Lysinibacillus sphaericus G10 NAD (P)+ 依赖型葡萄糖脱氢酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
葡萄糖脱氢酶由于具有活性高和双辅酶特异性等优点,在辅酶再生领域具有广阔的应用前景。我们首先从若干株芽孢杆菌及其近缘种中克隆到若干个葡萄糖脱氢酶基因,选择出其中活性最高的来源于Lysinibacillus sphaericus G10中的葡萄糖脱氢酶(LsGDH)进行深入研究。对重组LsGDH进行了酶学性质和耐碱性机制的研究;通过理性设计得到了稳定性显著提高的突变体;并发明了直接从土壤宏基因组中一步克隆葡萄糖脱氢酶全长序列的方法。论文的主要研究结果如下:
     1) LsGDH基因的克隆、表达与性质研究
     利用简并PCR和染色体步移从L. sphaericus G10中克隆到葡萄糖脱氢酶基因全序列。该基因大小为786 bp,编码262个氨基酸。重组LsGDH在25℃活性为205.7±6.9 U/mg。经SDS-PAGE和排阻层析,确定LsGDH为同源四聚体。该酶的最适温度和最适pH分别是50℃和9.5;其热稳定性较差,只在35℃以下稳定;但是该酶的耐碱性较好,在pH 6.5-10.5之间稳定。LsGDH在直链烷醇中的稳定性可以用Gaussian分布模型来描述(R2≥0.94)。
     2) LsGDH耐碱机制的初步探讨
     通过将理论分析和功能实验相结合,从分子的角度初步阐明了LsGDH的耐碱机制。定点突变研究结果表明,第170位的氨基酸类型对于葡萄糖脱氢酶的pH稳定性起到了至关重要的作用,第114位的氨基酸对其稳定性有一定贡献,约为20%。对LsGDH由单体形成四聚体过程中的静电相互作用能和疏水相互作用能的变化分析结果表明,影响LsGDH四聚体在碱性pH下稳定的主要因素是静电相互作用,而非亚基间疏水相互作用。
     3)通过理性设计提高LsGDH的热稳定性
     通过对LsGDH经同源建模后的三维结构分析,结合定点突变技术,在LsGDH四聚体AC和BD亚基间各引入一对二硫键,获得了一株热稳定性显著提高的突变体DS255。DS255经亲和层析纯化过柱过程中有约60%蛋白被空气氧化形成二硫键,在4℃放置一周后经空气自然氧化后几乎全部蛋白都形成二硫键。DS255的Tm值为86.7℃,比野生型提高了40.5℃。DS255对于底物和辅酶亲和力下降了3倍左右,但是其kcat则提高了50%左右,而可溶性表达量尽管降低,但仍比较可观。这说明我们通过在LsGDH四聚体亚基间引入二硫键提高其热稳定性的策略是成功的,极大的提升了LsGDH的实用价值。
     4)从土壤宏基因组中一步克隆葡萄糖脱氢酶的方法
     发明了从土壤宏基因组中通过一步PCR方法扩增出葡萄糖脱氢酶全长序列的方法。对扩增条件的研究结果表明,土壤基因组的纯度和复杂性对能否成功扩增出目的基因至关重要。此外,用于扩增的引物简并性要尽量低且待扩增DNA片段长度尽量小于2 kb,目标片段越小,扩增效率越高。该方法省却了后续繁琐的染色体步移的步骤,由该方法克隆出的DNA片段混合物,可不经测序直接用于DNA改组介导的蛋白质定向进化,由于土壤微生物的多样性导致所获得片段的多样性,因而筛选到目的性状的成功率也大为提高。
Glucose dehydrogenase could potentially be used for coenzyme regeneration in practical applications due to the advantages of its high activity and dual-cofactor specificity. We have cloned several genes encoding glucose dehydrogenase from strains of Bacillus and related species, and glucose dehydrogenase of highest activity from Lysinibacillus sphaericus G10 was chosen for further study. The enzymatic properties of recombinant LsGDH and alkali resistance mechanism was studyed; a mutant with improved thermal stability was obtained by rational design; and a strategy for one-step cloning of glucose dehydrogenase directly from the soil metagenome was invented. The main results are as follows:
     1) Cloning, expression and characterization of LsGDH
     The full-length nucleotide sequence of LsGDH from L. sphaericus G10 was obtained by using degenerate PCR and chromosome walking. The gene constituted by 786 bp nucleotides, which encoding 262 amino acids. The activity of recombinant LsGDH was 205.7±6.9 U/mg at 25℃. LsGDH was determined to be a homologous tetramer by SDS-PAGE and size exclusion chromatography. The recombinant LsGDH exhibited maximum activity at pH 9.5 and 50℃; the enzyme was stable just at the temperature below 35℃, but very stable at a wide pH ranging from 6.5 to 10.5. The stability of LsGDH in the chain alkanol can be described by the Gaussian distribution model (R2≥0.94).
     2) The alkali-resistant mechanism of LsGDH
     The alkali-resistant mechanism was investigated by theoretical analysis and functional experiment. The results of site-directed mutagenesis showed that the type of the 17th amino acid played a crucial role for the pH stability of LsGDH and the 114th amino acids accounted for about 20% contribution to the pH stability. The analysis of electrostatic interaction energy and hydrophobic interaction energy after energy minimization showed that electrostatic interactions was the main factor affected the pH stability of LsGDH, rather than the hydrophobic interactions.
     3) The rational design to improve the thermal stability of LsGDH
     A mutant with signicicantly improved thermal stability, DS255, has been designed by introducing disulfide bonds at the subunits intersurface. About 60% of the mutant formed disulfide bonds during the purification process, and almost all the DS255 formed disulfide bonds through the natural air oxidation after placing at 4℃for one week. The Tm value of DS255 is 40.5℃higher than wild-type LsGDH. The affinity to substrate and coenzyme of DS255 was about three times lower than wild-type, but the kcat value increased about 50%, meanwhile the soluble expression was little lower than wild-type. These results indicated that the strategy for increasing the thermal stability of LsGDH by introduction of disulfide bonds between subunits was successful, and greatly enhanced the practical value of LsGDH.
     4) one-step strategy for cloning of glucose dehydrogenase from soil metagenomic DNA.
     A strategy for one-step cloning of glucose dehydrogenase directly from soil metagenomic DNA was invented. Study on the conditions of the amplification process showed that the purity and complexity of the metagenomic DNA is essential to amplication. Furthermore, the degeneracy of the primers should be as low as possible and the desired length of the amplified fragment had better less than 2 kb. This method obviates the cumbersome chromosome walking process, and the obtained DNA fragments can be directly used for directed evolution mediated by DNA shuffling without sequencing.
引文
[1]Straathof, A. J., Panke, S., Schmid, A. The production of fine chemicals by biotransformations[J]. Curr Opin Biotechnol,2002,13(6):548-556.
    [2]Chenault, H. K., Whitesides, G. M. Regeneration of nicotinamide cofactors for use in organic synthesis[J]. Appl Biochem Biotechnol,1987,14(2):147-197.
    [3]Hummel, W. Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments[J]. Trends Biotechnol,1999,17(12):487-492.
    [4]Endo, T., Koizumi, S. Microbial Conversion with Cofactor Regeneration using Genetically Engineered Bacteria[J]. Advanced Synthesis & Catalysis,2001, 343(6-7):521-526.
    [5]Stewart, J. D. Organic transformations catalyzed by engineered yeast cells and related systems[J]. Curr Opin Biotechnol,2000,11(4):363-368.
    [6]Galkin, A., Kulakova, L., Yoshimura, T.Synthesis of optically active amino acids from alpha-keto acids with Escherichia coli cells expressing heterologous genes[J]. Appl Environ Microbiol,1997,63(12):4651-4656.
    [7]Kataoka, M., Rohani, L. P., Yamamoto, K. Enzymatic production of ethyl (R)-4-chloro-3-hydroxybutanoate:asymmetric reduction of ethyl 4-chloro-3-oxobutanoate by an Escherichia coli transformant expressing the aldehyde reductase gene from yeast[J]. Appl Microbiol Biotechnol,1997, 48(6):699-703.
    [8]Julliard, M., Le Petit, J., Ritz, P. Regeneration of NAD(+) cofactor by photosensitized electron transfer in an immobilized alcohol dehydrogenase system[J]. Biotechnol Bioeng,1986,28(12):1774-1779.
    [9]Nakamura, K., Yamanaka, R. Light-mediated regulation of asymmetric reduction of ketones by a cyanobacterium[J]. Tetrahedron-Asymmetry,2002, 13(23):2529-2533.
    [10]Suss-Fink, G., Meister, G. Transition Metal Clusters In Homogeneous Catalysis[A]. F. G. A. Stone, and W. Robert. Advances in Organometallic Chemistry[C]. Academic Press,1993.41-134.
    [11]Bhaduri, S., Mathur, P., Payra, P.Coupling of catalyses by carbonyl clusters and dehydrogenases:Reduction of pyruvate to L-lactate by dihydrogen[J]. J Am Chem Soc,1998,120(46):12127-12128.
    [12]Wagenknecht, P. S., Penney, J. M., Hembre, R. T. Transition-metal-catalyzed regeneration of nicotinamide coenzymes with hydrogen[J]. Organometallics, 2003,22(6):1180-1182.
    [13]Laval, J. M., Moiroux, J., Bourdillon, C. The effect of electrochemical regeneration upon the enzymatic catalysis of a thermodynamically unfavorable reaction[J]. Biotechnol Bioeng,1991,38(7):788-796.
    [14]张种,邢新会.辅酶再生体系的研究进展[J].生物工程学报,2004,20(6).
    [15]Saidman, S. B., Bessone, J. B. The influence of electrode material on NAD(+) oxidation[J]. Electrochimica Acta,2000,45(19):3151-3156.
    [16]吕陈秋.烟酰型辅酶NAD(P)+和NAD(P)H再生的研究进展[J].有机化学,2004,24(11).
    [17]Cantet, J., Bergel, A., Comtat, M. Coupling of the electroenzymatic reduction of NAD+ with a synthesis reaction[J]. Enzyme and Microbial Technology, 1996,18(1):72-79.
    [18]Manjon, A., Obon, J. M., Casanova, P.Increased activity of glucose dehydrogenase co-immobilized with a redox mediator in a bioreactor with electrochemical NAD+ regeneration[J]. Biotechnology Letters,2002,24(15): 1227-1232.
    [19]Seelbach, K., Riebel, B., Hummel, W.A novel, efficient regenerating method of NADPH using a new formate dehydrogenase [J]. Tetrahedron Letters,1996, 37(9):1377-1380.
    [20]Jang, S. H., Kang, H. Y., Kim, G. J.Complete In vitro conversion of D-xylose to xylitol by coupling xylose reductase and formate dehydrogenase [J]. Journal of Microbiology and Biotechnology,2003,13(4):501-508.
    [21]Groger, H., Hummel, W., Rollmann, C.Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase [J]. Tetrahedron,2004, 60(3):633-640.
    [22]Findrik, Z., Vasic-Racki, D. Biotransformation of D-methionine into L-methionine in the cascade of four enzymes[J]. Biotechnol Bioeng,2007, 98(5):956-967.
    [23]Bozic, M., Pricelius, S., Guebitz, G. M.Enzymatic reduction of complex redox dyes using NADH-dependent reductase from Bacillus subtilis coupled with cofactorregeneration[J]. Appl Microbiol Biotechnol,2010,85(3):563-571.
    [24]Kurata, A., Fujita, M., Mowafy, A. M.Production of (S)-2-chloropropionate by asymmetric reduction of.2-chloroacrylate with 2-haloacrylate reductase coupled with glucose dehydrogenase[J]. J Biosci Bioeng,2008,105(4): 429-431.
    [25]Kosjek, B., Nti-Gyabaah, J., Telari, K.Preparative asymmetric synthesis of 4,4-dimethoxytetrahydro-2H-pyran-3-ol with a ketone reductase and in situ cofactor recycling using glucose dehydrogenase [J]. Organic Process Research & Development,2008,12(4):584-588.
    [26]Xu, Z., Jing, K., Liu, Y.High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration[J]. J Ind Microbiol Biotechnol,2007,34(1):83-90.
    [27]Yun, H., Yang, Y. H., Cho, B. K.Simultaneous synthesis of enantiomerically pure (R)-1-phenylethanol and (R)-alpha-methylbenzylamine from racemic alpha-methylbenzylamine using omega-transaminase/alcohol dehydrogenase/glucose dehydrogenase coupling reaction[J]. Biotechnol Lett, 2003,25(10):809-814.
    [28]Lin, S. S., Miyawaki, O., Nakamura, K. Continuous production of L-carnitine with NADH regeneration by a nanofiltration membrane reactor with coimmobilized L-carnitine dehydrogenase and glucose dehydrogenase [J]. J Biosci Bioeng,1999,87(3):361-364.
    [29]Johannes, T. W., Woodyer, R. D., Zhao, H. M. Efficient regeneration of NADPH using an engineered phosphite dehydrogenase[J]. Biotechnology and Bioengineering,2007,96(1):18-26.
    [30]Woodyer, R., Johannes, T., van der Donk, W.Protein engineering of phosphite dehydrogenase for NAD(P)H regeneration. [J]. Abstracts of Papers of the American Chemical Society,2005,229:U229-U229.
    [31]Johannes, T. W., Woodyer, R. D., Zhao, H. Directed evolution of a thermostable phosphite dehydrogenase for NAD(P)H regeneration[J]. Appl Environ Microbiol,2005,71(10):5728-5734.
    [32]Zhao, H. M., Woodyer, R., Johannes, T. Protein engineering of phosphite dehydrogenase for the development of a novel NAD(P)H regeneration system.[J]. Abstracts of Papers of the American Chemical Society,2004,227: U130-U130.
    [33]Vrtis, J. M., White, A. K., Metcalf, W. W.Phosphite dehydrogenase:a versatile cofactor-regeneration enzyme[J]. Angew Chem Int Ed Engl,2002,41(17): 3257-3259.
    [34]Costas, A. M., White, A. K., Metcalf, W. W. Purification and characterization of a novel phosphorus-oxidizing enzyme from Pseudomonas stutzeri WM88[J]. J Biol Chem,2001,276(20):17429-17436.
    [35]Wang, Y., Zhang, Y. H. Overexpression and simple purification of the Thermotoga maritima 6-phosphogluconate dehydrogenase in Escherichia coli and its application for NADPH regeneration[J]. Microb Cell Fact,2009,8:30.
    [36]Hummel, W. New alcohol dehydrogenases for the synthesis of chiral compounds[J]. Adv Biochem Eng Biotechnol,1997,58:145-184.
    [37]Mertens, R., Greiner, L., van den Ban, E. C. D.Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regeneration[J]. Journal of Molecular Catalysis B-Enzymatic,2003,24-5: 39-52.
    [38]Bastos, F. d. M., dos Santos, A. G, Jones, J.Three different coupled enzymatic systems for in situ regeneration of NADPH[J]. Biotechnology Techniques, 1999,13(10):661-664.
    [39]黄志华.甲酸脱氢酶用于辅酶NADH再生的研究进展[J].过程工程学报,2006,6(6).
    [40]van der Donk, W. A., Zhao, H. Recent developments in pyridine nucleotide regeneration[J]. Curr Opin Biotechnol,2003,14(4):421-426.
    [41]Bommarius, A. S., Drauz, K., Hummel, W.Some New Developments in Reductive Amtnation with Cofactor Regeneration[J]. Biocatalysis and Biotransformation,1994,10(1-4):37-47.
    [42]Bommarius, A. S., Schwarm, M., Drauz, K. Biocatalysis to amino acid-based chiral pharmaceuticals--examples and perspectives [J]. Journal of Molecular Catalysis B:Enzymatic,1998,5(1-4):1-11.
    [43]Eckstein, M., Daussmann, T., Kragl, U. Recent developments in NAD(P)H regeneration for enzymatic reductions in one- and two-phase systems[J]. Biocatalysis and Biotransformation,2004,22(2):89-96.
    [44]Metcalf, W. W., Wolfe, R. S. Molecular genetic analysis of phosphite and hypophosphite oxidation by Pseudomonas stutzeri WM88[J]. J Bacteriol,1998, 180(21):5547-5558.
    [45]Woodyer, R., van der Donk, W. A., Zhao, H. M. Optimizing a biocatalyst for improved NAD(P)H regeneration:Directed evolution of phosphite dehydrogenase[J]. Combinatorial Chemistry & High Throughput Screening, 2006,9(4):237-245.
    [46]Serov, A. E., Popova, A. S., Fedorchuk, V. V.Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae[J]. Biochem J,2002,367(Pt 3):841-847.
    [47]Keizo Yamamoto, T. N. Y. M. I. U. H. O. Characterization of Mutant Glucose Dehydrogenases with Increasing Stability [J]. Annals of the New York Academy of Sciences,1990,613(Enzyme Engineering 10):362-365.
    [48]Liu, W. F., Zhang, S. P., Wang, P. Nanoparticle-supported multi-enzyme biocatalysis with in situ cofactor regeneration[J]. Journal of Biotechnology, 2009,139(1):102-107.
    [49]Karaguler, N. G, Sessions, R. B., Binay, B.Protein engineering applications of industrially exploitable enzymes:Geobacillus stearothermophilus LDH and Candida methylica FDH[J]. Biochem Soc Trans,2007,35(Pt 6):1610-1615.
    [50]May, S. W. Applications of oxidoreductases[J]. Current Opinion in Biotechnology,1999,10(4):370-375.
    [51]Boonstra, B., Rathbone, D. A., French, C. E.Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone[J]. Appl Environ Microbiol,2000,66(12):5161-5166.
    [52]Riebel, B. R., Gibbs, P. R., Wellborn, W. B.Cofactor regeneration of both NAD(+) from NADH and NADP(+) from NADPH:NADH oxidase from Lactobacillus sanfranciscensis[J]. Advanced Synthesis & Catalysis,2003, 345(6-7):707-712.
    [53]Lee, L. G., Whitesides, G M. Enzyme-catalyzed organic synthesis:a comparison of strategies for in situ regeneration of NAD from NADH[J]. J Am Chem Soc,1985,107(24):6999-7008.
    [54]Okuda, J., Wakai, J., Igarashi, S.Engineered PQQ glucose dehydrogenase based enzyme sensor for continuous glucose monitoring [J]. Analytical Letters, 2004,37(9):1847-1857.
    [55]Yamada, M., Elias, Matsushita, K.Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase:its structure comparison with other quinoproteins[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2003,1647(1-2):185-192.
    [56]Oubrie, A. Structure and mechanism of soluble glucose dehydrogenase and other PQQ-dependent enzymes[J]. Biochim Biophys Acta,2003,1647(1-2): 143-151.
    [57]Kojima, K., Witarto, A. B., Sode, K. The production of soluble pyrroloquinoline quinone glucose dehydrogenase by Klebsiella pneumoniae, the alternative host of PQQ enzymes[J]. Biotechnology Letters,2000,22(16): 1343-1347.
    [58]Marcinkeviciene, L., Bachmatova, I., Semenaite, R.Purification and characterisation of PQQ-dependent glucose dehydrogenase from Erwinia sp. 34-1 [J]. Biotechnology Letters,1999,21(3):187-192.
    [59]Okuda-Shimazaki, J., Kakehi, N., Yamazaki, T.Biofuel cell system employing thermostable glucose dehydrogenase[J]. Biotechnol Lett,2008,30(10): 1753-1758.
    [60]Tsujimura, S., Kojima, S., Ikeda, T.Potential-step coulometry of D-glucose using a novel FAD-dependent glucose dehydrogenase[J]. Anal Bioanal Chem, 2006,386(3):645-651.
    [61]Tsujimura, S., Kojima, S., Kano, K.Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor [J]. Biosci Biotechnol Biochem,2006,70(3):654-659.
    [62]Yamaoka, H., Ferri, S., Fujikawa, M.Essential role of the small subunit of thermostable glucose dehydrogenase from Burkholderia cepacia[J]. Biotechnol Lett,2004,26(22):1757-1761.
    [63]Yamaoka, H., Yamashita, Y, Ferri, S.Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia[J]. Biotechnol Lett,2008,30(11):1967-1972.
    [64]Boontim, N., Yoshimune, K., Lumyong, S.Purification and characterization of D-glucose dehydrogenase from Bacillus thuringiensis M15[J]. Annals of Microbiology,2004,54(4):481-492.
    [65]Nagao, T., Mitamura, T., Wang, X. H.Cloning, nucleotide sequences, and enzymatic properties of glucose dehydrogenase isozymes from Bacillus megaterium IAM1030[J]. J Bacteriol,1992,174(15):5013-5020.
    [66]-. Hilt, W., Pfleiderer, G, Fortnagel, P. Glucose dehydrogenase from.Bacillus subtilis expressed in Escherichia coli. I:Purification, characterization and comparison with glucose dehydrogenase from Bacillus megaterium[J]. Biochim Biophys Acta,1991,1076(2):298-304.
    [67]Mitamura, T., Urabe, I., Okada, H. Enzymatic properties of isozymes and variants of glucose dehydrogenase from Bacillus megaterium[J]. Eur J Biochem,1989,186(1-2):389-393.
    [68]Heilmann, H. J., Magert, H. J., Gassen, H. G Identification and isolation of glucose dehydrogenase genes of Bacillus megaterium M1286 and their expression in Escherichia coli[J]. Eur J Biochem,1988,174(3):485-490.
    [69]Lampel, K. A., Uratani, B., Chaudhry, G R.Characterization of the developmentally regulated Bacillus subtilis glucose dehydrogenase gene[J]. J Bacteriol,1986,166(1):238-243.
    [70]Jany, K. D., Ulmer, W., Froschle, M.Complete amino acid sequence of glucose dehydrogenase from Bacillus megaterium[J]. FEBS Lett,1984,165(1):6-10.
    [71]Chaudhry, G R., Halpern, Y. S., Saunders, C.Mapping of the glucose dehydrogenase gene in Bacillus subtilis[J]. J Bacteriol,1984,160(2):607-611.
    [72]Vasantha, N., Uratani, B., Ramaley, R. F.Isolation of a developmental gene of Bacillus subtilis and its expression in Escherichia coli[J]. Proc Natl Acad Sci U S A,1983,80(3):785-789.
    [73]Ramaley, R. F., Vasantha, N. Glycerol protection and purification of Bacillus subtilis glucose dehydrogenase[J]. J Biol Chem,1983,258(20):12558-12565.
    [74]Fujita, Y., Ramaley, R., Freese, E. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis[J]. J Bacteriol,1977,132(1):282-293.
    [75]Pauly, H. E., Pfleiderer, G. D-glucose dehydrogenase from Bacillus megaterium M 1286:purification, properties and structure[J]. Hoppe Seylers Z Physiol Chem,1975,356(10):1613-1623.
    [76]Cruz-Jimenez, J. C., Saliceti-Piazza, L., Montalvo, R. Development of strategies for heterologous expression of glucose dehydrogenase from the halophilic archaeon Halobacterium sp NRC-1[J]. Journal of Biotechnology, 2005,118:S27-S27.
    [77]Ohshima, T., Ito, Y., Sakuraba, H.The Sulfolobus tokodaii gene ST1704 codes highly thermostable glucose dehydrogenase[J]. Journal of Molecular Catalysis B-Enzymatic,2003,23(2-6):281-289.
    [78]Pire, C., Esclapez, J., Ferrer, J.Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family[J]. FEMS Microbiol Lett,2001,200(2):221-227.
    [79]Pire, C., Camacho, M. L., Ferrer, J.NAD(P)(+)-glucose dehydrogenase from Haloferax mediterranei:kinetic mechanism and metal content[J]. Journal of Molecular Catalysis B-Enzymatic,2000,10(4):409-417.
    [80]Bonete, M. J., Pire, C., FI, L. L.Glucose dehydrogenase from the halophilic Archaeon Haloferax mediterranei:enzyme purification, characterisation and N-terminal sequence[J]. FEBS Lett,1996,383(3):227-229..
    [81]Bright, J. R., Byrom, D., Danson, M. J.Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum[J]. Eur J Biochem,1993,211(3):549-554.
    [82]Smith, L. D., Budgen, N., Bungard, S. J.Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum[J]. Biochem J,1989,261(3):973-977.
    [83]Giardina, P., de Biasi, M. G., de Rosa, M.Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus[J]. Biochem J, 1986,239(3):517-522.
    [84]Norman Strauss. Role of glucose dehydrogenase in germination of Bacillus subtilis spores[J]. Ferns Microbiology Letters,1983,20(3):379-384.
    [85]Vazquez-Figueroa, E., Chaparro-Riggers, J., Bommarius, A. S. Development of a thermostable glucose dehydrogenase by a structure-guided consensus concept[J]. Chembiochem,2007,8(18):2295-2301.
    [86]Baik, S. H., Ide, T., Yoshida, H.Significantly enhanced stability of glucose dehydrogenase by directed evolution[J]. Appl Microbiol Biotechnol,2003, 61(4):329-335.
    [87]Nagao, T., Makino, Y., Yamamoto, K.Stability-increasing mutants of glucose dehydrogenase[J]. FEBS Lett,1989,253(1-2):113-116.
    [88]Makino, Y, Negoro, S., Urabe, I.Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3[J]. J Biol Chem,1989, 264(11):6381-6385.
    [89]Kallberg, Y, Oppermann, U., Jornvall, H.Short-chain dehydrogenases/reductases (SDRs)[J]. Eur J Biochem,2002,269(18): 4409-4417.
    [90]Jornvall, H., Persson, B., Krook, M.Short-chain dehydrogenases/reductases (SDR)[J]. Biochemistry,1995,34(18):6003-6013.
    [91]Mendoza-Hernandez, G, Minauro, F., Rendon, J. L. Aggregation, dissociation and unfolding of glucose dehydrogenase during urea denaturation[J]. Biochim Biophys Acta,2000,1478(2):221-231.
    [92]Pauly, H. E., Pfleiderer, G. Conformational and functional aspects of the reversible dissociation and denaturation of glucose dehydrogenase[J]. Biochemistry,1977,16(21):4599-4604.
    [93]Yamamoto, K., Kurisu, G, Kusunoki, M.Crystal structure of glucose dehydrogenase from Bacillus megaterium IWG3 at 1.7 A resolution[J]. J Biochem,2001,129(2):303-312.
    [94]Zhang, Q., Peng, H., Gao, F.Structural insight into the catalytic mechanism of gluconate 5-dehydrogenase from Streptococcus suis:Crystal structures of the substrate-free and quaternary complex enzymes[J]. Protein Sci,2009,18(2): 294-303.
    [95]Yamamoto, K., Kusunoki, M., Urabe, I.Crystallization and preliminary X-ray analysis of glucose dehydrogenase from Bacillus megaterium IWG3[J]. Acta Crystallogr D Biol Crystallogr,2000,56(Pt 11):1443-1445.
    [96]Wallace, A. C., Laskowski, R. A., Thomton, J. M. LIGPLOT:a program to generate schematic diagrams of protein-ligand interactions[J]. Protein Eng, 1995,8(2):127-134.
    [97]Yamashita, A., Kato, H., Wakatsuki, S.Structure of tropinone reductase-II complexed with NADP+and pseudotropine at 1.9 A resolution:implication for stereospecific substrate binding and catalysis[J]. Biochemistry,1999, 38(24):7630-7637.
    [98]Benach, J., Atrian, S., Gonzalez-Duarte, R.The refined crystal structure of Drosophila lebanonensis alcohol dehydrogenase at 1.9 A resolution[J]. J Mol Biol,1998,282(2):383-399.
    [99]Ghosh, D., Wawrzak, Z., Weeks, C. M.The refined three-dimensional structure of 3 alpha,20 beta-hydroxysteroid dehydrogenase and possible roles of the residues conserved in short-chain dehydrogenases[J]. Structure,1994,2(7): 629-640.
    [100]Mazza, C., Breton, R., Housset, D.Unusual charge stabilization of NADP+in 17beta-hydroxysteroid dehydrogenase[J]. J Biol Chem,1998,273(14): 8145-8152.
    [101]Tanaka, N., Nonaka, T., Nakanishi, M.Crystal structure of the ternary complex of mouse lung carbonyl reductase at 1.8 A resolution:the structural origin of coenzyme specificity in the short-chain dehydrogenase/reductase family[J]. Structure,1996,4(1):33-45.
    [102]YOKOTA, A., SASAJIMA, K., YONEDA, M. Reactivation of inactivated D-glucose dehydrogenase of a Bacillus species by pyridine and adenine nucleotides[J]. Agricultural and Biological Chemistry,1979,43(2):271-278.
    [103]Maurer, E., Pfleiderer, G. Reversible pH-induced dissociation of glucose dehydrogenase from Bacillus megaterium. II. Kinetics and mechanism[J]. Z Naturforsch [C],1987,42(7-8):907-915.
    [104]Baik, S. H., Michel, F., Aghajari, N.Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state[J]. Appl Environ Microbiol,2005,71(6):3285-3293.
    [105]Schewe, H., Kaup, B. A., Schrader, J. Improvement of P450(BM-3) whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli[J]. Appl Microbiol Biotechnol, 2008,78(1):55-65.
    [106]Lu, Y, Mei, L. Co-expression of P450 BM3 and glucose dehydrogenase by recombinant Escherichia coli and its application in an NADPH-dependent indigo production system[J]. J Ind Microbiol Biotechnol,2007,34(3): 247-253.
    [107]Yun, H., Choi, H. L., Fadnavis, N. W.Stereospecific synthesis of (R)-2-hydroxy carboxylic acids using recombinant E. coli BL21 overexpressing YiaE from Escherichia coli K12 and glucose dehydrogenase from Bacillus subtilis[J]. Biotechnol Prog,2005,21(2):366-371.
    [108]Yamamoto, H., Matsuyama, A., Kobayashi, Y. Synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate using fabG-homologues[J]. Appl Microbiol Biotechnol,2003,61(2):133-139.
    [109]Manjon, A., Obon, J. M., Casanova, P.Increased activity of glucose dehydrogenase co-immobilized with a redox mediator in a bioreactor with electrochemical NAD(+) regeneration[J]. Biotechnology Letters,2002,24(15): 1227-1232.
    [110]Kataoka, M., Yamamoto, K., Kawabata, H.Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes[J]. Appl Microbiol Biotechnol,1999,51(4):486-490.
    [111]Kataoka, M., Rohani, L. P. S., Wada, M.Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system[J]. Bioscience Biotechnology and Biochemistry,1998,62(1):167-169.
    [112]Lin, S. S., Miyawaki, O., Nakamura, K. Continuous production of L-alanine with NADH regeneration by a nanofiltration membrane reactor[J]. Bioscience Biotechnology and Biochemistry,1997,61(12):2029-2033.
    [113]Nidetzky, B., Neuhauser, W., Haltrich, D.Continuous enzymatic production of xylitol with simultaneous coenzyme regeneration in a charged membrane reactor[J]. Biotechnol Bioeng,1996,52(3):387-396.
    [114]Chica, R. A., Doucet, N., Pelletier, J. N. Semi-rational approaches to engineering enzyme activity:combining the benefits of directed evolution and rational design[J]. Curr Opin Biotechnol,2005,16(4):378-384.
    [115]Chen, K., Arnold, F. H. Tuning the activity of an enzyme for unusual environments:sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide[J]. Proc Natl Acad Sci U S A,1993,90(12):5618-5622.
    [116]Stemmer, W. P. DNA shuffling by random fragmentation and reassembly:in vitro recombination for molecular evolution[J]. Proc Natl Acad Sci U S,A, 1994,91(22):10747-10751.
    [117]Stemmer, W. P. Rapid evolution of a protein in vitro by DNA shuffling [J]. Nature,1994,370(6488):389-391.
    [118]Crameri, A., Raillard, S. A., Bermudez, E.DNA shuffling of a family of genes from diverse species accelerates directed evolution[J]. Nature,1998, 391(6664):288-291.
    [119]Ness, J. E., Kim, S., Gottman, A.Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently [J]. Nat Biotechnol,2002,20(12):1251-1255.
    [120]Shao, Z., Zhao, H., Giver, L.Random-priming in vitro recombination:an effective tool for directed evolution[J]. Nucleic Acids Res,1998,26(2): 681-683.
    [121]Sieber, V., Martinez, C., Arnold, F. Libraries of hybrid proteins from distantly related sequences [J]. nature biotechnology,2001,19(5):456-460.
    [122]Zhao, H., Giver, L., Shao, Z.Molecular evolution by staggered extension process (StEP) in vitro recombination[J]. Nat Biotechnol,1998,16(3): 258-261.
    [123]Coco, W., Levinson, W., Crist, M.DNA shuffling method for generating highly recombined genes and evolved enzymes [J]. nature biotechnology,2001,19(4): 354-359.
    [124]Ostermeier, M., Slum, J. H., Benkovic, S. J. A combinatorial approach to hybrid enzymes independent of DNA homology[J]. Nat Biotechnol,1999, 17(12):1205-1209.
    [125]Anonymous. Schematic diagram of error-prone PCR[EB/ http://parts.mit.edu/igem07/index.php/Error_prone_PCR.
    [126]Neylon, C. Chemical and biochemical strategies for the randomization of protein encoding DNA sequences:library construction methods for directed evolution[J]. Nucl Acids Res,2004,32(4):1448-1459.
    [127]Ostermeier, M., Nixon, A. E., Shim, J. H.Combinatorial protein engineering by incremental truncation[J]. Proc Natl Acad Sci U S A,1999,96(7): 3562-3567.
    [128]Lutz, S., Ostermeier, M., Benkovic, S. J. Rapid generation of incremental truncation libraries for protein engineering using alpha-phosphothioate nucleotides[J]. Nucleic Acids Res,2001,29(4):E16.
    [129]Lutz, S., Ostermeier, M., Moore, G. L.Creating multiple-crossover DNA libraries independent of sequence identity [J]. Proc Natl Acad Sci U S A,2001, 98(20):11248-11253.
    [130]Hardin, C., Pogorelov, T. V., Luthey-Schulten, Z. Ab initio protein structure prediction[J]. Curr Opin Struct Biol,2002,12(2):176-181.
    [131]Lemer, C. M., Rooman, M. J., Wodak, S. J. Protein structure prediction by threading methods:evaluation of current techniques [J]. Proteins,1995,23(3): 337-355.
    [132]Baker, D., Sali, A. Protein structure prediction and structural genomics[J]. Science,2001,294(5540):93-96.
    [133]Chothia, C., Lesk, A. The relation between the divergence of sequence and structure in proteins[J]. The EMBO journal,1986,5(4):823.
    [134]Hutchison 3rd, C., Phillips, S., Edgell, M.Mutagenesis at a specific position in a DNA sequence[J]. Journal of Biological Chemistry,1978,253(18):6551.
    [135]Kunkel, T. Rapid and efficient site-specific mutagenesis without phenotypic selection[J]. Proceedings of the National Academy of Sciences,1985,82(2): 488.
    [136]Olsen, D., Eckstein, F. High-efficiency oligonucleotide-directed plasmid mutagenesis[J]. Proceedings of the National Academy of Sciences of the United States of America,1990,87(4):1451.
    [137]Ho, S., Hunt, H., Horton, R.Site-directed mutagenesis by overlap extension using the polymerase chain reaction[J]. Gene,1989,77(1):51-59.
    [138]Sarkar, G, Sommer, S. The" megaprimer" method of site-directed mutagenesis[J]. BioTechniques,1990,8(4):404.
    [139]Cheng, H. R., Jiang, N. Extremely rapid extraction of DNA from bacteria and yeasts[J]. Biotechnol Lett,2006,28(1):55-59.
    [140]Larkin, M. A., Blackshields, G., Brown, N. P.Clustal W and Clustal X version 2.0[J]. Bioinformatics,2007,23(21):2947-2948.
    [141]Jong, A. Y., T'Ang, A., Liu, D. P.Inverse PCR. Genomic DNA cloning[J]. Methods Mol Biol,2002,192:301-307.
    [142]Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem,1976,72:248-254.
    [143]Cleland, W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations[J]. Biochim Biophys Acta,1963,67:104-137.
    [144]Gouet, P., Robert, X., Courcelle, E. ESPript/ENDscript:Extracting and rendering sequence and 3D information from atomic structures of proteins[J]. Nucleic Acids Res,2003,31(13):3320-3323.
    [145]Shibuya, H., Kaneko, S., Hayashi, K. A single amino acid substitution enhances the catalytic activity of family 11 xylanase at alkaline pH[J]. Biosci Biotechnol Biochem,2005,69(8):1492-1497.
    [146]Eswar, N., Webb, B., Marti-Renom, M. A.Comparative protein structure modeling using Modeller[J]. Curr Protoc Bioinformatics,2006, Chapter 5: Unit 56.
    [147]Wiederstein, M., Sippl, M. J. ProSA-web:interactive web service for the recognition of errors in three-dimensional structures of proteins[J]. Nucleic Acids Res,2007,35(Web Server issue):W407-410.
    [148]Sippl, M. J. Recognition of errors in three-dimensional structures of proteins[J]. Proteins,1993,17(4):355-362.
    [149]Laskowski, R. A., Macarthur, M. W., Moss, D. S.Procheck-a Program to Check the Stereochemical Quality of Protein Structures [J]. Journal of Applied Crystallography,1993,26:283-291.
    [150]Gordon, J., Myers, J., Folta, T.H++: a server for estimating pKas and adding missing hydrogens to macromolecules[J]. Nucleic Acids Research,2005, 33(Web Server Issue):W368.
    [151]Honig, B., Nicholls, A. Classical electrostatics in biology and chemistry[J]. Science,1995,268(5214):1144.
    [152]郑柯文,俞庆森,曾敏静电和疏水效应对TGEV主蛋白酶二聚体稳定性的影响[J].物理化学学报,2004,20(6):587-592.
    [153]马晓慧,陈慰祖,庄彦静电和疏水效应对胰岛素二聚体稳定性的影响[J].生物物理学报,2001,17(2):329-336.
    [154]Mehler, E. Self-consistent, free energy based approximation to calculate pH dependent electrostatic effects in proteins[J]. J Phys Chem,1996,100(39): 16006-16018.
    [155]Sitkoff, D., Sharp, K., Honig, B. Accurate calculation of hydration free energies using macroscopic solvent models[J]. The Journal of Physical Chemistry,1994,98(7):1978-1988.
    [156]Lee, B., Richards, F. The interpretation of protein structures:estimation of static accessibility [J]. Journal of Molecular Biology,1971,55(3):379-400.
    [157]Sharp, K., Nicholls, A., Friedman, R.Extracting hydrophobic free energies, from experimental data:relationship to protein folding and theoretical models[J]. Biochemistry,1991,30(40):9686-9697.
    [158]Perry, L. J., Wetzel, R. Disulfide bond engineered into T4 lysozyme: stabilization of the protein toward thermal inactivation[J]. Science,1984, 226(4674):555-557.
    [159]Wells, J. A., Powers, D. B. In vivo formation and stability of engineered disulfide bonds in subtilisin[J]. J Biol Chem,1986,261(14):6564-6570.
    [160]Han, Z. L., Han, S. Y., Zheng, S. P.Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface[J]. Appl Microbiol Biotechnol,2009,85(1):117-126.
    [161]Jeong, M. Y., Kim, S., Yun, C. W.Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No.236[J]. J Biotechnol,2007,127(2):300-309.
    [162]Hagihara, Y, Mine, S., Uegaki, K. Stabilization of an immunoglobulin fold domain by an engineered disulfide bond at the buried hydrophobic region[J]. J Biol Chem,2007,282(50):36489-36495.
    [163]Streit, W. R., Daniel, R., Jaeger, K. E. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms[J]. Curr Opin Biotechnol, 2004,15(4):285-290.
    [164]Ferrer, M., Beloqui, A., Timmis, K. N.Metagenomics for mining new genetic resources of microbial communities[J]. J Mol Microbiol Biotechnol,2009, 16(1-2):109-123.
    [165]Uchiyama, T., Abe, T., Ikemura, T.Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes[J]. Nat Biotechnol,2005,23(1):88-93.
    [166]Yun, J., Ryu, S. Screening for novel enzymes from metagenome and SIGEX, as a way to improve it[J]. Microb Cell Fact,2005,4(1):8.
    [167]Kim, B. S., Kim, S. Y., Park, J.Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library[J]. J Appl Microbiol,2007, 102(5):1392-1400.
    [168]Kotik, M. Novel genes retrieved from environmental DNA by polymerase chain reaction:current genome-walking techniques for future metagenome applications[J]. J Biotechnol,2009,144(2):75-82.
    [169]Jacob, F., Monod, J. Genetic regulatory mechanisms in the synthesis of proteins[J]. J Mol Biol,1961,3:318-356.
    [170]Koonin, E. V. Evolution of genome architecture [J]. Int J Biochem Cell Biol, 2009,41(2):298-306.
    [171]Lathe, W. C.,3rd, Snel, B., Bork, P. Gene context conservation of a higher order than operons[J]. Trends Biochem Sci,2000,25(10):474-479.
    [172]Michalak, P. Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes[J]. Genomics,2008,91(3):243-248.
    [173]Sankoff, D. Short inversions and conserved gene cluster[J]. Bioinformatics, 2002,18(10):1305-1308.
    [174]Wright, M. A., Kharchenko, P., Church, G. M.Chromosomal periodicity of evolutionarily conserved gene pairs[J]. Proc Natl Acad Sci U S A,2007, 104(25):10559-10564.
    [175]Tamames, J., Casari, G., Ouzounis, C.Conserved clusters of functionally related genes in two bacterial genomes[J]. J Mol Evol,1997,44(1):66-73.
    [176]Dandekar, T., Snel, B., Huynen, M.Conservation of gene order:a fingerprint of proteins that physically interact[J]. Trends Biochem Sci,1998,23(9): 324-328.
    [177]Tamames, J. Evolution of gene order conservation in prokaryotes[J]. Genome Biol,2001,2(6):RESEARCH0020.
    [178]Rogozin, I. B., Makarova, K. S., Wolf, Y. I.Computational approaches for the analysis of gene neighbourhoods in prokaryotic genomes[J]. Brief Bioinform, 2004,5(2):131-149.
    [179]Delgado, C. L., Waters, P. D., Gilbert, C.Physical mapping of the elephant X chromosome:conservation of gene order over 105 million years[J]. Chromosome Res,2009,17(7):917-926.
    [180]Lyamouri, M., Enerly, E., Kress, H.Conservation of gene order, structure and sequence between three closely linked genes in Drosophila melanogaster and Drosophila virilis[J]. Gene,2002,282(1-2):199-206.
    [181]Backstrom, N., Karaiskou, N., Leder, E. H.A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution[J]. Genetics,2008,179(3):1479-1495.
    [182]Shi, X. W., Fitzsimmons, C. J., Genet, C.Radiation hybrid comparative mapping between human chromosome 17 and porcine chromosome 12 demonstrates conservation of gene order[J]. Anim Genet,2001,32(4): 205-209.
    [183]Eckardt, N. A. Everything in its place. Conservation of gene order among distantly related plant species[J]. Plant Cell,2001,13(4):723-725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700