含透明颤菌血红蛋白基因重组菌的构建及其对菌株发酵产1,3-丙二醇的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文将编码透明颤菌血红蛋白的结构基因vgb引入1,3-丙二醇产生菌K.oxytoca M5al,同时还将编码甲酸脱氢酶基因fdh和vgb同时引入菌体表达。并考察了外源蛋白的表达对菌体发酵产1,3-丙二醇的影响。结果和结论如下:
     发酵前对菌株进行驯化会明显提高菌株产1,3-丙二醇的能力,建立并比较了高甘油驯化策略和发酵液驯化策略。经驯化的菌株生长速度要高于未经驯化的菌株,且发酵液驯化的菌株生长速度高于高甘油驯化的菌株,相应发酵液驯化菌株合成的1,3-PD的能力和甘油的消耗速度均优于高甘油驯化菌株。摇瓶发酵45小时,高甘油液驯化菌株产1,3-PD浓度为6.58 g·l~(-1),相比原始菌产1,3-PD能力提高了41.2%;而发酵液驯化菌株产1,3-PD浓度为7.36 g·l~(-1),相比原始菌产1,3-PD能力提高了57.94%。经发酵液驯化后不仅提高了菌体对底物甘油的耐受能力,还提高了菌体对产物的耐受性能,从而提高菌体产1,3-PD的能力。
     不同溶氧条件下摇瓶发酵考察表明,溶氧对最终的发酵结果有明显的影响,500ml的摇瓶装入100ml发酵液时发酵效果最好,摇瓶发酵产1,3-PD浓度为11.2g·l~(-1)。
     透明颤菌血红蛋白和甲酸脱氢酶都成功在菌体内表达,CO差光谱分析和甲酸脱氢酶酶活分析表明所表达的外源蛋白都具有活性。构建了引入parDE基因的重组质粒pDV和pDFV,在原始菌中,其稳定性较未引入parDE基因的重组质粒pV和pFV大大提高。传代48小时后,pDV和pDFV质粒丢失率分别为23.3%、39.1%,与未引入parDE基因的质粒pV和pFV相比(质粒丢失率分别为69.6%、79.3%)稳定性明显提高。传代前后FDH酶活的测定结果表明,parDE基因的引入同样可以防止因质粒丢失而造成的酶活降低。
     对重组菌在不同溶氧条件下发酵生产1,3-PD进行了初步考察。结果表明在K.oxytoca M5al内引入VHb并没有明显促进菌体生长,反而在一定程度上抑制了菌体生长;但低溶氧条件下VHb的表达提高了单位菌体合成1,3-PD的能力,摇瓶发酵45小时相比原始菌1,3-PD产量提高了43.7%。重组菌M5al-pDFV,摇瓶发酵45小时后产1,3-PD浓度达12.4 g·l~(-1),相比原始菌产1,3-PD提高了93.75%。菌体内NADH浓度测定表明重组菌M5al-pDV、M5al-pDFV体内NADH水平均高于原始菌。
The vgb gene coding for Vitreoscilla Hemoglobin was transferred into wild type strain K.oxytoca M5al, also the fdh gene coding for formate dehydrogenase and vgb were transferred into K.oxytoca M5al together. Then the influnce of heterogeneous proteins on the fementation of 1,3-propanediol was studied. The results were shown as followed:
     We found that domestication of strain could obviously enhance the production of 1,3-propanediol. After domestication the cell growth was better than undomesticated strain, fermentation broth domestication had more influence on glycerol consumption and 1,3-propanediol production as well as on cell growth. After 45 hours’fermentation, the yield of 1,3-propanediol of glycerol domesticated strain and fermentation broth domesticated strain were 6.58 g·l~(-1) and 7.36 g·l~(-1),respectively. Compared with the wild type strain, the production of 1,3-propanediol was enhanced 41.2% and 57.94%,respectively. it stated clearly that fermentation broth domestication could not only enhance the endurence of substrate glycerol, but also enhanced endurence of products such as 1,3-propanediol, ethanol, lactate. So finally it could enhance the productivity of 1,3-propanediol.
     The result of shaking flask fermentation under differents dissoved oxygen conditions showed that dissoved oxygen was a main factor that influnced the fermentation results, 500ml flask filled with 100ml medium would be the best dissoved oxygen condition, and the final concentration of 1,3-propanediol of 11.2g·l~(-1) was gained in this condition.
     Vitreoscilla Hemoglobin and formate dehydrogenase were successfully expressed in K.oxytoca M5al, CO bonding experiment and formate dehydrogenase enzyme activity analysis showed that those heterogeneous proteins had fuctional activity. Recombinent plasmids pDV and pDFV were constructed which contained parDE gene, compared with plasmid pV or pFV, the stability of plasmid in recombinant strains contained parDE were obviously enhanced. Continuous passage 48 hours, only 23.3%、39.1% of plasmid pDV and pDFV were lost, while about 69.6%、79.3% of plasmid pV and pFV were lost. And it showed that the FDH activity were also less lost because of parDE gene.
     The 1,3-PD production of recombinant strain M5al-pDV was higher than wild strain M5al while biomass was lower than M5al. Under high dissolved oxygen condition, after 45 hours, the yields of 1,3-PD of M5al and M5al-pDV were 9.27 g l~(-1) and 11.15 g l~(-1), respectively. The production of 1,3-PD of recombinant strain was 20.28% higher, and the ethanol also increased while the lactate concentration decreased. Under low dissolved oxygen condition, after 45 hours, the yields of 1,3-PD of M5al and M5al-pV were 6.4 g l~(-1) and 9.2 g l~(-1), respectively. The production of 1,3-PD of recombinant strain was 43.7% higher, and both lactate and ethanol concentrations decreased.
     Recombinant strain M5al-pDFV was constructed which contain both Vitreoscilla Hemoglobin and formate dehydrogenase. After 45 hours’fermentation, the yields of 1,3-PD was 12.4 g·l~(-1),the production of 1,3-PD of M5al-pDFV was 93.75% higher compared with wild strain. The concentration of NADH in recobminent M5al-pDV、M5al-pDFV biomass were higher than wild strian, this may be the reason why the 1,3-PD production of recombinent strains increased.
引文
[1] Zeng AP, Biebl H. Bulk chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol, 2002, 74:239~259.
    [2] 王熙庭, 陈曼华. 1,3-丙二醇生产方法及用途. 煤化工, 2000, 4: 38~40.
    [3] 瞿国华. PTT 的工业开发及 1,3-丙二醇合成. 合成纤维工业, 2000, 23(4): 31~34.
    [4] 赵育. 新型热塑性聚酯—聚对苯二甲酸丙二醇酯. 塑料科技, 2000, 136:33~36.
    [5] 杨佳庆, 顾利霞. 聚酯新品种 PTT. 产业用纺织品. 1998, 10:27~29.
    [6] 张忠安. PTT 纤维生产技术和应用. 合成纤维工业. 2003, 26(1): 42~44.
    [7] 刘艳杰, 赵庆国, 蒋巍等. 1,3-丙二醇的生产技术分析. 化学工程师. 2002, 88(1): 45~46.
    [8] 杨菊群, 王幸宜. 1,3-丙二醇合成工业进展. 化学工业与工程技术. 2002, 23, 11~15.
    [9] 孟翠敏, 田华. 1,3-丙二醇的生产技术. 天津化工, 2008, 22(1): 48~51.
    [10] Chaminand J, Djakovitch L, Gallezot P, et al. Glycerol hydrogenolysis on heterogenious catalysts. Green Chem, 2004, 6(8): 359~361.
    [11] Besson M, Gallezot P. Deactibation of metal catalysts in liquid phase organic reaction. Catalysis Today, 2003, 81(4): 547~559.
    [12] Besson M, Gallezot P, Pigamo A, et al. Development of an improved continuous hydrogenation process for the production of 1,3-propanediol using titania supported ruthenium catalysts. Appl Catal a gen, 2003, 250(1): 117~124.
    [13] Nakas JP, Schaedle M, Parkinson CM, et al. System development for linked-fermentation products of solvents from algal biomass. Appl Environ Microbiol, 1983, 46:1017~1023.
    [14] Schütz H, Dadler F. Anaerobic reduction of glycerol to propanediol-1,3 by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbial, 1984, 5:169~178.
    [15] Forsberg C. Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clotridium species. Appl Environ Microbiol, 1987, 53:639~643.
    [16] Homann T, Tag C, Biebl H, et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol, 1990, 33:121~126.
    [17] Menzel K, Zeng AP, Deckwer WD. Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. J Biotechnol, 1997a, 56:135~142.
    [18] Barbirato F, Grivel JP, Soucaille P, et al. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl Environ Microbiol, 1996, 62:1448~1451.
    [19] 苑广志, 田晶等. 曲霉发酵甘油生产 1 ,3-丙二醇的研究.食品与发酵工业. 2006, 32(1): 49~53.
    [20] Yang G, Tian J S, Li J L. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions [J]. Appl Microbiol Biotechnol, 2007, 73: 1017~1024.
    [21] Zong-Ming Z, Ke-Ke C, Qiu-Long H, et al. Effect of culture conditions on 3-hydroxypropionaldehyde detoxification in 1,3-propanediol fermentation by Klebsiella pneumoniae[J]. Biochem Eng J, 2008, 39: 305~310.
    [22] Zhu M. Improved production of 1,3-propanediol in engineered E.coli by reducing accumulation of toxic intermediates:[Thesis of Doctor Degree]. USA, University of Wisconism madision, 1999.
    [23] Barbirato F, Camarasa C, Grivet J, et al. Fermentation of raw glycerol to 1,3-propanediol producing microorganiszm: Enterobackter agglomerans. Appl. Microbiol.Biotechnol, 1995, 43: 786~793.
    [24] Lüthi-Peng Q, Dileme F B, Puhan Z. Effect of glucose on glycerol bioconversion by Lactobacillus reuteri. Appl Microbiol Biotechnol, 2002, 59:289~296.
    [25] Abdel I Q, Rhizlane B, Moha J. Anaerobic Degradation of Glycerol by Desulfovibrio fructosovorans and D.carbinolicus and Evidence for Glycerol-Dependent Utilization of 1,2-Propanediol. Current microbiology, 1998, 36: 283~290.
    [26] Gonzalez-Pajuelo M, Andrade J C, Vasconcelos I. Production of 1,3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. J Ind Microbiol Biotechnol, 2004, 31: 442~446.
    [27] Biebl H. Fermentation of glycerol by Clostridium pasteurianum-batch and continuous culture studies. Journal of Industrial Microbiology Biotechnology, 2001, 27: 18~26.
    [28] Saint-Amans S, Perlot P, Goma G, et al. High production of 1,3-propanedol from glycerol by Clostidium VPI-3266 in a simply controlled fed-batch system. Biotechnol lett, 1994, 16: 831~836.
    [29] Xiu Z L, Song B H, Wang Z T, et al. Optimization of dissimilation of glycerol to 1,3-propanedol by Klebsiella penumoniae in one- and two-stage anaerobic cultures. Biochem Eng J, 2004, 19: 189~197.
    [30] Menzel K, Zeng A P, Deckwer W D. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella penumoniae. Enzyme Mirob Technol, 1997, 56: 135~142.
    [31] Hartlep M, Hussmann W, Prayitno N, et al. Study of two-stage processes for the microbial production of 1,3-propanediol form gucose. Appl Microbiol Biotechnol, 2002, 60: 60~66.
    [32] Ke-Ke C, De-Hua L, Yan S, et al.. 1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnol Lett, 2004, 26: 911~915.
    [33] Chen X, Zhang D J, Qi W T, et al. Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under micro-aerobic conditions [J]. Appl Microbiol Biotechnol, 2003, 63: 143~146.
    [34] Liu H J, Zhang D J, Xu Y H, et al. Microbial production of 1,3-propanediol from glycerol by Klebsiella pneumoniae under micro-aerobic conditions up to a pilot scale [J]. Biotechnol Lett, 2007, 29: 1281~1285.
    [35] Menzel K, Ahrens K, Zeng AP ,et al. Kinetic ,dynamic ,and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvatemetabolism.Biotechnol Bioeng, 1998, 60(5) : 6172~6261.
    [36] Ping Z, Kirsten W, Jibin S, et al. Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochemistry, 2006, 41:2160~2169
    [37] Yanping Z, Yin L, Chenyu D, et al. Inactivation of aldehyde dehydrogenase: A key factor for 1,3-propanediol production by Klebsiella pneumoniae Metabolic Engineering, 2006, 8: 578~586.
    [38] Cameron D C, Altartas N E, Hoffman M L, et al. Metabolic engineering of propandiol pathways. Biotechnol Prog, 1998, 14: 1162~1251.
    [39] Laffend L A, Nagarajan V, Nakamura C E. Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. United States Patent: 6025184, 2000-02-15.
    [40] Biebl H., et al. Microbial production of 1,3-propanediol, Appl Microbiol Biotechnol, 1999, 52: 289~297.
    [41] Tong I, Cameron D. Enhancement of 1,3-propanediol production by cofermentation in E. coli expressing genes from Klebsiella pneumoniae dha regulon genes. Appl Biochem Biotechnol.1992,34(35) :1492~1591.
    [42] Celine R, Patricia S, Isabelle M S , et al. Molecular characterization of the 1,3-propanediol(1,3-PD) operon of Clostridium butyricum. PNAS. 2003, 100(9): 5010~5015.
    [43] 张晓梅,唐雪明,诸葛斌等. 产 1,3-丙二醇新型重组大肠杆菌的构建. 生物工程学报.2005, 21(5): 743~747.
    [44] Fenghuan W, Huijin Q, Dawei Z, et al. Production of 1,3-propanediol from glycerol by recombinant E. coli using incompatible plasmids system. Mol Biotechnol, 2007, 37(2): 112~119.
    [45] Robert Westervelt . DuPont ,Tate &Lyle Form joint venture for propanediol production . Chemical Week. 2004,166 (18): 101.
    [46] Wakabayashi S, Matsubara H, Webster D A. Primary Sequence of a Dimeric Bacterial Hemoglobin fromVitreoscilla[J]. Nature, 1986, 322: 481~483.
    [47] Dikshit K L, Webster D A, et al. Cloning, characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli[J]. Gene, 1988, 70: 377~386.
    [48] Khosla C, Bailey J E, et al. The Vitreoscilla hemoglobin gene: molecular cloning, nucleotide sequence and genetic expression in Escherichia coli[J]. Mol Gen Genet, 1988, 214: 158~161.
    [49] Kuhse J, Phler A, et al. Conserved sequence motifs in the untranslated 3’end of leghemoglobin transcripts isolated from broadbean nodules[J]. Plant Sci, 1987, 49: 137~143.
    [50] Dikshit K L, Orii Y, Navani N, et al. Sited-Directed Mutagenesis of Bacterial Hemoglobin: The Role of Glutamine (E7) in Oxygen-Binding in the Distal Heme Pocket[J]. Arch Biochem Biophys, 1998, 349(1): 161~166.
    [51] Toshi M, Mand E S, Dikshit K L. Hemoglobin Biosynthesis in Vitreoscilla stercoraria DW: Cloning, Expression, and Characterization of a New Homolog of a Bacterial Globin Gene[J]. Appl Environ Microbiol,1998, 64(6): 2220~2228.
    [52] Khosla C, Bailey J E, et al. Evidence for partial export of Vitreoscilla hemoglobin into the periplasmic space in Escherichia coli: Implications for protein function[J]. J Mol Biol, 1989, 210: 79~89.
    [53] Ramandeep, Hwang K W, Webster D A., et al. Vitreoscilla Hemoglobin: Intracellular localization and binding to membranes[J]. J Biol Chem, 2001, 276: 24781~24789.
    [54] Khosla C, Bailey JE, et al. Characterization of the oxygen-dependent promoter of the Vitreoscilla hemoglobin gene in Echerichia coli[J]. J Bacteriol, 1989, 171(11): 5995~6004.
    [55] Andersson C, Holmberg N, Kallio P T, et al. Error-Prone PCR of Vitreoscilla Hemoglobin (VHb) to support the growth of microaerobic Escherichia coli. Biotechnol Bioeng, 2000, 70: 446~455.
    [56] Wu J M, Hsu T A, LeeC K. Expression of the gene coding for bacterial hemoglobin improves β-galactosidase production in a recombinant Pichia pastoris. Biotechnol Lett, 2003, 25(17): 1457~1462.
    [57] Kim Y, Webster D A, Stark B C. Improvement of bioremediation by Pseudomonasand Burkholderia by mutants of the Vitreoscilla hemoglobin gene(vgb) integrated into their chromosomes. J Ind Microbiol Biotechnol, 2005, 32(4): 148~154.
    [58] 吴巧雯, 崔洪志, 郭三堆. 透明颤菌血红蛋白基因的植物化改造合成及其在大肠杆菌中功能的鉴定[J]. 中国农业科学, 2004, 37(10): 1439~1443.
    [59] Khosla C, Curtis J E, DeModena J, et al. Expression of intracellular hemoglobin improves protein synthesis in oxygenlimited Escherichia coli[J]. Biotechnology, 1990, 8:849~853.
    [60] Kallio P T, Kim D J, Tsai P S, et al. Intracellular expression of Vitreoscilla hemoglobin altersEscherichia coli energy metabolism under oxygen-limited conditions[J]. Eur J Biochem, 1994, 219: 201~208.
    [61] Frey A D, Bailey J E, Kallio P T, et al. Expression of Alcaligenes eutrophus Flavohemoglobin and Engineered Vitreoscilla Hemoglobin Reductase Fusion Protein for Improved Hypoxic Growth of Escherichia coli[J]. Appl Environ Microb, 2000, 66(1): 98~104.
    [62] 吴奕, 杨胜利等. 透明颤菌血红蛋白基因调控与功能的研究[J]. 生物工程学报, 1997,13(1): 1~5.
    [63] Kim K J, Chi P Y, Hwang K W, et al. Study of Cytochrome bo Function in Vitreoscilla Using a cyo- knockout Mutant[J]. J Biochem, 2000, 128: 49~55.
    [64] Park K W, Kim K J, Howard A J. Vitreoscilla Hemoglobin Binds to SubunitⅠof Cytochrome bo Ubiquinol Oxidases[J]. J Boil Chem, 2002, 277: 33334~33337.
    [65] Dikshit R P, Dikshit K L, Liu Y X, et al. The bacterial hemoglobin from Vitreoscilla can support the aerobic growth of Escherichia coli lacking terminal oxidases[J]. Arch Biochem Biophys, 1992, 293(3): 241~245.
    [66] Malin K, Ekaterina S R, Ebbe N, et al. An investigation of the peroxidase activity of Vitreoscilla hemoglobin[J]. J Biol Inrg Chem, 2007,12(3): 324~334.
    [67] 胡之壁. 透明颤菌血红蛋白研究现状及其在中药中的应用展望[J]. 中西医结合现状, 2005, 3(5): 337~341.
    [68] 孟春, 叶勤, 石贤爱等. 透明颤菌血红蛋白基因在金色链霉菌中的克隆与表达. 微生物学报[J]. 2002, 42(3): 305~310.
    [69] 文莹, 宋渊, 李季伦. 透明颤菌血红蛋白在肉桂地链霉菌中的表达对其细胞生长及抗生素合成的影响[J]. 生物工程学报, 2001, 17(1): 24~28.
    [70] 凌华云, 闵勇, 熊伟等. 斑贝链霉菌接合转移系统的构建及透明颤菌血红蛋白基因的表达对其次级代谢的影响[J]. 微生物学通报, 2006, 33(5): 59~64.
    [71] 吴益民, 王洪军, 孙艳等. vgb 在红色糖多孢菌表达及生物活性的研究[J]. 药物生物技术. 2007,14(2): 090~093.
    [72] 李兵, 李术娜, 周艳芬等. 透明颤菌血红蛋白基因在产黄青霉中的克隆与表达[J]. 中国抗生素杂志, 2006, 31(7): 400~402.
    [73] Enayati N, Tari C, Parulekar S J, et al. Production of -Amylase in Fed-Batch Cultures of vgb+ and vgb- Recombinant Escherichia coli: Some Observations[J]. Biotechnol Prog, 1999, 15 (4): 640~645.
    [74] Feng L, Chen S W, Sun M, et al. Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield[J]. Appl Microbiol Biot, 2007, 74(2):390~397.
    [75] Suthar D H, Chattoo B B, et al. Expression of Vitreoscilla hemoglob inenhances growth and levels of alpha-amylase in Schwanniomyces occidentalis[J]. Appl Microbiol Biotechnol, 2006, 72(1): 94~102.
    [76] 孟志刚, 张锐, 郭三堆等. 利用透明颤菌血红蛋白基因 vgb 改造毕赤酵母分泌型表达载体pPIC9K 的研究[J]. 西北农业学报, 2005, 14(4): 166~170.
    [77] Yu H M, Shi Y, Zhang Y P, et al. Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly (β-hydroxybutyrate) and fermentative parameters[J]. FEMS Microbiol Lett, 2002, 214: 223~227.
    [78] Yu H M., Yin J, Li H Q, Yang S L , et al. Construction and selection of the novel recombinant Escherichia coli strain for Poly (L-hydroxybutyrate) production[J]. J Biosci Bioeng, 2000, 89: 307~311.
    [79] 孙智杰, 梁 楠, 李润东等. 利用透明颤菌血红蛋白基因在谷氨酸棒杆菌中的表达提高谷氨酸和谷氨酰胺的产量[J]. 北京理工大学学报, 2005, 25(2): 180~184.
    [80] Liu Q, Zhang J, Wei X X, et al. Microbial production of l-glutamate and l-glutamine by recombinant Corynebacterium glutamicum harboring Vitreoscilla hemoglobin gene vgb[J]. Appl Microbiol Biot, 2008, 77(6): 1297~1304.
    [81] Wei M L, Webster D A., Stark B C. Metabolic Engineering of Serratia marcescens with the Bacterial Hemoglobin Gene: Alterations in Fermentation Pathways[J]. Biotechnol Bioeng, 1996, 52: 561~571.
    [82] Geckil H, Barak Z E, et al. Enhanced production of acetoin and butanediol in recombinant Enterobacter aerogenes carrying Vitreoscilla hemoglobin gene [J]. Bioprocess Biosyst Eng , 2004, 26: 325~330.
    [83] Ohta K, Beall D S, Mejia J P, et al. Metabolic engineering of Klebisella oxytoca M5al for ethanol production from xylose and glucose[J]. Appl Environ Microbial, 1991, 157: 2810~2815.
    [84] Kleiner D, Paul W, Merrick M J. Construction of Multicopy Expression Vectors for Regulated Overproduction of Proteins in Klebsiella pneumoniae and Other Enteric Bacteria[J]. J.Gen. Microbiol, 1988, 134(7): 1779~1784.
    [85] 于慧敏,尹进,李红旗,等. 透明颤菌血红蛋白基因在产 PHB 重组大肠杆菌中的克隆表达. 清华大学学报[J], 2000, 40(2), 32~35.
    [86] Claisse O, Lonvaud-Funel A. Detection of Lactic Acid Bacteria Producing 3-Hydroxypropionaldehyde (Acrolein Precursor) from Glycerol by Molecular Tests [J]. Lait, 2001,81: 173?181.
    [87] 张延平, 刘铭, 杜晨宇等. 代谢副产物对 Klebsiella pneumoniae 生长及合成 1,3-丙二醇的影响. 过程工程学报, 2006, 6(5): 804~808.
    [88] Weinstein M, Roberts R C, Helinske D R. A region of the broad-host-range plasmid RK2 cause stable in planta inheritance of plasmids in Rhizobium meliloti cells isolated from alfalfa root nodules. J Bacteriol, 1992, 174 (22): 7486~7489.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700