,2005,176,385.
    [110]Solla-Gullon J, Vida]-Iglesias F J, Montiel V, Aldaz A, Electroehemical characterization of Platinum-Ruthenium nanopartieles prepared by water-in-oil microemulsion, Electrochim. Acta,2004,49,5079.
    [111]Zhang X, ChanK-Y, Water-in-oil microemulsion synthesis of Platinum-Ruthenium nanoparticles, their characterization and electrocatalytic properties, Chem. Mater.,2001,5, 451.
    [112]Liu Y C, Qiu X Chen Z G, A New Supported Catalyst for Methanol oxidation Prepared by a Reverse Micelles Method, Electrochem. Commun.,2002,4,550.
    [113]Rojas S, Garcia F J, Jaras S et al., Preparation of carbon supported Pt and PtRu nanoparticles from microemulsion:electrocatalysts for fuel cell applications, APPl. Catal. A:Gen.,2005, 285,24.
    [114]Quiroz M A, Gonzalez, Meas Y et al., Barbier J, Electrochemical preparation of a Pt-Au alloy, Electrochim Acta,1987,32,289.
    [115]Morimoto Y, Yeager E B, CO oxidation on smooth and high area Pt, Pt-Ru and Pt-Sn Electrodes, J. Electroanal. Chem.,1998,441,77.
    [116]K. hikozawa, Y. Fujii, Y.Matsuda et al., Electrocatalytic properties of ultrafine Platinum Particles of oxidation of methanol and formic acid in aqueous solutions, Electorchim. Acta, 1991,36,973.
    [117]Xiao-Gang Zhang, Y. Murakmai, K. Yahikozawa, Y. Takasu, Electrocatalytic oxidation of formaldehyde on ultrafine Palladium Particles supported on glass carbon, Elecrtoehim. Acta, 1996,42,223.
    [118]A.Gmaez, D.Richard, P. Gallezot, elal., Oxygen reduction on Well-Defined Platinum nanoParticles inside recast ionomer, Electrochim. Acta,1996,41,307.
    [119]黄俊杰,羰基簇合物途径制备直接甲醇燃料电池阳极催化剂的研究,硕士学位论文,2004
    [120]H.Yang, N.Alonso-Vante, Jean-Miehel Leger, C. Lamy, Tailoring, structure, and activity of carbon-supported nanosized Pt-Cr alloy electrocatalysts for oxygen reduction in pure and methanol-containing electrolytes, J. Phys. Chem. B,2004,108,1938.
    [121]Arico, A. Srinivasan, S. Antonucci V., From fundamental aspects to technology development, Fuel Cells,2001,1,133.
    [122]McNicol, B.; Rand, D.; Williams, K, Direct methanol-air fuel cells for road transportation, J. Power Sources,1999,83,15.
    [1]Hogarth, M., Ralph, T., Catalysis for low temperature fuel cells, Platinum Metals Rev.,2002, 46,146.
    [2]Arico, A., Srinivasan, S., Antonucci, V., DMFCs:From fundamental aspects to technology development, Fuel Cells,2001,1,133.
    [3]Wasmus, S., Kuver, A., Methanol oxidation and direct methanol fuel cells:a selective review J. Elctroanal. Chem,1999,461,14.
    [4]McNicol, B., Rand, D., Williams, K., Direct methanol-air fuel cells for road transportation, J. Power Sources,1999,83,15.
    [5]Lamy, C., Leger, J.-M. Interfacial Electrochemistry ed. by A. Wieckowski, Marcel Dekker, New York,1999,48,885.
    [6]Antolini, E., Formation of carbon-supported PtM alloys for low temperature fuel cells:a review, Mater. Chem. Phys.,2003,78,563.
    [7]Fujiwara, N., Yasuda, K., Ioroi, T., Siroma, Z., Miyazaki, Y, Preparation of platinum-ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode, Electochim. Acta,2002,47,4079.
    [8]Lasch, K., Hayn, G., Jorissen, L., Garche, J., Besenhardt, O., Mixed conducting catalyst support materials for the direct methanol fuel cell, J. Power Sources,2002,105,305.
    [9]Arico, A., Monforte, G., Modica, E., Antonucci, P., Antonucci, V., Investigation of unsupported Pt-Ru catalysts for high temperature methanol electro-oxidation, Electrochem. Comm.,2000,2,466.
    [10]Wiltham, C., Chun, W., Valdez, T., Narayanan, S., Performance of direct methanol fuel cells with sputter-deposited anode catalyst layers, Electrochem. Solid-State Lett.,2000,3,497.
    [11]Denis, M., Gouerec, P., Guay, D., Dodelet, J., Lalande, G., Schulz, R., Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells,J. Appl. Electrochem.,2000,30,1243.
    [12]Denis, M.; Lalande, G.; Gouerec, P.; Guay, D.; Dodelet, J.; Schulz, R., High energy ball-milled Pt and Pt±Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO, J. Appl. Electrochem.,1999,29,951.
    [13]Pan, C., Dassenoy, F., Casanove, M., Philippot, K., Amiens, C., Lecante, P., Mosset, A., Chaudret, B., A new synthetic method toward bimetallic ruthenium platinum nanoparticles; composition induced structural changes, J. Phys. Chem. B,1999,103,10098.
    [14]Vogel, W., Britz, P., Bonnemann, H., Rothe, J., Horms, J., Structure and chemical composition of surfactant-stabilized PtRu alloy colloids, J. Phys. Chem. B,1997,101, 11029.
    [15]Schmidt, T., Noeske, M., Gasteiger, H., Behm, R., Britz, P., Brijoux, W., Bonnemann, H., Electrocatalytic activity of PtRu alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating disk measurements, Langmuir,1997,13,2591.
    [16]Chu, D.; Gilman, S., Methanol eletro-oxidation on unsupported Pt-Ru alloys at different temperatures, J. Electrochem. Soc.,1996,143,1685.
    [17]Escudero, M., Hontanon, E., Schwartz, S., Boutonnet, M., Daza, L., Development and performance characterisation of new electrocatalysts for PEMFC, J. Power Sources,2002, 106,206.
    [18]Dickinson, A., Carrette, L., Collins, J., Friedrich, K., Stimming, U., Preparation of a PtRu/C catalyst from carbonyl complexes for fuel cell applications, Electrochim. Acta,2002,47, 3733.
    [19]Boxall, D., Deluga, G., Kenik, E., King, W., Lukehart, C., Rapid Synthesis of a Pt1Ru1/Carbon Nanocomposite Using Microwave Irradiation:A DMFC Anode Catalyst of High Relative Performance, Chem. Mater.,2001,13,891.
    [20]Paulus, U.; Endruschat, U.; Feldmeyer, G.; Schmidt, T.; Bonnemann, H.; Behm, R., New PtRu Alloy Colloids as Precursors for Fuel Cell Catalysts, J. Catal,.2000,195,383.
    [21]Bonnemann, H.; Brinkmann, R.; Britz, P.; Endruschat, U.; Mortel, R.; Paulus, U.; Feldmeyer, G.; Schmidt, T.; Gasteiger, H.; Behm, R. J. New Mater. Electrochem. Sys.2000, 3,199.
    [22]Schmidt, T.; Noeske, M.; Gasteiger, H.; Behm, R.; Britz, P.; Bonnemann, H., PtRu alloy colloids as precursors for fuel cell catalysts, J. Electrochem. Soc.,1998,145,925.
    [23]Gotz, M.; Wendt, H., Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs operated on methanol or reformate gas, Electrochim. Acta,1998, 43,3637.
    [24]Pozio, A.; Silva, R.; De Francesco, M.; Cardellini, F.; Giorgi, L., A novel route to prepare stable Pt-Ru/C electrocatalysts for polymer electrolyte fuel cell, Electrochim. Acta,2002, 48,255.
    [25]Antolini, E.; Giorgi, L.; Cardellini, F.; Passalacqua, E., Physical and morphological charateristcs and electrochemical behaviour in PEM fuel cells of PtRu/C catalysts, J. Solid State Electrochem.,2001,2,131.
    [26]Luna, A.; Camara, G.; Paganin, V.; Ticianelli, E.; Gonzalez, E., Effect of thermal treatment on the performance of CO-tolerant anodes for polymer electrolyte fuel cells, Electrochem. Comm.,2000,2,222.
    [27]Radmilovic, V.; Gasteriger, H.; Ross, P., Structure and Chemical Composition of a Supported Pt-Ru Electrocatalyst for Methanol Oxidation, J. Catal.,1995,154,98.
    [28]Swathirajan S. Mikhail, Y., Electrochemical Oxidation of Methanol at Chemically Prepared Platinum-Ruthenium Alloy Electrodes, J. Electrochem. Soc.,1991,138,1321.
    [29]Watanabe, M.; Uchida, M.; Motoo, S., Preparation of highly dispersed Pt+Ru alloy clusters and the activity for the electrooxidation of methanol,J. Electroanal. Chem.,1987,229,395.
    [30]Hills, C.; Mack, N.; Nuzzo, R., The Size-Dependent Structural Phase Behaviors of Supported Bimetallic (Pt-Ru) Nanoparticles, J. Phys. Chem. B,2003,107,2626.
    [31]Steigerwalt, E.; Deluga, G; Lukehart, C., Pt-Ru/Carbon Fiber Nanocomposites:Synthesis, Characterization, and Performance as Anode Catalysts of Direct Methanol Fuel Cells. A Search for Exceptional Performance, J. Phys. Chem. B,2002,106,760.
    [32]Steigerwalt, E.; Deluga, G.; Cliffel, D.; Lukehart, C., A Pt-Ru/Graphitic Carbon Nanofiber Nanocomposite Exhibiting High Relative Performance as a Direct-Methanol Fuel Cell Anode Catalyst, J. Phys. Chem. B,2001,105,8097.
    [33]Che, G.; Lakeshmi, B.; Martin, C.; Fisher, E., Metal-Nanocluster-Filled Carbon Nanotubes: Catalytic Properties and Possible Applications in Electrochemical Energy Storage and Production, Langmuir,1999,15,750.
    [34]Che, G.; Lakeshmi, B.; Fisher, E.; Martin, C., Carbon nanotubule membranes for electrochemical energy storage and production, Nature,1998,393,346.
    [35]Fujiwara, N.; Shiozaki, Y.; Tanimitsu, T.; Yasuda, K.; Miyazaki, Y. Electrochemistry,2002, 70,988.
    [36]Antolini, E.; Cardellini, F., Formation of carbon supported PtRu alloys:an XRD analysis, J. Alloy Comp.,2001,315,118.
    [37]Takasu, Y.; Fujiwara, T.; Murakami, Y.; Sasaki, K.; Oguri, M.; Asaki, T.; Sugimoto, W, Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation od methanol, J. Electrochem. Soc.,2000,147,4421.
    [38]Hills, C.; Nashner, M.; Frenkel, A.; Shapley, J.; Nuzzo, R., Carbon Support Effects on Bimetallic Pt-Ru Nanoparticles Formed from Molecular Precursors, Langmuir,1999,15, 690.
    [39]Nashner, M.; Frenkel, A.; Somerville, D.; Hills, C.; Shapley, J.; Nuzzo, R., Core Shell Inversion during Nucleation and Growth of Bimetallic Pt/Ru Nanoparticles, J. Am. Chem. Soc.,1998,120,8093-.
    [40]Nashner, M.; Frenkel, A.; Adler, D.; Shapley, J.; Nuzzo, R., Structural Characterization of Carbon-Supported Platinum-Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu5C(CO)16,J. Am. Chem. Soc.,1997,119,7760.
    [41]Giror-Fendler, A.; Richard, D.; Gallezot, P., Preparation of Pt-Ru bimetallic particles on functionalized carbon supports by co-exchange, Faraday Discuss.,1991,92,69.
    [42]McNicol, B.; Short, R., The influence of activation conditions on the performance of platinum/ruthenium methanol electro-oxidation catalysts surface enrichment phenomena, J. Electroanal. Chem.,1977,81,249.
    [43]Machida, K.; Fukuoka, A.; Ichikawa, M.; Enyo, M., Preparation of platinum cluster-derived electrodes from metal carbonyl complexes and their electrocatalytic properties for anodic oxidation of methanol, J. Electrochem. Soc.,1991,138,1958.
    [44]Kenedy, B.; Smith, A., Reactivity of RuO2 as a promater for methanol oxidation, J. Electroanal. Chem.,1990,293,103.
    [45]Goodenough, J.; Hamnett, A.; Kennedy, B.; Manoharan, H.; Weeks, S., Methanol oxidation on unsupported and carbon supported Pt+Ru snodes, J. Electroanal. Chem.,1988,240,133.
    [46]Rolison, D., Catalytic Nanoarchitectures--the importance of nothing and the unimportance of periodicity, Science,2003,299,1698.
    [47]Long, J.; Stroud, R.; Swider-Lyons, K.; Rolison, D., How To Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys! J. Phys. Chem. B, 2000,104,9772.
    [48]D. Rolison, P. Hagans, K. Swider, J. Long, Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts:The Importance of Mixed Electron/Proton Conductivity, Langmuir,1999,15,774.
    [49]M. Koper, T. Shubina, R. Santen, Periodic Density Functional Study of CO and OH Adsorption on Pt-Ru Alloy Surfaces:Implications for CO Tolerant Fuel Cell Catalysts, J. Phys. Chem. B,2002,106,686.
    [50]A. Arico, P. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Effect of Pt---Ru alloy composition on high-temperature methanol electro-oxidation, Electrochim. Acta, 2002,47,3723.
    [51]Z. Jusys, J. Kaiser, R. Behm, Composition and activity of high surface area PtRu catalysts towards adsorbed CO and methanol electrooxidation-:A DEMS study, Electrochim. Acta, 2002,47,3693.
    [52]Y. Takasu, H. Itaya, T. Iwazaki, R. Miyoshi, T. Ohnuma, W. Sugimoto, Y. Murakami, Size effect of ultrafine Pt-Ru particles on the electrocatalytic oxidation of methanol, Chem. Comm.,2001,4,341.
    [53]O'Grady, W.; Hagans, P.; Pandya, K.; Maricle, D., Structure of Pt/Ru Catalysts Using X-ray Absorption Near Edge Structure Studies, Langmuir,2001,17,3047.
    [54]T. Iwasita, H. Hoster, A. John-Anacker, W. Lin, W. Vielstich, Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution, Langmuir, 2000,16,522.
    [55]E. Antolini, F. Cardellini, L. Giorgi, E. Passalacqua, Effect of Me (Pt+Ru) content in Me/C catalysts on PtRu alloy formation:An XRD analysis, J. Mater. Sci. Lett.,2000,19, 2099.
    [56]A. Arico, P. Creti, E. Modica, G. Monforte, V. Baglio, V. Antonucci, Investigation of direct methanol fuel cells based on unsupported Pt-Ru anode catalysts with different chemical properties, Electrochim. Acta,2000,45,4319.
    [57]H. Dinh, X. Ren, F. Garzon, P. Zelenay, S. Gottesfeld, Electrocatalysis in direct methanol fuel cells:in-situ probing of PtRu anode catalyst surfaces, J. Electroanal. Chem.,2000, 491,222.
    [58]A. Crown, H. Kim, G. Lu, I. Moraes, C. Rice, A. Wieckowski, J. New Mater. Electrochem. Sys.,2000,3,275.
    [59]S. Lin, T. Hsiao, J. Chang, A. Lin, Morphology of Carbon Supported Pt-Ru electrocatalyst and the CO tolerance of anodes for PEM fuel cells, J. Phys. Chem. B,1999, 03,97.
    [60]J. McBreen, S. Mukerjee, Interfacial Electrochemistry, ed. by A. Wieckowski, Marcel Dekker, New York,1999,49,895.
    [61]W. Chrzanowski, A. Wieckowski, Interfacial Electrochemistry, ed. by A. Wieckowski, Marcel Dekker, New York,1999,51,937.
    [62]W. Chrzanowski, A. Wieckowski, Surface structure effects in Platinum/Ruthenium methanol oxidation electrocatalysis, Langmuir,1998,14,1967.
    [63]A. Arico, P. Creti, H. Kim, R. Mantegna, N. Giordano, V. Antonucci, Analysis of the electrochemical characteristics of a direct methanol fuel cell based on a Pt-Ru anode catalyst, J. Electrochem. Soc.,1996,143,3950.
    [64]D. Aberdam, R. Durand, R. Faure, F. Gloaguen, J. Hazemann, E. Herrero, A. Kabbabi, O. Ulrich, X-ray absorption near edge structure study of the electro-oxidation reaction of CO on Pt50Ru50 nanoparticles, J. Electroanal. Chem.,1995,398,43.
    [65]H. Gasteiger, N. Makovic, P. Ross, E. Cairns, Temperature-dependent methanol electro-oxidation an well characterized Pt-Ru alloys, J. Electrochem. Soc.,1994,141, 1795.
    [66]H. Gasteiger, N. Markovic, P. Ross, E. Cairns, Methanol Electrooxidation on Well-Characterized Pt-Ru Alloys, J.Phys. Chem. A,1993,97,12020.
    [67]J. Goodenough, R. Manoharan, A. Shukla, K. Ramesh, Intraalloy Electron Transfer and Catalyst Performance:ASpectroscopic and Electrochemical Study, Chem. Mater.,1989,1, 391.
    [68]Bo Yang, Qingye Lu, Yang Wang et al., Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts, Chem. Mater.,2003,15,3552.
    [69]Radmilovic', V.; Gasteriger, H. A.; Ross, P. N., Structure and chemical compsition of a supported Pt-Ru electrocatalyst for methanol oxidation, J. Catal.,1995,154,98.
    [70]Antolini, E. Cardellini, F., Formation of carbon supported PtRu alloys:an XRD analysis, J. Alloys Compd.,2001,315,118.
    [71]Antolini, E.; Cardellini, F.; Giorgi, L.; Passalacqua, E, Effect of Me (Pt+Ru) content in Me/C catalysts on PtRu alloy formation:An XRD analysis, J. Mater. Sci. Lett.,2000,19, 2099.
    [72]79http://srdata.nist.gov/xps/and references cited therein.
    [73]Allen, G.; Tucker, P.; Capon, A.; Parsons, R., X-ray photoelectron spectroscopy of adsorbed oxygen and carbonaceous species an platinum eletrodes, J. Electroanal. Chem.,1974,50,335.
    [74]Kim, K.; Winograd, N.; Davis, R, Electron Spectroscopy of Platinum-Oxygen Surfaces and Application to Electrochemical Studies, J. Am. Chem. Soc.,1971,93,6296.
    [75]Kotz, R.; Lewerentz, H.; Stucki, S., XPS study of oxygen evolution on Ru and RuO2 anodes, J. Electrochem. Soc.,1983,130,825.
    [76]C. Roth, M. Goetz, H. Fuess, Synthesis and characterization of carbon-supperted Pt-Ru-WO3 catalysts by spectroscopic and diffraction methods, J. Appl. Electrochem., 2001,31,793.
    [77]Schmidt, T.; Gasteiger, H.; Behm, R., Methanol electrooxidation on a colloidal PtRu-alloy fuel-cell catalyst, Electrochem. Comm.,1999,1,1.
    [78]Lin, A.; Kowalak, A.; O'Grady, W., Study of the role of water in the electrocatalysis of methanol oxidation,J.Power Sources,1996,58,67.
    [79]H. E. Van Dam, H. Van Bekkum, Preparation of Platinum on Activated Carbon, J. Catal., 1991,131,335.
    [80]R. Fu, H. Zeng, Y. Lu, Studies on the Mechanism of the Reaction of Activated Carbon Fibers with Oxidants, Carbon,1994,32,593.
    [81]R. Fu, H. Zeng, Y. Lu, The Reduction of Pt(Ⅳ) with Activated Carbon Fibers-An XPS Study, Carbon,1995,33,657.
    [82]R. Fu, H. Zeng, Y. Lu, W. Xie, H. Zeng, The Adsorption and Reduction of Pt(IV) on Activated Carbon Fibre, Carbon,1998,36,19.
    [83]Deli Wang, Lin Zhuang, Juntao Lu, An alloying-degree-controlling step in the impregnation synthesis of PtRu/C catalysts, J. Phys. Chem. C,2007,111,16416.
    [1]成青,热重分析技术及其在高分子材料领域的应用,广东化工,2008,35,50.
    [2]M. Watanabe, M. Uchida, S. Motoo, Preparation of Highly Dispersed Pt+Ru Alloy Clusters and the Activity for the Electrooxidation of Methanol, J. Electroanal. Chem.,1987,229,395.
    [3]T. Iwasita, H. Hoster, A. John-Anacker, W. F. Lin, W. Vielstich, Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Pt-Ru Atom Distribution, Langmuir, 2000,16,522.
    [4]H. A. Gasteiger, N. Markovic, P. N. Ross, E. J. Cairns, Methanol Electrooxidation on Well-Characterized Platinum-Ruthenium Bulk Alloys, J. Phys. Chem.,1993,97,12020.
    [5]Rolison D. R., Catalytic Nanoarchitectures-Importance of Nothing and the Unimportance of Periodicity, Science,2003,299,1698.
    [6]E. V. Spinace, A. O. Neto, M. Linardi, Electro-Oxidation of Methanol and Ethanol Using PtRu/C Electrocatalysts Prepared by Spontaneous Deposition of Platinum on Carbon-Supported Ruthenium Nanoparticles, J. Power Sources,2004,129,121.
    [7]Rolison D. R., P. L. Hagans, K. E. Swider, J. W. Long, Role of Hydrous Ruthenium Oxide in Pt-Ru Direct Methanol Fuel Cell Anode Electrocatalysts:The Importance of Mixed Electron/Proton Conductivity, Langmuir,1999,15,774.
    [8]J. W. Long, R. M. Stroud, K. E. Swider-Lyons, D. R. Rolison, How to Make Electrocatalysts More Active for Direct Methanol Oxidation-Avoid PtRu Bimetallic Alloys!, J. Phys. Chem. B,2000,104,9772.
    [9]Ren, X. M.; Wilson, M. S.; Gottesfeld, S., High Performance Direct Methanol Polymer Electrolyte Fuel Cells, J. Electrochem. Soc.1996,143, L12.
    [10]Qingye Lu, Bo Yang, Lin Zhuang, and Juntao Lu, Pattern Recognition on the Structure-Activity Relationship of Nano Pt-Ru Catalysts:Methodology and Preliminary Demonstration, J. Phys. Chem. B,2005,109,8873.
    [11]Hongfang Li, Ruoding Wang, Rong Cao, Physical and electrochemical characterization of hydrous ruthenium oxide/ordered mesoporous carbon composites as supercapacitor, Microporous and Mesoporous Materials,2008,111,32.
    [12]Bo Yang, Qingye Lu, Yang Wang, Lin Zhuang, Juntao Lu, and Peifang Liu, Simple and low-cost preparation method for highly dispersed PtRu/C catalysts, Chem. Mater.,2003,15, 3552.
    [13]X.J. He, Y.J. Genga,S.Okeb, K. Higashi, M. Yamamoto, H. Takikawa, Electrochemical performance of RuOx/activated carbon black composite for supercapacitors, Synthetic Metals, 2009,159,7.
    [14]Dong-Ha Lim, Dong-Hyeok Choi, Weon-Doo Lee, Ho-In Lee, A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability, Applied Catalysis B:Environmental,2009, 89,484.
    [1]W. Vogel, L. Lundquist, P. Ross and P. Stonehart, Reaction pathways and poisons- Ⅱ:The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO, Electrochim. Acta,1975,20,79.
    [2]J. C. Davies and G. Tsotridis, Temperature-dependent kinetic study of CO desorption from Pt PEM fuel cell anodes, J. Phys. Chem. C,2008,112,3392.
    [3]T. Frelink, W. Visscher, J. A. R. Van Veen, Particle size effect of carbon-supperted Platinum catalysts for the electrooxidation of methanol, J. Electroanal. Chem.,1995,382,65.
    [4]X. Wang, I. Hsing, Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells, Electrochim. Acta,2002,47,2981.
    [5]Makoto Uchida, Yuko Aoyama, Yasushi Sugawara, Nobuo Eda, and Akira Ohta, Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells, J. Electrochem Soc.,1996,143,2245.
    [6]Khalil Amine, Minoru Mizuhata and Keisuke Oguro et al., Catalyticactivity of platinum after exchange with surface active functional groups of carbon blacks, J. Chem. Soc. Faraday Trans.,1995,91,4451.
    [7]张立德,牟季美,纳米材料学,辽宁科学技术出版社,沈阳,1994,66.
    [8]Zhenhua Zhou,Weijiang Zhou, Suli Wang, Preparation of highly active 40wt.% Pt/C cathode electrocatalysts for DMFC via different routes, Catalysis Today,2004,93,523.
    [9]A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, Comparsion of high surface Pt/C catalysts by cyclic voltammetry, Journal of Power Sources,2002,105,13.
    [10]Ysmael Verdea,b, Gabriel Alonso, Victor Ramos, Hua Zhang,Allan J. Jacobson, Arturo Keer, Pt/C obtained from carbon with different treatments and (NH4)2PtCl6 as a Pt precursor, Applied Catalysis A:General,2004,277,201.
    [11]黄成德,韩左青,李小婷,PEMFC用Pt/C电催化剂的制备,电源技术,2000,24,243.
    [12]Xing Y C. Synthesis and electrochemical characterization of uniformly-dispersed high loading Pt nanoparticles on sono-chemically-treated carbon nanotubes, Journal of Physical Chemistry B,2004,108,19255.
    [13]Yang R Z, Qiu X P, Zhang H R, et al. Monodispersed hard car-bon spheres as a catalyst support for the electrooxidation of methanol, Carbon,2005,43,11.
    [14]Yubao Sun, Lin Zhuang, Juntao Lu et al., Collapse in Crystalline Structure and Decline in Catalytic Activity of Pt Nanoparticles on Reducing Particle Size to 1nm, J. Am. Chem. Soc., 2007,129,15465.
    [15]A.K. Shukla, M.K. Ravikumar, A. Roy, S.R. Barman, D.D. Sarma, A.S. Arico, V. Antonucci, L. Pino, N. Giordano, J. Electrochem. Soc.1994,141,1517.
    [16]R. Giorgi, S. Turtu, P. Ascarelli, Enea Report RT/INN/99/11,1999
    [17]J. Escard, C. Leclerc, J.P. Contour, The state of supported irdium in a hydrazine decomposition catalyst, J. Catal.,1973,29,31.
    [18]J.C. Vedrine, M. Dufaux, C. Naccache, B. Imelik, J. Chem. Soc.,Faraday Trans.,1978,74, 440.
    [19]A. Biloul, F. Coowar, O. Contamin et al., J. Electroanal. Chem.,1990,289,189.
    [20]J. McBreen, H. Olender, S. Srinivasan, K. Kordesch, Carbon supports for phosphoric acid fuel cell electrocatalysts:alternative materials and methods of evaluation, J. Appl. Electrochem.,1981,11,787.
    [21]S.L.j, Gojkovic, T.R. Vidakovic, Methanol oxidation on an ink type electrode using Pt supported on high area carbons. Eletrochimica Acta,2001,633.
    [22]Toshitaka Tanabe, Yasutaka Nagai, Takeshi Hirabayashi et al., Low temperature CO pulse adsorption for the determination of Pt particle size in a Pt/cerium-based oxide catalyst, Applied Catalysis A:General,2009,370,108.
    [23]刘卫锋,Pt/C及合金催化剂的研制,中国科学院研究生院硕士学位论文, 2002
    [24]GAN Linl, DU Hong-dal, LI Bao-hua, KANG Fei-yu, The effect of particle size on the interaction of Pt catalyst particles with a carbon black support, New Carbon Materials,2010, 25,53.
    [25]Bergamaski K, Pinheiro A L N, Teixeira-Neto E, et al., Nanoparticle size effects on methanol electrochemical oxidation on carbon supported platinum catalysts, Journal of Physical Chemistry B,2006,110,19271.
    [26]Perez J, Gonzalez E R, Ticianelli E A. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes, Electrochimica Acta,1998,44,1329.
    [27]Gottesfeld S, Raistrick I D, Srinivasan S. Oxygen reduction kinetics on a platinum RDE coated with a recast Nafion film, Journal of Electrochemical Society,1987,134,1455.
    [28]A. R. West, Solid State Chemistry and It's Applications, Wiley, Chichester,1984
    [29]Klug, H. P.; Alexander, L. E.x-ray Diffraction Procedures for Polycrystalline and Amorphous Materials,2nd ed.; Wiley:New York.1974
    [30]孙玉宝,燃料电池催化剂载体及相关电催化研究,武汉大学博士学位论文,2009
    [31]Irina Borbath, Ferenc Somod, Irene M.J. Vilella et al., Differences and similarities of supported Ge-Pt/C catalysts prepared by conventional impregnation and controlled surface reactions, Catalysis Communications,2009,10,490.
    [32]S.R de Miguel, O.A. Scelza, M.C. RomaAn-MartoAnez et al., States of Pt in Pt/C catalyst precursors after impregnation, drying and reduction steps, Applied Catalysis A:General, 1998,170,93.
    [33]Zhenhua Zhou, Weijiang Zhou, Suli Wang et al., Preparation of highly active 40 wt% Pt/C cathode electrocatalysts for DMFC via different routes, Catalysis Today,2004,95,523.
    [34]Ph. Buffet and J-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A.,1976,13,2287.
    [35]N. W. Hurst, S. J. Gentry, A. Jones, B. D. McNicol, Temperature Programmed Reductions. Catal. Rev.-Sci. Eng,1982,24,233.
    [1]C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, J. Power Sources,2002,111,83.
    [2]C. Rice, S. Ha, R.I. Masel, A. Wieckowski, Catalysts for direct formic acid fuel cells, J. Power Sources,2003,115,229.
    [3]Y.W. Rhee, S.Y. Ha, R.I. Masel, Crossover of formic acid through Nafion membranes, J. Power Sources,2003,117,35.
    [4]Hal, Z. Dunbar, R.I. Masel, Characterization of a high performing passive direct formic acid fuel cell,J. Power Sources,2006,158,129.
    [5]Y.M. Zhu, Z. Khana, R.I. Masela, The behavior of palladium catalysts in direct formic acid fuel cells, J. Power Sources,2005,139,15.
    [6]R.S. Jayashree, J.S. Spendelow, J. Yeom, C. Rastogi, M.A. Shannon, P.J.A. Kenis, Characterization and application of electrodeposited Pt, Pt/Pd,and Pd caralysts structure for direct formic acid micro furl cells, Electrochim. Acta,2005,50,4674.
    [7]Larsen, R.; Zakzeski, J.; Masel, R, Unexpected activity of palladium on vanadia catalysts for formic acid electro-oxidation, Electrochem.Solid-State Lett.,2005,8, A291.
    [8]Yunjie Huang, Xiaochun Zhou, Jianhui Liao et al., Preparation of Pd/C catalyst for formic acid oxidation using a novel colloid method, Electrochemistry Communications,2008,10, 621.
    [9]Gallon, B. J.; Kojima, R. W.; Kaner, R. B.; Diaconescu, P. L, Angew. Chem., Int. Ed,.2007, 46,7251.
    [10]Han, Y.-F.; Zhong, Z.; Ramesh, K.; Chen, F.; Chen, L.; White, T.;Tay, Q.; Yaakub, S. N.; Wang, Z, Au promotional effects on the synthesis of H2O2 directly from H2 and O2 on supported Pd-Au alloy catalysts, J. Phys. Chem. C,2007,111,8410.
    [11]Hu, J. Liu, Y., Pd nanoparticle aging and its implications in the Suzuki cross-coupling reaction, Langmuir,2005,21,2121.
    [12]Mukhopadhyay, K.; Sarkar, B. R.; Chaudhari, R. V., J. Am. Chem.Soc.,2002,124,9692.
    [13]Liang, H.-P.; Lawrence, N. S.; Jones, T. G. J.; Banks, C. E.; Ducati,C. J. Am. Chem. Soc. 2007,129,6068.
    [14]Liang, H.-P.; Lawrence, N. S.; Wan, L.-J.; Jiang, L.; Song, W.-G.;Jones, T.G. J, Controllable stnthesis of hollow hierarchical palladium nanostructures with enhanced activity for proton/hydrogen sensing, J. Phys. Chem. C,2008,112,338.
    [15]Kobayashi, H.; Yamauchi, M.; Kitagawa, H.; Kubota, Y.; Kato, K.; Takata, M., On the nature of strong hydrogen atom trapping inside Pd nanoparticles, J. Am. Chem. Soc.,2008, 130,1828.
    [16]Horinouchi, S.; Yamanoi, Y.; Yonezawa, T.; Mouri, T.; Nishihara,H, Hydrogen storage properties of isocyanide-stabilized palladium nanoparticles, Langmuir,2006,22,1880.
    [17]Ibanez, F. J.; Zamborini, F. P., Reactivity of hydrogen with solid-state films of alkylamine-and tetraoctylammonium bromide-stabilized Pd, PdAg, and PdAu nanoparticles for sensing and catalysis applications, J. Am. Chem. Soc.,2008,130,622.
    [18]Zhou, P., Dai, Z., Fang, M., Huang, X.; Bao, J., Gong. J, Novel dendritic palladium nanostructure and its application in biosenging, J. Phys.Chem. C,2007,111,12609.
    [19]Xingwen Yu, Peter G. Pickup, Novel Pd-Pb/C bimetallic catalysts for direct formic acid fuel cells, Journal of Power Sources,2009,192,279.
    [20]Xiao-Ming Wang, Yong-Yao Xia, Synthesis, characterization and catalytic activity of an ultrafine Pd/C catalyst for formic acid electrooxidation, Electrochimica Acta,2009,547,525.
    [21]Yange Suo, I-Ming Hsing, Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation, Electrochimica Acta,2009,55, 210.
    [22]Hyunjoo Lee, Susan E. Habas, Gabor A. Somorjai, Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid, J. Am. Chem. Soc., 2008,130,5406.
    [23]Vismadeb Mazumder and Shouheng Sun, Oleylamine-Mediated Synthesis of Pd Nanoparticles for Catalytic Formic Acid Oxidation, J. Am. Chem. Soc.,2009,131,4588.
    [24]Han-Xuan Zhang, Chao Wang, Jin-Yi Wang et al., Carbon-Supported Pd-Pt Nanoalloy with Low Pt Content and Superior Catalysis for Formic Acid Electro-oxidation, J. Phys. Chem. C 2010,114,6446.
    [25]Hui Wang, Jianlong Wang, Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode, Applied Catalysis B:Environmental,2007,77,58.
    [26]N. Arul Dhas, H. Cohen, A. Gedanken, In situ preparation of amorphous carbon-activated palladium nanoparticles, J. Phys. Chem. B,1997,101,6834.
    [27]S.W. Kim, J.N. Park, Y.J. Jang, Y.H. Chung, S.J. Hwang, T.H. Hyeon, Y.W. Kim, Synthesis of monodisperse palladium nanoparticles, Nano Lett.,2003,3,1289.
    [28]T. Teranishi, M. Miyake, Size control of palladium nanoparticls and their crystal structures, Chem. Mater.,1998,10,594.
    [29]Y. Xiong, J.M. Mclellan, J. Chen, Y. Yin, Z.Y. Li, Y. Xia, Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties, J. Am. Chem. Soc.,2005,127,17118.
    [30]S.W. Chen, K. Huang, J.A. Steams, Alkanethiolata-protected palladium nanoparticles, Chem. Mater.,2000,12,540.
    [31]Huanqiao Li, Gongquan Sun, Qian Jiang et al., Preparation and characterization of Pd/C catalyst obtained in NH3-mediated polyol process, Journal of Power Sources,2007,172,641.
    [32]Bo Yang, Qingye Lu, Yang Wang et al., Simple and Low-Cost Preparation Method for Highly Dispersed PtRu/C Catalysts, Chem. Mater.,2003,15,3552.
    [33]P.-L. Kuo, W.-F. Chen, C.-Y. Lin, Multichelate-functionalized carbon nanospheres used for immobilizing Pt catalysts for fuel cells, Journal of Power Sources,2009 194 234.
    [34]Dong-Ha Lim, Dong-Hyeok Choi, Weon-Doo Lee, A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability, Applied Catalysis B:Environmental,2009,89,484.
    [35]Seung-Jae Lee and Asterios Gavriilidis, supported Au catalysts for Low-temperature CO oxidation prepared by impregnation, Journal of Catalysis,2002,206,305.
    [36]H. H. Kung, M. C. Kung, C. K. Costello, Supported Au catalysts for low temperature CO oxidation, J. Catal.,2003,216,425.
    [37]H. S. Oh, J. H. Yang, C. K. Costello, Y. M. Wang, S. R. Bare, H. H. Kung, M. C. Kung., Selective catalytic oxidation of CO:effect of chloride on supported Au catalysts. J. Catal., 2002,210,375.
    [38]http://www.cetin.net.cn/cetin2/servlet/cetin/action/HtmlDocumentAction?baseid=1&docno =31242
    [1]P.K. Babu, H.S. Kim, J.H. Chung, E. Oldfield, A. Wieckowski, Bongding and motional aspects of CO adsorbed on the surface of Pt nanoparticles decorated with Pd, J. Phys. Chem. B,2004,108,20228.
    [2]M. Arenz, V. Stamenkovic, T.J. SchmidtPresent, K. Wandelt, P.N. Ross, N.M. Markovic, The electro-oxidation of formic acid on Pt-Pd single crystal bimetallic surfaces, Phys. Chem. Chem. Phys.,2003,5,4242.
    [3]Vito Di Noto, Enrico Negro, Sandra Lavin et al., Pd-Co carbon-nitride electrocatalysts for polymer electrolyte fuel cells, Electrochimica Acta,2007,53,1604.
    [4]Yong-Hun Cho, Baeck Choi, Yoon-Hwan Cho et al., Pd-based PdPt(19:1)/C electrocatalyst as an electrode in PEM fuel cell, Electrochemistry Communications,2007,9,378.
    [5]Young-Min Kim, Kyung-Won Park et al., A Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC, Electrochemistry Communications,2003,5,571.
    [6]Ai Hua Tian, Ji-Young Kim, Jin Yi Shi et al., Surface-modified Nafion membrane by oleylamine-stabilized Pd nanoparticles for DMFC applications, Journal of Power Sources, 2007,167,302.
    [7]Jose L. Fernandez, Darren A. Walsh, and Allen J. Bard, Thermodynamic Guidelines for the Design of Bimetallic Catalysts for Oxygen Electroreduction and Rapid Screening by Scanning Electrochemical Microscopy, J. Am. Chem. Soc,.2005,127,357.
    [8]Vadari Raghuveer, Arumugam Manthiram, and Allen J. Bard, Pd-Co-Mo Electrocatalyst for the Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells, J. Phys. Chem. B, 2005,109,22909.
    [9]A. Sarkar, A. Vadivel Murugan, and A. Manthiram, Pt-Encapsulated Pd-Co Nanoalloy Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells, Langmuir,2010,26,2894.
    [10]Yun-Chieh Yeh, Hao Ming Chen, Ru-Shi Liu et al., Pd-C-Fe Nanoparticles Investigated by X-ray Absorption Spectroscopy as Electrocatalysts for Oxygen Reduction, Chem. Mater. 2009,21,4030.
    [11]Sarkar, A. Vadivel Murugan, and A. Manthiram, Synthesis and Characterization of Nanostructured PdMo Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells, J. Phys. Chem.C,2008,112,12037.
    [12]Lifeng Cheng, Zhonghua Zhang, Wenxin Niu et al., Carbon-supported Pd nanocatalyst modified by non-metal phosphorus for the oxygen reduction reaction, Journal of Power Sources,2008,182,91.
    [13]Yu Zhu, Yongyin Kang, Zhiqing Zou et al., A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid, Electrochemistry Communications, 2008,10,802.
    [14]Yange Suo, I-Ming Hsing, Size-controlled synthesis and impedance-based mechanistic understanding of Pd/C nanoparticles for formic acid oxidation, Electrochimica Acta,2009,55, 210.
    [15]Gong, Y.; Hou, Z.; Xin, H., Optimal particle size for reaction rate oscillation in CO oxidation on nanometer-sized palladium particles, J. Phys. Chem. B,2004,108,17796.
    [16]Weijiang Zhou and Jim Yang Lee, Particle Size Effects in Pd-Catalyzed Electrooxidation of Formic Acid, J. Phys. Chem. C,2008,112,3789.
    [17]Yunjie Huang, Xiaochun Zhou, Jianhui Liao et al., Synthesis of Pd/C catalysts with designed lattice constants for the electro-oxidation of formic acid, Electrochemistry Communications, 2008,10,1155.
    [18]D. P. Tang, J. T. Lu, L. Zhuang, P. F. Liu, Calculations of the exchange current density for hydrogen electrode reactions:A short review and a new equation, J. Electroanal. Chem., 2010,644,144.
    [19]Li Xiao, Lin Zhuang, Yi Liu et al., Activating Pd by Morphology Tailoring for Oxygen Reduction, J. Am. Chem. Soc.,2009,131,602.
    [20]Sergey N. Pronkina,, Antoine Bonnefont, Pavel S. Ruvinskiy, Hydrogen oxidation kinetics on model Pd/C electrodes:Electrochemical impedance spectroscopy and rotating disk electrode study, Electrochimica Acta,2010,55,3312.
    [21]S.L. Chen, A. Kucernak, Electrocatalysis under conditions of high mass transport: investigation of hydrogen oxidation on single submicron Pt particles supported on carbon, Journal of Physical Chemistry B,2004,108,13984.
    [22]N..Markovic, B.N. Grgur, P.N. Ross, Temperature-dependent hydrogen electrochemistry on platinum low-Index single-crystal surfaces in acid solutions, Journal of Physical Chemistry B, 1997,101,5405.
    [23]K. Seto, A. Iannelli, B. Love, J. Lipkowski, The influence of surface crystallography on the rate of hydrogen evolution at Pt electrodes, Journal of Electroanalytical Chemistry,1987, 226,351.
    [24]H. Kita, S. Ye, Y. Gao, Mass transfer effect in hydrogen evolution reaction on Pt single-crystal electrodes in acid solution, Journal of Electroanalytical Chemistry,1992,334, 351.
    [25]M.J. Croissant, T. Napporn, J.-M. Leger, C. Lamy, Electrocalytic oxidation of hydrogen at platinum-modified polyaniline eletrodes, Electrochimica Acta,1998,43,2447.
    [26]孙玉宝,燃料电池催化剂载体及相关电催化研究,武汉大学博士学位论文,2009
    [27]Feliu, J. M.; Herrero, E. In Handbook of Fuel Cells:Fundamentals,Technology, Applications; Vielstich, W., Lamm, A., Gasteiger, H. A., Eds.;Academic Press/Wiley:New York,2003,2, 625.
    [28]Larson, R.; Ha, S.; Zakzeski, J.; Masel, R. I, Unusually active palladium-based catalysts for the electrooxidation of formic acid, J. Power Sources,2006,157,78.
    [29]Gurau, B.,Viswanathan, R., Lafrenz, T. J. et al., Structural and electrochemical characterization of binary, ternary, and quaternary platinum alloy catalysts for methanol electro-oxidationl,J. Phys. Chem. B,1998,102,9997.
    [30]N. Hoshi, K. Kida, M. Nakamura, M. Nakada, K. Osada, Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium, J. Phys. Chem. B,2006, 110,12480.
    [31]Wang, Z. L., Transmission Electron Microscopy of Shape-Controlled Nanocrystals and Their Assemblies, J. Phys. Chem. B,2000,104,1153.
    [32]Silvestre-Albero, J.; Rupprechter, G.; Freund H.-J, Atmospheric pressure studies of selective 1,3-butadiene hydrogenation on well-defined Pd/Al2O3/NiAl(110) model catalysts:Effect of Pd particle size, J. Catal.,2006,240,58.
    [33]Yudanov, I. V., Sahnoun, R., Neyman, K. M. Et al., CO adsorption on Pd nanoparticles: density functional and vibrational spectroscopy studies, J. Phys. Chem. B,2003,107,255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700