DMFC和DSSC的化学增强与光辅助增强催化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)和染料敏化太阳能电池(DSSC)作为清洁、无污染的氢能和太阳能的电转化设备之一而日益受到重视。但二者都因为寿命、成本和效率等问题而尚未得到实际应用。
     DMFC至今未能商业化的原因之一是,Pt或PtRu为催化阳极催化剂易被甲醇氧化的中间产物CO毒化而引起缓慢的甲醇氧化动力学。本文的第3章和第4章就上述问题进行了相关探讨:
     (1)甲醇在电氧化的过程会产生大量的COads,并毒化Pt催化剂,而磷钼酸(H_3PMo_(12)O_(40),PMo_(12))能够在Au的催化下选择性氧化CO(g)。基于此,在Pt和Au共生的铂金(Au/Pt)电极上,通过Au催化PMo12氧化甲醇氧化的毒性中间体CO,Pt催化甲醇脱氢,应能提高甲醇电氧化的催化活性和抗中毒性能。一种金属在另一种金属表面的欠电位沉积是可控制备这两种金属共生表面的有效方法。但欠电位沉积是因为基体材料的电子逸出功大于沉积金属的电子逸出功,即,较活泼的金属在较不活泼的金属基体上能够在比其平衡电位更正的电位下实现电化学沉积。Au不能在Pt表面发生欠电位沉积,但Cu能。为此,我们采用先在Pt电极表面欠电位沉积Cu,然后Au置换Cu的方法,在Pt电极上制备出了Au呈亚单层分布的铂金(Au/Pt)催化电极。结果表明:甲醇在Au/Pt电极上的电化学氧化在PMo12存在的情况下得到了明显的增强;相比Pt电极,在PMo12溶液中,甲醇在Au/Pt电极上氧化的起始电位负移了400 mV。研究认为,无论是吸附态的氢还是CO都可以在低电位下因Au的催化被PMo12氧化去除,使Pt重新释放出新鲜表面。而Pt表面生成能够氧化CO的含氧物质则需要更高的电位。此外,Pt对PMo12氧化CO无催化作用。
     (2)与TiO_2纳米颗粒相比,TiO2纳米管(TNTs)具更大的比表面积、对光更强的散射能力和更少的晶界数目,因此,TNTs在光照条件下能够产生更多的电子空穴对和有效的减少电子空穴对的复合,在光照情形下,TNTs更能有效地光解水产生强氧化性含氧物种·OH。基于强氧化性的含氧物种·OH非常有利于甲醇电氧化的毒性中间体CO的氧化去除的特点,我们采用电化学阳极氧化法在钛基底上制备了TiO_2纳米管阵列(TNTs/Ti),并以此为载体,通过脉冲电沉积将Pt沉积在TNTs/Ti基体上,制得了Pt/TNTs/Ti催化电极,在光照条件下,研究了甲醇在Pt/TNTs/Ti电极上的电化学氧化。结果表明,TiO2纳米管阵列光生含氧物种·OH对毒性中间体CO强的氧化去除能力,使得甲醇在Pt/TNTs/Ti电极上恒电位下氧化时,没有出现传统的Pt或PtRu电极上甲醇恒电位下氧化时,电流随时间不断衰减的现象。以TNTs/Ti为载体的Pt/TNTs/Ti催化电极,在光照条件下,彻底地解决了Pt或PtRu电极上甲醇氧化中毒问题。
     对电极是DSSC的重要组成部分,其主要作用是催化电解质溶液中I3?从外电路接受电子还原为I?,提高还原反应的效率和减小还原反应的过电势,进而避免I3?不经外电路而直接从电池光阳极TiO_2导带中捕获电子还原为I?,达到提高DSSC的光电转化效率的目的。本文的第5章和第6章就如何获得高催化活性的DSSC对电极进行了相关探讨:
     (1)将Cu溅射在导电玻璃(FTO)上形成Cu/FTO电极,然后将其置于氯铂酸(H_2PtC_(l6))溶液中,通过Pt对Cu的置换制得DSSC的Pt/FTO对电极。与热分解Pt盐制备的PY-Pt/FTO对电极相比,采用溅射-置换(SD)制备的SD-Pt/FTO对电极不仅很好的回避了直接溅射Pt昂贵的Pt靶材的问题,更主要的是克服了热解法获得的PY-Pt/FTO对电极,其Pt颗粒分散性差、FTO基体因受热电阻增大等缺点。结果表明,以SD-Pt/FTO为对电极DSSC的光电转化效率比以PY-Pt/FTO为对电极DSSC的提高了16.5 %。
     (2)相对FTO基底,DSSC对电极中金属基底的使用可以进一步降低电池的电阻和增强对光的二次反射,从而进一步提高DSSC的性能。基于此,通过Pt置换预先电沉积在Ti基底上的Cu而制得了DSSC的Pt/Ti对电极。实验结果表明:与传统的热分解法制备的Pt/FTO对电极相比,以Pt/Ti为对电极的DSSC比以Pt/FTO为对电极的DSSC的光电转化效率提高了20.8 %。
Direct methanol fuel cell (DMFC) and dye-sensitized solar cell (DSSC) are two kinds of device which directly transform chemical energy and solar energy into electric power, respectively, and attracting more and more interest from the world. However, there is a series of problems for the two devices, such as short service life, high cost and low efficiency, blocking them from the practical application.
     One of problems blocking DMFC from the practical application is the slow kinetics of methanol electro-oxidation due to CO poisoning to the Pt or PtRu anodic catalysts, resulting in a serious decline in the performance of DMFC. How to effectively remove of CO poison was intensively studied in the chapter 3 and 4 of this thesis. The main results obtained are as follows:
     (1) COads, an intermediate in the methanol electro-oxidation on Pt-based catalysts, has been thought a primary cause slowing down the kinetics of methanol electro-oxidation. On the basis of the understanding, that is, CO(g) can be oxidized by PMo_(12) under catalysis of Au, the methanol electro-oxidation was investigated on sub-monolayer Au modified Pt electrode (Au/Pt) in participation of PMo_(12) to improve the catalytic and anti-poison ability of Pt catalyst. Generally, the sub-monolayer metal is obtained by underpotential deposition (UPD). The occurrence of UPD is in that the electron work function of the substrate metal is greater than that of the deposited metal, ie, the more active metal can be electrochemically deposited on the less active substrate metal at the more positive potential in contrast to the equilibrium potential predicted by the Nernst equation for bulk deposition. Thus, UPD of Au on Pt surface can not occurs to form the sub-monolayer Au, but Cu can. The Au/Pt electrode was prepared by chemically displacing underpotentially-deposited Cu on Pt surface in HAuCl4 solution. The results showed that the methanol electro-oxidation on Pt electrode was markedly enhanced in presence of PMo_(12) and Au. The onset potential of methanol oxidation shifts 400 mV toward the negative direction on Au/Pt electrode with PMo_(12) in comparison with Pt electrode with PMo_(12). It is supposed that adsorbed hydrogen and intermediate CO from the methanol dehydrogenation and oxidation were electro-catalytically oxidized by oxidant state of PMo_(12) with the aid of Au catalysis.
     (2) In comparison with TiO_2 nanoparticles (TNPs), TiO_2 nanotubes (TNTs) have a larger surface area, a more effective scattering and absorption of light and less detrimental grain boundaries. TNTs can therefore generate more electron-hole pairs and effectively lessen the electron-hole recombining under illumination. Therefore TNTs can more effectively produce strong oxiding oxygen-containing species ?OH from water under illumination. We expected that CO, the poisoning intermediate of methanol electro-oxidation, can be effectively removed by strong oxiding oxygen-containing species ?OH produced on TNTs under illumination. On the basis of this perception, a Pt/TNTs/Ti electrode was prepared by electrochemically depositing Pt using the modulated pulse current method onto TNTs/Ti substrate, and then the methanol electro-oxidation was investigated on such an electrode under illumination. The results show that the performance and anti-poison ability of the Pt/TNTs/Ti electrode for methanol electro-oxidation under illumination is remarkably enhanced. CO poisoning is no longer a problem during methanol electro-oxidation with the Pt/TNTs/Ti electrode under illumination. The main role of a counter electrode in a DSSC, is to catalyze the reduction I3? by electrons through the outside circuit from the anode to I? instead of by electrons directly from the conduct bands of TiO_2 produced by illumination. How to fabricate an effective counter Pt electrode was intensively studied in the chapters 5 and 6 of this thesis. The main results obtained are as follows:
     (1) A Pt/FTO counter electrode of the dye-sensitized solar cells (DSSC) was prepared by sputtering (Cu)– displacement (Pt) method (SD) on a conductive glass (FTO) substrates (SD-Pt/FTO). In contrast to PY-Pt/FTO counter electrode prepared by pyrolysis (PY) of Pt salts, SD-Pt/FTO counter electrode not only avoids the expensive Pt target with Pt direct sputtering but also overcomes the poor dispersion of Pt particles and the increased electric resistance of FTO substrate caused by pyrolysis. The results show the photoelectric conversion efficiency of DSSC with SD-Pt/FTO counter electrode increases by 16.5 % relative to that with PY-Pt/FTO counter electrode.
     (2) To lower electric resistance and improve reflecting ability of Ti substrate compared with that of commonly used FTO glass substrate, Ti sheet rather than FTO glass served as the counter electrode substrate was investigated. A Pt/Ti counter electrode of DSSC was prepared by displacing electrodeposited Cu deposits on a Ti sheet in H2PtCl6 solution. The photocurrent density–volt (J–V) curves show that the photoelectric conversion efficiency of DSSC with the Pt/Ti counter electrode reaches 7.61 %, increased by 20.8 % relative to that with the Pt/FTO counter electrode.
引文
[1] M. Kohei, M. Koji, I. Yasutoshi, A. Takeshi, O. Zempachi. ELectro-oxidation of methanol on gold nanoparticles supported on Pt/MoOx/C [J]. J. Eleetrochem. Soc. 2005, 152(9):A1870-A1873.
    [2] B. C. H. Steele. Fuel-cell technology: Running on natural gas [J]. Nature, 1999, 400: 619-621.
    [3]衣宝廉.燃料电池:原理·技术·应用[M].北京:化学工业出版社.2003, 8.
    [4] http://blog.sina.com.cn/s/blog_5f1599ef0100fect.html
    [5] C. H. Rhee, H. K. Kim, C. Hyuk, J. S. LEE. Nafion/sulfonated montmorillonite composite: A new concept electrolyte membrane for direct methanol fuel cells [J].Chem. Mater., 2005, 17, 1691-1697.
    [6] H. A. Gasterger, N. Markovic, P. N. Ross Jr, E. J. Cairns. Methanol electrooxidation on well-characterized platinum-ruthenium bulk alloys [J]. J. Phys. Chem., 1993, 97: 12020-12029.]
    [7] B. Beden, C. Lamy, A. Bewick. Oscillatory kinetics in the electrochemical oxidation of formate ions during the deposition of rhodium electrode Part II. Mechanistic considerations [J]. J. Electroanal. Chem. 1981, 121: 115-124.
    [8] P. K. Shen, A. C. C. Tseung. Anodic oxidation of methanol on Pt/WO3 in acidic media [J]. J. Electrochem. Soc., 1994, 141: 3082-3090.
    [9] C. T. Hable, M. S. Wrighton. Electrocatalytic oxidation of methanol by assemblies of platinum/tin catalyst particles in a conducting polyaniline matrix [J]. Langmuir, 1991, 7 (7) : 1305-1309.
    [10] B. Beden, F. Kadirgan, C. Lamy, J. M. Leger. Electrocatalytic oxidation of methanol on platinum-based binary electrodes [J]. J. Electroanal. Chem., 1981, 127(1-3): 75-85.
    [11] M. Watamabe, M. Uchida, S. Motoo. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol [J]. J. Electroanal. Chem., 1987, 229(1-2): 395-406.
    [12] A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J. M. Leger, C. Lamy. In situ FTIRS study of the electrocatalytic oxidation of carbon monoxide and methanol at platinum–ruthenium bulk alloy electrodes [J]. J. Electroanal. Chem., 1998, 444 (1): 41-53.
    [13]辛勤,周卫江,周振华.一种质子交换膜燃料电池电极催化剂的制备方法:中国, 01138909 [P]. 2001.
    [14] L. Gan, R. Lv, H. Du, B. Li, F. Kang. High loading of Pt-Ru nanocatalysts by pentagondefects introduced in a bamboo-shaped carbon nanotube support for high performance anode of direct methanol fuel cells [J]. Electrochem. Commun, 2009, 11 (2):355– 358
    [15] W. L. Xu, T. H. Lu, C. P. Liu, W. Xing. Nanostructured PtRu/c as anode catalysts prepared in a pseudomicroemulsion with ionic surfactant for direct methanol fuel cell [J]. J. Phys. Chem. B, 2005, 109 (30): 14325-14330
    [16] A. J. Dickinson, L. P. L. Carrette, J. A. Collins, K. A. Friedrich, U. Stimming. Preparation of a Pt-Ru/C catalyst from carbonyl complexes for fuel cell applications [J]. Electrochim. Acta, 2002, 47 (22-23): 3733-3739.
    [17] M. Watanabe, S. Motoo. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms [J]. J. Electroanal. Chem, 1975, 60 (3): 275-284.
    [18] K. Lasch, L. Jorissen , J. Garche. The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum–ruthenium [J]. J. Power Sources, 1999, 84 (2): 225-230.
    [19] H. A. Gasteiger, N. M. Markovic, P. N. Ross Jr. H2 and Co electrooxidation on well-characterized Pt, Ru, and Pt-Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects [J]. J. Phys. Chem., 1995, 99 (20): 8290-8301.
    [20] T. Frelink, W. Visscher, A. P. Cox, J. A. R. van Veen. Ellipsometry and dems study of the electrooxidation of methanol at Pt and Ru- and Sn- promoted Pt [J]. Electrochimica. Act. 1995,40(10):1537-1543
    [21] A. K. Shukla, A. S. Aricò, K. M. El-Khatib, H. Kim, P. L. Antonucci,V. Antonucci. An X-ray photoelectron spectroscopic study on the effect of Ru and Sn additions to platinised carbons [J]. Appl. Surf. Sci. 1999, 137 (1-4): 20-29.
    [22] T. Frelink, W. Visscher, J. A. R. van Veen. Measurement of the Ru surface content of electrodeposited PtRu electrode with the electrochemical quartz crystal microbalance: implications for methanol and CO electrooxidation [J]. Langmuir, 1996, 12(15): 3702-3708.
    [23] D. R. Rolison, P. L. Hagans, K. E. Swider, J. W. Long. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: the importance of mixed electron/proton conductivity [J]. Langmuir, 1999, 15(3):774-779.
    [24] W. L. Jeffrey, M. S. Rhonda, E. S. Karen, R. R. Debra. How to make electrocatalysts more active for direct methanol oxidation-avoid PtRu bimetallic alloys [J]. J. Phys. Chem. B, 2000, 104: 9772-9776.
    [25] Q. Y. Lu, B. Yang, L. Zhuang, J. T. Lu. Anodic activation of PtRu/C catalysts for methanol oxidation [J]. J. Phys.Chem.B, 2005, 109: 1715-1722.
    [26] G. Wu, L. Li, B. Q. Xu. Effect of electrochemical polarization of PtRu/C catalysts on methanol electrooxidation [J]. Electrochim. Acta, 2004, 50: 1-10.
    [27] A. H. C. Sirk, J. M. Hill, S. K. Y. Kung, V. I. Birss. Effect of redox state of Pt Ru electrocatalysts on methanol oxidation activity [J]. J. Phy. Chem. B, 2004, 108(2): 689-695.
    [28] S. Mukerjee, J. McBreen. An in situ X-ray absorption speetrosepy investigation of the effect of Sn additions to carbon-supported pt electroeatalysts [J]. J. Eleetroehem. Soe., 1999, 146(2): 600-606.
    [29] F. Colmati, E. Antolini, E. R. Gonzalez. Pt-Sn/C electrocatalysts for methanol oxidation synthesized by reduction with formic acid [J]. Electrochim. Acta , 2005 ,50: 5496-5503.
    [30]孙景玉,张校刚. PtSn/MWCNTs纳米催化剂的制备及其对甲醇的电催化氧化[J].曲阜师范大学学报(自然科学版), 2007, 33(4): 73-761.
    [31] Z. L. Liu, B. Guo, L. Hong. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation [J]. Electrochem Commun, 2006, 8 (1): 83-90.
    [32]姜鲁华,臧海霞,孙公权.辛勤.制备方法对直接乙醇燃料电池阳极PtSn/C催化剂性能的影响[J].催化学报, 2006, 27 (1): 15-19.
    [33] A. B. Anderson, E. Grantscharora, P. Shiller. On the lack of activity of substitutional Sn atoms toward the electro-oxidation of CO on Pt anodes, molecular orbital theory [J]. J. Electrochem. Soc, 1995, 142: 1880.
    [34] T. Frelinka, W. Visschera, J. A. R. van Veen. The effect of Sn on Pt/C catalysts for the methanol electro-oxidation [J]. Electrochimica. Acta. 1994, 39(l1-12): 1871-1875.
    [35] G. Samjeske, H. Wang, T. L?ffler, H. Baltruschat. CO and methanol oxidation at Pt-electrodes modified by Mo [J] .Electrochim Acta, 2002, 47 (22-23): 3681-3692.
    [36] M. M. P. Janssen, J. Moolhuysen. State and action of the tin atoms in platinum-tin catalysts for methanol fuel cells [J]. J.Catal, 977, 46(3): 289-296.
    [37] A. K .Shukla, K. M .EI-khatib, H .Kim, P. L .Antonucci, V. Antonucci, A. S Arico. X-ray photoeleetron spectroscopic study on the effect of Ru and Sn additions to platinized carbons [J]. Appl. Surf. Sci, 1999, 137(l-4): 20-29.
    [38] A. A. Mikahailova, N. N. Osetrova, Y. B. Vassiliev. Electrocatalysis of methanol oxidation on Pt-Sn bimetallic alloy [J]. Elektrokhimiya, 1977, 13(4): 518-522.
    [39] T. Frelink, W. Visscher, J. Van Veen. On the role of Ru and Sn as promoters of methanol electro-oxidation over Pt [J]. Surf. Sci, 1995, 335: 353-360.
    [40] T. Page, R. Johnson, J. Hormes, S. Noding, B. Rambabu. A study of methanol electro-oxidation reactions in carbon membrane electrodes and structural properties of Pt alloy electro-catalysts by EXAFS [J].J. Electroanal. Chem, 2000, 485(1): 34-41.
    [41] K. W. Park, J. H. choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Kim, A .Wieckowski. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru alloy nanoparticles in methanol electrooxidation [J]. J. Phys. Chem.B, 2002, l06: 1869-1877.
    [42] K.W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung. Struetural, chemical, and electronic Properties of Pt/Ni thin film eleetrodes for methanol electrooxidation [J]. J. Phys. Chem.B, 2003, 107:5851-5856.
    [43] M. Saito, H. Shiroishi, C. Ono, S. Tsuzuki, T. Okada. Influence of ligand structures on methanol electro-oxidation by mixed catalysts based on platinum and organic metal complexes for DMFC [J]. J. Mol. Catal. A: Chemical, 2006, 248(1-2): 99-108.
    [44] J. H. Zeng, J. Y. Lee. Effects of preparation conditions on performance of carbon- supported nanosize Pt-Co catalysts for methanol electro-oxidation under acidic conditions [J]. J. Power. Sources, 2005, 140(2): 268-273.
    [45] J. R. Salgado, E. Antolini, E. R. Gonzalez. Carbon supported Pt-Co alloys as methanol-resistant oxygen reduction electrocatalysts for direct methanol fuel cells [J]. Appl. Catal., B: Environmental, 2005, 57(4): 283-290.
    [46] E. Antolini, J. R. C. Salgado, E. R. Gonzalez. The methanol oxidation reaction on platinum alloys with the first row transition metals: The case of Pt-Co and -Ni alloy electrocatalysts for DMFCs: A short review [J]. Appl. Catal., B: Environmental, 2006, 63(1-2): 137-149.
    [47]袁泉,潘牧,袁润章. PtCr合金的溶液制备及其电化学性质分析[J].化学学报, 2006 ,64 (3): 245-2481.
    [48] F. Kadirgan, B. Beden, J. M. Leger, C. Lamy. Synergistic effect in the effect methanol on platinum + palladium alloy electrode [J] J. Electroanal. Chem., 1981, 125(1): 89-103.
    [49] M. M. P. Janssen, J. Moolhuysen. Binary systems of platinum and a second metal as oxidation catalysts for methanol fuel cells [J]. Electrochim. Acta. 1976, 21(11): 869-878.
    [50] H. N. Dinh, X. M. Ren, F. H. Garzon, P. Zelenay, S. Gottesfeld. Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces [J]. J. Electroanal. Chem., 2000, 491: 222-233.
    [51] Y. Takasu, T. Kawaguchi, W. Sugimoto, Y. Murakami. Effects of the surface area of carbon support on the characteristics of highly-dispersed Pt/Ru particles as catalysts for methanol oxidation [J]. Electrochim. Acta., 2003, 48: 3861-3868.
    [52] S. L. Gojkovic, T. R. Vidakovic, D. R. Durovic. Kinetic study of methanol oxidation on carbon-supported PtRu electrocatalyst [J]. Electrochim. Acta. 2003, 48: 3607-3614.
    [53] K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee, Y. E. Sung, H. Y. Ha, S. A. Hong, H. Kim, A. Wieckowski. Chemical and electronic affects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticlesin methanol electrooxidation [J]. J. Phys. Chem. B., 2002, 106(8): 1869-1877.
    [54] R. X. Liu, H. Iddir, Q. B. Fan, G. Y. Hou, A. L. Bo, K. L. Ley, E. S. Smotkin, Y. E. Sung, H. Kim, S. Thomas, A. Wieckowski. Potential-dependent infrared absorption spectroscopy of adsorbed CO and X-ray photoelectron spectroscopy of arc-melted single-phase Pt, PtRu, PtOs, PtRuOs, and Ru electrodes [J]. J. Phys. Chem. B., 2000, 104(15): 3518-3531.
    [55] K. L. Ley, R. X. Liu, C. Pu, Q. B. Fan, N. Leyarovska, C. Segre, E. S. Smotkin. Methanol oxidation on singlephase Pt-Ru-Os ternary alloys [J]. J. Electroehem. Soc., 1997, 144: 1543-1548.
    [56] A. Lima, C. Coutanceau, J. M. Léger, C. Lamy. Investigation of ternary catalysts for methanol electrooxidation [J]. J. Appl. Electrochem., 2001, 31: 379-386.
    [57] D. C. Papageorgopoulos, M. Keijzer, F. A. de Bruijn. The inclusion of Mo, Nb and Ta in Pt and PtRu carbon supported electrocatalysts in the quest for imp roved CO tolerant PEMFC anodes [J]. Electrochem. Acta. 2002, (48): 197 - 204.
    [58]陈胜洲,董新法,钟文健,林维明. PtRuMo/C催化剂的制备及其对甲醇的电催化氧化作用[J].应用化学, 2004, 21(6): 633-636.
    [59] M. G?tz, H. Wendt. Binary and ternary anode catalyst for mulation including the elements W, Sn and Mo for PEMFCs operated on methanol for reformats gas [J]. Electrochem. Acta., 1998, 43(24): 3637-3644.
    [60] D. Chu, R. Z. Jiang. Novel electrocatalysts for direct methanol fuel cells [J]. Solid. State. Ionics. 2002, 146(3-4): 591-599.
    [61] A. Liao, F. Hahn, J. M. Leger. Oxidation of methanol on Pt, Pt-Ru and Pt-Ru-Mo electrocatalysts dispersed in polyaniline: an in situ infrared reflectance spectroscopy study [J]. Russ. J. Electroehem. 2004, 3(40): 326-336.
    [62] J. H. Choi, K.W. Park, B. K. Kwon. Methanol oxidation on Pt/Ru, Pt/Ni and Pt/Ru/Ni anode electrocatalysts at different temperatures for DMFCs [J]. J. Eleetroehem.Soe., 2003, 150: A973-A978.
    [63] J. K. Norskov, P. Liu. Anode catalyst materials for use in fuel cells:US, 20020146614 [P]. 2002.
    [64] A. S. Arico, P. Creti, N. Giordano. Chemical and morphological characterization of a direct methanol fuel cell based on a quarternary Pt-Ru-Sn-W/C anode [J]. J .Appl Electrochem, 1996, 26(8): 959-967.
    [65] V. Neburchilov, H. J. Wang, J. J. Zhang. Low Pt content Pt-Ru-Ir-Sn quaternary catalysts for anodic methanol oxidation in DMFC [J]. Electrochem. Commun, 2007, 9 (7): 1788-1792.
    [66] B. Gurau, R. Viswanathan, R. Liu. Structural and electrochemical characterization of binary,ternary and quaternary platinum alloy catalysts for methanol electrooxidation [J]. J .Phys .Chem B, 1998, 102 (49): 9997-10003.
    [67] W. L. Han, S. Sanghyuk, G. Bogdan. Deuterium isotope analysis of methanol oxidation on mixed metal anode catalysts [J]. Electrochim. Acta, 2002, 47: 2913-2919.
    [68] W. C. Choi, J. D. Kim, S. I. Woo. Quaternary Pt-based electrocatalyst for methanol oxidation by combinatorial electrochemistry [J]. Catal. Today, 2002, 74 (3-4): 235-240.
    [69] V. Raghuveer, K. R. Thampi, N. Xanthopoulos, H. J. Mathieu, B. Viswanathan. Rare earth cuprates as electrocatalysts for methanol oxidation [J]. Solid State Ionics. 2001, 140(3-4): 263-274.
    [70] D. Kishori, M. Alexander, V. Arvind. High throughput evaluation of perovskite-based anode catalysts for direct methanol fuel cells [J]. J. Power Sources., 2006, 158 (1): 60-68.
    [71] H. W. James, F. S. Anthony. Perovskite anode electrocatalysis for direct methanol fuel cells [J]. J. Electrochem. Soc., 1993, 140 (8): 2167-2177.
    [72] G. T. Burstein, D. R. McIntyre, A. Vossen. Relative activity of a base catalyst toward electro-oxidation of hydrogen and methanol [J]. Electrochem. Solid State Lett. 2002, 5 (4): A80-A83.
    [73] H. C. Yu, K. Z. Fung, T. C. Guo, W. L. Chang. Syntheses of perovskite oxides nanoparticles La1-xSrxMO3-δ(M=Co and Cu) as anode electrocatalyst for direct methanol fuel cell [J]. Electrochimica. Acta., 2004, 50: 811-816.
    [74]施敏.现代半导体器件物理[M].北京:科学出版社, 2001, 46-52.
    [75]杨术明.染料敏化纳米晶太阳能电池[M].郑州:郑州大学出版社. 2007.9
    [76] M. Gr?tzel. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells [J]. J. Photochem. Photobio. A., 2004, 164: 3-14.
    [77]鲁厚芳,阎康平,涂铭旌.影响染料敏化TiO2纳米晶太阳能电池的因素[J].现代化工, 2004, 24(1): 16-19
    [78]陈炜,孙晓丹,李恒德,翁端.染料敏化太阳能电池的研究进展[J].世界科技研究与发展, 2004, 26(5): 27-35.
    [79] N. Papageorgiou, W. F. Maier, M. Gr?tzel. An iodine/triiodide reduction electrocatalyst for aqueous and organ media [J]. J. Electrochem. Soc. 1997, 144: 876-884.
    [80] S. Ito, T. Murakami, P. Comte, P. Liska, C. Gr?tzel, M. Nazeeruddin, M. Gr?tzel. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 % [J]. Thin Solid Films. 2008, 516(14): 4613-4619.
    [81]邢进,姚叙红,朱林泉,冯再新,薛忠晋.染料敏化太阳能电池的研究进展[J]. 2008, 121(29): 461-468.
    [82] V. B. William, K. Theodore. Preparation and properties of thin gold and platinum films of glass or quartz for transparent electrode [J]. Anal. Chem., 1970, 42(9): 1114-1116.
    [83] W. Ensinger, H. R. Müller. Nobel metal deposition on aluminum oxide powder surfaces by ion beam sputtering [J]. Nucl. Instrum. Methods Phys. Res., Sect. B., 1998, 141: 693-698.
    [84]尹艳红,许泽辉,冯磊硕,杨书廷,李承斌.染料敏化太阳能电池对电极的研究进展[J].材料导报, 2009, 23(5): 109-112
    [85] S. L. Yau, T. Moriyama, H. Uchida, M. Watanabe. In situ STM observation with atomic resolution on platinum film electrodes formed by a sputtering method [J]. Chem Commun, 2000: 2279-2280
    [86]方晓明,张正国,马婷丽.染料敏化纳米薄膜太阳能电池的新型对电极研究[J].太阳能学报, 2006, 27(2): 111-115
    [87]郝三存,吴季怀,林建明,黄昀昉.铂修饰光阴极及其在纳晶太阳能电池中的应用[J].感光科学与光化学,2004 ,22 (3) :175-182
    [88] D. Stoychev, A. Papoutsis, A. Kelaidopoulou, G. Kokkinidis, A. Milchev. Electrodeposition of platinum on metallic and nonmetallic substrates-selection of experimental conditions [J]. Mat Chem and Phys.2001, 72:360-365
    [89] A. Kelaidopoulou, G. Kokkinidis, A. Milchev. Nucleation and growth of metal catalysts. Part I Electrodeposition of platinum on tungsten [J]. J. Electroanal. Chem, 1998, 444: 195-201.
    [90] F. Gloaguen, J. M. Léger, C. Lamy, A. Marmanna, U. Stimming, R. Vogela. Platinum electrodeposition on graphite: electrochemical study and STM imaging [J]. Electrochem. Acta, 1999, 44: 1805-1816.
    [91] W. B. Wang, Z. Luo, X. R. Xiao, Y. Lin. Nanostructure Pt electrode obtained via self-assembly of nanoparticles on conductive oxide-coated glass substrate [J]. Chin. J. Chem, 2004, 22: 256-258.
    [92]陈今茂,马玉涛,王桂强.纳晶敏化太阳能电池中铂修饰对电极的一种新制法[J].科学通报, 2005, 50 (1): 473-478
    [93] T. C. Wei, C. C. Wan, Y. Y. Wang. Poly(N-vinyl-2-pyrrolidone)-capped platinum nano-clusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells [J]. Appl. Phys. Lett, 2006, 88: 103-122.
    [94]范乐庆,吴季怀,黄昀,林建明.阴极修饰对染料敏化TiO2太阳能电池性能的影响[J].电子元件与材料, 2003, 22(5): 1-3.
    [95] E. Olsen, G. Hagen, S. E. Lindquist. Dissolution of platinum in methoxy propionitrile containing LiI/I2 [J]. Sol. Energy Mater. Sol. Cells, 2000, 63 (3): 267-273
    [96] T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, E. Abe. Properties of several types of novelcounter electrodes for dye-sensitized solar cells [J]. J. Electroanal. Chem, 2004, 574(1): 77-83.
    [97] S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, C. A. Bignozzi. Substituted polypyridine complexes of cobalt (II/III) as efficient electron ransfer mediators in dye-sensitized solar cells [J]. J. Am. Chem. Soc, 2002, 124(37): 11215-11222.
    [98] M. O. M. Edwards, G. Boschloo, T. Gruszecki, H. Pettersson, R. Sohlberg, A. Hagfeldta.‘Electric-Paint displays’with carbon counter electrodes [J]. Electrochem. Acta, 2001, 46(13-14): 2187-2193.
    [99] A. Ka, M. Gratzel. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder [J]. Sol. Energy. Mater. Sol. Cells, 1996, 44: 99-117.
    [100] T. N. Murakami, S. Ito, Q. Wang, M. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Péchy, M. Gr?tzel. Highly efficient dye-sensitized solar cells based on carbon black counter elect rodes [J]. J. Electrochem. Soc, 2006, 153(12): A2255-A2261.
    [101] K. Imoto, K. Takahashi, T. Yamaguchi, T. Komura, J. I. Nakamura, K. Murata. High performance carbon counter electrode for dye-sensitized solar cells [J]. Sol. Energy Mater. Sol. Cells, 2003, 79: 459-469.
    [102] K. Suzuki, M. Yamaguchi, M. Kumagai, S. Yanagida. Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells [J]. Chem. Lett, 2003, 32(1): 28-29.
    [103] S. Hasan, A. Ali, M. Zhang. Carbon Nanotubes as Counter Electrodes for Gratzel Solar Cells[M].2006 APS March Meeting,March 14
    [104] E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song. Spray coated multiwall carbon nanotube counter electrode for tri-iodide (I3-) reduction in dye-sensitized solar cells [J]. Electrochem. Commun., 2008, 10(7): 1087-1089.
    [105] E. Ramasamy, W. J. Lee, D. Y. Lee, J. S. Song. Nanocarbon counterelectrode for dye sensitized solar cells [J]. Appl. Phys. Lett, 2007, 90: 173103-173106.
    [106] Z. Huang, X. Z. Liu, K. X. Li, D. M. Li, Y. H. Luo, H. Li, W. B. Song, L. Q. Chen, Q. B. Meng. Application of carbon materials as counter electrodes of dye-sensitized solar cells [J]. Eletrochem. Commum, 2007, 9: 596-598.
    [107] Q. Wang, H. Li, L. Q. Chen, X. J. Huang. Monodispersed hard carbon spherules with uniform nanopores [J]. Carbon, 2001, 39: 2211-2214.
    [108] H. Tetsuo, O. Yasuo, K. Noriyuki. Preparation of functionalized and non-functionalized fullerene thin films on ITO glasses and the application to a counter electrode in a dye-sensitized solar cell [J]. Carbon, 2006, 44: 880-887.
    [109] Y. Saito, W. Kubo, T. Kitamura, Y. Wada, S. Yanagida. I-/I3- redox reaction behavior onpoly(3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells [J]. J. Photochem. Photobiol, 2004, 164(3): 153-157.
    [110] S. Sakaguchi, H. Ueki, T. Kato, R. Shiratuchi, W. Takashima, K. Kaneto, S. Hayase. Quasi-solid dye sensitized solar cells solidified with chemically cross-linked gelators control of TiO2/gel electrolytes and counter Pt/gel electrolytes interfaces [J]. J. Photochem. Photobiol, 2004, 164(123): 117-122.
    [111] T. Muto, Y. Kijitori, K. Kohayashi. Conductive polymer based counter elect rode fabrication for plastic film dye-sensitized cells [C]. 16th Intemational Conference of Photochemical Conversion and Storage of Solar Energy. Uppsala ,Sweden ,2006 :50
    [112] S. Anandan, X. G. Wen, S. H. Yang. Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells [J]. Mater. Chem. Phys, 2005, 93: 35.
    [113]张祖训,汪尔康.电化学原理和方法[M].北京:科学出版社, 2000.
    [114]梁志德.现代物理测试技术[M].北京:冶金工业出版社, 2003
    [115]蒋淇忠,马紫峰,刘振泰.液相进样直接甲醇燃料电池性能研究[J].高校化学工程学报, 2001, 15: 46-51.
    [116] E. Antolini. Formation of carbon-supported PtM alloys for low temperature fuel cells: A review [J]. Mater. Chem. Phys., 2003, 78 (3): 563-573.
    [117]魏子栋,三木敦史,大森唯义,大泽雅俊.甲醇在欠电位沉积Sn-Pt电极上催化氧化[J].物理化学学报, 2002, 18: 1120-1124.
    [118] C. Roth, M. Goetz, H. Fuess. Synthesis and characterization of carbon-supported Pt2Ru2WOx catalysts by spectroscopic and diffraction methods [J]. J. Appl. Electrochem., 2001, 31: 793-798.
    [119] S. L. Liao, L. Vladimir, P. Leslie. Electrooxidation of methanol over a membrane-based electrode and effect of tungsten and molybdenum on the activity [J]. Appl. Catal., 2002, 235: 149-155.
    [120] N. A. Oliveira, G. E. Franco, E. Arico. Electrooxidation of methanol and ethanol on Pt-Ru/C and Pt-Ru-Mo/C electrocatalysts prepared by Bonnemann’s method [J]. J. Eur. Ceram. Soc., 2003, 23: 2987 -2992.
    [121] W. J. Zhou, B. Zhou, W. Z. Li, Z. H. Zhou, S. Q. Song, G. Q. Sun, Q. Xin, S. Douvartzides, M. Goula, P. Tsiakaras. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts [J]. J. Power Source, 2004, 126: 16-22.
    [122] A. S. Arico, H. Kim, I. Shukla, M. K. Ravikumar, N. Giordano. Methanol oxidation on carbon-supported Pt-Sn electrodes in silicotungstic acid [J]. Electrochim. Acta., 1994, 39 (5):691-700.
    [123] A. S. Arico, E. Modica, I. Ferrara, V. Artonucci. CO and CO/H2 electrooxidation on carbon supported Pt-Ru catalysis in phosphotungstic acid [J]. J. Appl. Electrochem., 1998, 28(9): 881-887.
    [124]王东田,魏杰,王芳,杨玉光,张忠林.用磷钼酸修饰甲醇燃料电池的铂电极[J].高校化学工程学报, 2005, 19: 829~833.
    [125]魏杰,杨红,杨玉光,张忠林.磷钼酸修饰铂电极的电化学行为及对甲醇氧化的电催化作用[J].无机化学学报, 2003,19: 945-949.
    [126]苏怡,刘长鹏,单义斌,韩飞,李长志,伍丽娥,邢巍,陆天虹.一种新型直接甲醇燃料电池阳极添加剂的电化学研究[J].化学学报, 2004, 62:1645-1648.
    [127] B. K. Won, T. Voitl, G. J. Rodriguez-Rivera, J. A. Dumesic. Powering Fuel Cells with CO via Aqueous Polyoxometalates and Gold Catalysts [J]. Science, 2004, 305: 1280-1283.
    [128] L. Clare, Green, A. Kucernak. Determination of the platinum and ruthenium surface areas in platinum-ruthenium alloy electrocatalysts by underpotential deposition of copper. I. unsupported catalysts [J]. J. Phys. Chem. B., 2002, 106: 1036-1047.
    [129] S. L. Chen, B. L. Wu, C. S. Cha. An EQCM investigation of formic acid at gold electrode in sulfuric acid solution [J]. J. Electroanal. Chem., 1997, 431: 243-247
    [130] M. C. Pham, S. Bouallala, L. A. Le, V. M. Dang, P. C. Lacaze. Study of a heteropolyanion-doped poly (5-amino-1-naphthol) film electrode and its catalytic activity [J]. Electrochemica Acta, 1997, 42 (3): 439-447
    [131] K. Engelsmann, W. J. Lorenz, E. Schmidt. Underpotential deposition of lead on polycrystalline and single-crystal gold surfaces: Part I. Thermodynamics [J]. J. Electroanal. Chem, 1980, 114: 1-10.
    [132] I. S. Park, K. S. Lee, D. S. Jung, H. Y. Park, Y. E. Sung. Electrocatalytic activity of carbon-supported Pt-Au nanoparticles for methanol electro-oxidation [J]. Electrochim. Acta, 2007, 52: 5599-5605.
    [133] T. Iwasita. Electrocatalysis of methanol oxidation [J]. Electrochim. Acta, 2002, 47: 3663-3674.
    [134] A. V. Tripkovic, K. D. Popovic, B. N. Grgur, B. Blizanac , P. N. Ross, N. M. Markovic. Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions [J]. Electrochim. Acta., 2002, 47: 3707-3714.
    [135] J. S .Spendelow, J. D. Goodpaster, P. J. Kenis, A. Wieckowski. Mechanism of CO Oxidation on Pt (111) in Alkaline Media [J]. J. Phys. Chem. B., 2006, 110: 9545–9555.
    [136] K. L. Hsueh, E. R. Gonzalez, S. Srinivasan. Electrolyte effects on oxygen reduction kinetics atplatinum: A rotating ring-disc electrode analysis [J]. Electrochim. Acta. 1983, 28:691-697.
    [137] W. Chrzanowski, A. Wieckowski. Surface structure effects in platinum/ruthenium methanol oxidation electrocatalysis [J]. Langmuir 1998, 14: 1967-1970.
    [138] J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang. Multiwalled carbon nanotube supported PtRu for the anode of direct methanol fuel cells [J]. J. Phys. Chem. B, 2006, 110: 5245-5252.
    [139] E. Reddington, A. Sapienza, B. Gurau, R. Viswanathan, S. Sarangapani, E. S. Smotkin, T. E. Mallouk. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts [J]. Science, 1998, 280: 1735-1737.
    [140] Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an active intermediate for direct oxidation of methanol on pt electrode [J]. J. Am. Chem. Soc, 2003, 125: 3680-3681.
    [141] C. M. Johnston, S. Strbac, A. Lewera, E. Sibert, A. Wieckowski. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition [J]. Langmuir, 2006, 22: 8229-8240.
    [142] A. H. C. Sirk, J.M .Hill, S. K. Y. Kung, V. I .Birss. Effect of redox state of PtRu electrocatalysts on methanol oxidation activity [J]. J. Phys.Chem. B, 2004, 108: 689-695.
    [143] Z. D. Wei, L. L. Li, Y. H. Luo, C. Yan, C. X. Sun, G. Z. Yin, P. K. Shen. Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes [J]. J. Phys. Chem. B, 2006, 110, 26055-26061.
    [144] F. Liu, J. Y. Lee, W. Zhou. Multi-segment Pt-RuNi nanorods for methanol electro-oxidation at room temperature [J]. J. Electrochem. Soc., 2006, 153: A2133-A2138.
    [145] G. J. Lu, J. S. Cooper, P. J .McGinn. SECM characterization of Pt–Ru–WC and Pt–Ru–Co ternary thin film combinatorial libraries as anode electrocatalysts for PEMFC [J]. J. Power Sources, 2006, 161: 106-114.
    [146] A. T. Haug, R. E. White, J. W. Weidner, W. Huang. Development of a novel CO tolerant proton exchange membrane fuel cell anode [J].J. Electrochem. Soc. 2002, 149(7): A862-A867.
    [147] M. V. Martinez-Huerta, J. L. Rodriguez, N. Tsiouvaras, M. A. Pena, J. L. G. Fierro, E. Pastor. Novel synthesis method of CO-tolerant PtRu-MoOx nanoparticles: structural characteristics and performance for methanol-electrooxidation [J]. Chem Mater, 2008, 20: 4249-4259.
    [148] J. S. Yu, S. Kang, S. B. Yoon, G. Chai. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter [J]. J. Am. Chem. Soc., 2002, 124: 9382-9383.
    [149] B.Coq, J. M. Planeix, V. Brotons. Fullerene-based materials as new support media in heterogeneous catalysis by metals [J]. Appl.catal.A, 1998, 173: 175-183.
    [150] B. Rajesh, V. Karthik, S. Karthikeyan, K. R. Thampi, J. M. Bonard, B. Viswanathan, Pt-WO3supported on carbon nanotubes as possible anodes for direct methanol fuel cells [J]. Fuel, 2002, 81(17): 2177-2190.
    [151] C. Wang, M. Waie, X. Wang, J.M. Tang, R.C. Haddon, Y. Yan. Letter Proton exchange membrane fuel cells with carbon nanotube based electrodes [J]. Nano Lett., 2004, 4 (2): 345-348.
    [152] S. C. Roy, P. A. Christensen, A. Hamnett, K. M. Thomas, V. Trapp. Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality [J]. J. Electrochem. Soc., 1996, 143: 3073-3079.
    [153] V. Lordi, N. Yao, J. Wei. Method for supporting platinum on single-walled carbon nanotubes for a selective hydrogenation catalyst [J]. Chem. Mater., 2001, 13: 733-737.
    [154] Z. L. Liu, X. H. Lin, J. Y. Lee , W. Zhang , M. Han, L. M. Gan. Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for proton exchange membrane fuel cells [J]. Langmuir, 2002, 18: 4054-4060.
    [155] P. J. Britto, K. S. V. Santhanam, A. Rubio, J. A. Alonso, P. M. Ajayan. Improved charge transfer at carbon nanotube electrodes [J]. Adv. Mater. 1999, 11, 154-157.
    [156] N. F. Zheng, G. D. Stucky. A general synthetic strategy for oxide-supported metal nanoparticle catalysts [J]. J. Am. Chem. Soc., 2006, 128: 14278-14280.
    [157] Z. Tun, J. J. Noel, D. W. Shoesmith. Electrochemical modification of the passive oxide layer on a ti film observed by in situ neutron reflectometry [J]. J. Electrochem. Soc., 1999, 146: 988-994.
    [158] K. Drew, G. Girishkumar, K. Vinodgopal, P. V. Kamat. Boosting Fuel Cell Performance with a Semiconductor Photocatalyst: TiO2/Pt-Ru Hybrid Catalyst for Methanol Oxidation [J]. J. Phys. Chem. B., 2005, 109: 11851-11857.
    [159] B. Koo, J. Park, Y. Kim, S. H. Choi, Y. E. Sung, T. Hyeon. Simultaneous phase- and size-controlled synthesis of TiO2 nanorods via non-hydrolytic sol-gel reaction of syringe pump delivered precursors [J]. J. Phys. Chem. B., 2006, 110, 24318-24323.
    [160] K. W. Park, S. B. Han, J. M. Lee. Photo(UV)-enhanced performance of Pt-TiO2 nanostructure electrode for methanol oxidation [J]. Electrochem. Commun, 2007, 9: 1578-1581.
    [161] B. E. Haydern, D. V. Malevich, D. Pletcher. Platinum catalysed nanoporous titanium dioxide electrodes in H2SO4 solutions [J]. Electrochem. Commun., 2001, 3: 395-399.
    [162] M. Hepel, I. Dela, T. Hepel, J. Luo, C. J. Zhong. Novel dynamic effects in electrocatalysis of methanol oxidation on supported nanoporous TiO2 bimetallic nanocatalysts [J]. Electrochim. Acta., 2007, 52: 5529-5547.
    [163] K. D. Benkstein, N. Kopidakis, J. van de Lagemaat, A. J. Frank. Influence of the percolationnetwork geometry on electron transport in dye-sensitized titanium dioxide solar cells [J]. J. Phys. Chem. B., 2003, 107: 7759-7767.
    [164] J. van de Lagemaat, K.D. Benkstein, A. J. Frank. Relation between particle coordination number and porosity in nanoparticle films: implications to dye-sensitized solar cells [J]. J. Phys. Chem. B., 2001, 105 :12433-12436.
    [165] D. Kim, A. Ghicov, P. Schmuki. TiO2 Nanotube arrays: Elimination of disordered top layers (“nanograss”) for improved photoconversion efficiency in dye-sensitized solar cells [J]. Electroche. Commun., 2008, 10:1835-1838.
    [166] W. U. Huynh, J. J. Dittmer, A. P. Alivisatos. Hybrid nanorod-polymer solar cells [J]. Science, 2002, 295: 2425-2427.
    [167] K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays [J]. Nano. Lett., 2007,7: 69-74.
    [168] N. Kopidakis, E. A. Schiff, N.G. Park, J. van de Lagemaat, A. J. Frank. Ambipolar diffusion of photocarriers in electrolyte-filled, nanoporous TiO2 [J]. J. Phys. Chem. B, 2000. 104: 3930-3936.
    [169] T. Dittrich, E. A. Lebedev, J. Weidmann. Electron drift mobility in porous TiO2 (anatase) [J]. Phys. Stat. Sol. A .1998, 165: R5-R6.
    [170] M. Adachi, Y. Murata, M. Harada, S. Yoshikawa. Formation of titania nanotubes with high photo-catalytic activity [J]. Chem. Lett., 2000, 8: 942-943.
    [171] W. T. Sun, Y. Yu, H. Y. Pan, X. F. Gao, Q. Chen, L.M. Peng. Cds quantum dots sensitized TiO2 nanotube-array photoelectrodes [J]. J. Am. Chem. Soc., 2008, 130: 1124-1125.
    [172] R. Beraneka, J. M. Macakb, M. G?rtnera, K. Meyera, P. Schmukib. Enhanced visible light photocurrent generation at surface-modified TiO2 nanotubes [J]. Electrochim. Acta, 2009,54: 2640-2646.
    [173] N. Lu, S. Chen, H. T. Wang, X. Quan , H. M. Zhao. Synthesis of molecular imprinted polymer modified TiO2 nanotube array electrode and their photoelectrocatalytic activity [J]. J. Solid. State. Chem., 2008, 181: 2852-2858.
    [174] Z. H. Zhang, Y. Yuan, Y. J. Fang, L. H. Liang, H. C. Ding, G. Y. Shi, L. T. Jin. Photoelectrochemical oxidation behavior of methanol on highly ordered TiO2 nanotube array electrodes [J]. J. Electroanal. Chem. 2007, 610: 179-85.
    [175]陈四国.脉冲电沉积法制备质子交换膜燃料电池催化电极的研究[D].硕士学位论文,重庆大学, 2004.
    [176]张允诚,胡如南,向荣.电镀手册(上)[M].北京:国防工业出版社,1997:626
    [177] R. Manohara, J. B. Goodenough. Methanol oxidation in acid on ordered NiTi [J]. J. Mater. Chem., 1992, 2: 875-887.
    [178] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell [J]. J. Phys. Chem. B., 2004, 108: 8234-8240.
    [179] B. O’Regan, M. Gr?tzel. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films [J]. Nature, 1991, 353: 737-740.
    [180] M. Gr?tzel. Review article photoelectrochemical cells [J]. Nature 2001, 414: 338-344.
    [181] L. M. Peter, K.G. U. Wijayantha. Electron transport and back reaction in dye-sensitised nanocrystalline solar cells [J]. Electrochimica Acta, 2000, 45: 4543-4551.
    [182] P. K. M. Bandaranayake, P. V. V. Jayaweera, K. Tennakone. Dye-sensitization of magnesium-oxide-coated cadmium sulfide [J]. Sol. Energy Mater. Sol. Cells, 2003, 76: 57-64.
    [183] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields. Interfacial recombination processes in dye-sensitized solar cells and methods to passivate the interfaces [J]. J. Phys. Chem. B., 2001, 105: 1422–1429.
    [184] Q. F. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, G. Z. Cao. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells [J]. Angew. Chem. Int. Ed. 2008, 47: 2402-2406.
    [185] C. S. Chou, R. Y. Yang, C. K. Yeh, Y. J. Lin. Preparation of TiO2/Nano-metal composite particles and their applications in dye-sensitized solar cells [J]. Powder Technology, 2009, 194: 95–105.
    [186] T. L. Ma, K. Inoue, K. Yao, H. Noma, T. Shuji, E. Abe, J. Yu, X. Wang, B. Zhang. Photoelectrochemical properties of TiO2 electrodes sensitized by porphyrin derivatives with different numbers of carboxyl groups [J]. J. Electroanal. Chem., 2002, 537: 31-38.
    [187] J. J. Lagref, Md. K. Nazeeruddin, M. Gr?tzel. Molecular engineering on semiconductor surfaces: design, synthesis and application of new efficient amphiphilic ruthenium photosensitizers for nanocrystalline TiO2 solar cells [J]. Synth. Met., 2003, 138: 333-339.
    [188] R. K. Chen, X. C. Yang, H. N. Tian, L. C. Sun. Tetrahydroquinoline dyes with different spacers for organic dye-sensitized solar cells [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189: 295–300
    [189] P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, M. Gr?tzel. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte [J]. Nat. Mater., 2003, 2: 402-407.
    [190] P. Wang, S. M. Zakeerudin, J. E. Moser, R. H. Baker, P. Comte, V. Aranyos, A. Hagfeldt, M. K. Nazeerudin, M. Gr?tzel. Stable new sensitizer with improved light harvesting fornanocrystalline dye-sensitized solar cells [J]. Adv. Mater. 2004, 16: 1806-1811.
    [191] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weiss?rtel, J. Salbeck, H. Spreitzer, M. Gr?tzel. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J]. Nature, 1998, 395: 583-585.
    [192] B. O'Regan, F. Lenzmann, R. Muis, J. Wienke. A solid-state dye-sensitized solar cell fabricated with pressure-treated P25-TiO2 and cuscn: analysis of pore filling and I-V characteristics [J]. Chem. Mater., 2002, 14: 5023-5029.
    [193] Y. J. Kim, J. H. Kim, M. S. Kang, M. J. Lee, J. Won, J. C. Lee, Y. S. Kang. Supramolecular electrolytes for use in highly efficient dye-sensitized solar cells [J]. Adv. Mater., 2004, 16: 1753-1757.
    [194] J. A. Mikroyannidis, M. M. Stylianakis, M. S. Royc, P. Sureshb, G. D. Sharmab. Synthesis, photophysics of two new perylene bisimides and their photovoltaic performances in quasi solid state dye sensitized solar cells [J]. Journal of Power Sources, 2009, 194: 1171–1179.
    [195] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe. Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell [J]. J. Electroanal. Chem., 2004, 570: 257-263.
    [196] Q. Li, J. Wu, Q. Tang, Z. Lan, P. Li, J. Lin, L. Fan. Application of microporous polyaniline counter electrode for dye-sensitized solar cells [J]. Electrochemistry Communications, 2008, 10: 1299–1302.
    [197] C. Chen, C. Chen, T. Wei. Chemical deposition of platinum on metallic sheets as counterelectrodes for dye-sensitized solar cells [J]. Electrochimica Acta, 2008, 55: 1687-1695.
    [198] S. Kim, K. Park, J. Yum, Y. Sung. Pt-NiO nanophase electrodes for dye-sensitized solar cells [J]. Solar Energy Materials & Solar Cells, 2006, 90: 283–290.
    [199] S. Kim, Y. Nah, Y. Noh, J. Jo, D. Kim. Electrodeposited Pt for cost-efficient and flexible dye-sensitized solar cells [J]. Electrochimica Acta, 2006, 51: 3814–3819.
    [200] J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, S. Hao. High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells [J]. Journal of Power Sources, 2008, 181: 172–176.
    [201] T. Denaro, V. Baglio, M. Girolamo, V. Antonucci, A. S. Arico’, F. Matteucci, R. Ornelas. Investigation of low cost carbonaceous materials for application as counter electrode in dye-sensitized solar cells [J]. J Appl Electrochem, 2009, 39: 2173–2179.
    [202] W. J. Lee, E. Ramasamy, D. Y. Lee, J. S. Song. Performance variation of carbon counter electrode based dye-sensitized solar cell [J]. Solar Energy Materials & Solar Cells, 2008, 92: 814–818.
    [203] N. Papageorgiou. Counter-electrode function in nanocrystalline photoelectrochemical cell configurations [J]. Coord. Chem. Rev., 2004, 248: 1421-1446.]
    [204] W. Macyk, G. Stochel, K. Szaci?owski. Photosensitization and the photocurrent switching effect in nanocrystalline titanium dioxide functionalized with iron (ii) complexes: a comparative study [J]. Chem-Eur. J., 2007, 13: 5676-5687.
    [205] K. Imoto, K. Takatashi, T. Yamaguchi, T. Komura, J. Nakamura, K. Murata. High-performance carbon counter electrode for dye-sensitized solar cells [J]. Sol. Energy. Mater. Sol. Cells, 2003, 79: 459-469.
    [206] Y. Saito, T. Kitamura, Y. Wada, S. Yanagida. Application of poly (3, 4-ethylenedioxythiophene) to counter electrode in dye-sensitized solar cells [J]. Chem. Lett. 2002, 31: 1060-1061.
    [207] K. M. Lee, P. Y. Chen, C.Y. Hsu, J. H. Huang, W. H. Ho, H.C. Chen, K.C. Ho. A high-performance counter electrode based on poly (3,4-alkylenedioxythiophene) for dye-sensitized solar cells [J]. J. Power. Sources., 2009, 188: 313-318.
    [208] X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, E. Abe. Performances characteristics of dye-sensitized solar cells based on counter electrodes with pt films of different thickness [J]. J. Photochem. Photobiol. A., 2004, 164:179-182.
    [209] G. Wang, R. Lin, Y. Lin, X. Li, X. Zhou, X. Xiao. A novel high-performance counter electrode for dye-sensitized solar cells [J]. Electrochim. Acta, 2005, 50 (28): 5546-5552.
    [210] S. C. Hao, J. H. Wu, J. M. Lin, Y. M. Huang. Modification of photocathode of dye-sensitized nanocrystalline solar cell with platinum by vacuum coating, thermal decomposition and electroplating [J]. Compos. Interfaces., 2006, 13:899-909.
    [211] P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, Q. Li. Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode [J] Electrochim. Acta, 2008, 53:4161-4166.
    [212]刘小东.染料敏化太阳能电池的对电极研究[D].硕士学位论文,天津大学, 2007.
    [213] Y. S. Dong, W. J. Li, Y. R. Li, G. Y. Li. Influence of silicon on the micro-structure and mechanical properties of Zr-Si-N composite films [J]. Appl. Surf. Sci., 2006, 252 (14): 5057-5062.
    [214]季梦波.抗溺水性气体多孔电极的研究[D].博士学位论文,重庆大学, 2009.
    [215] A. Pozio, M. De Francesco, A. Cemmi, F. Cardellini, L. Giorgi. Comparison of high surface Pt/C catalysts by cyclic voltammetry [J]. J. Power Sources 2002, 105: 13-19.
    [216] J. V. Lagemaat, N.G. Park, A. J. Frank. Influence of electrical potential distribution, charge transport, and recombination on the photopotential and photocurrent conversion efficiency of dye-sensitized nanocrystalline TiO2 solar cells: a study by electrical impedance and opticalmodulation techniques [J]. J. Phys. Chem. B, 2000, 104: 2044-2052.
    [217] Q. Wang, J. E. Moser, M. Gr?tzel. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells [J]. J. Phys. Chem. B., 2005, 109: 14945-14953.
    [218]黄光胜, J. Halme,杨芸, P.Lund.纳米TiO2薄膜厚度与不锈钢基体对染料敏化太阳能电池的影响[J].功能材料, 2008, 39 (10): 1752-1755.
    [219] M. Toivola, F. Ahlskog, P. Lund. Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures [J]. Solar Energy Materials & Solar Cells, 2006, 90: 2881-2893.
    [220] S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, P. Péchy, M. K. Nazeeruddin, M. Gr?tzel. High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode [J]. Chem Commun, 2006, 8: 4004-4006.
    [221] M. G. Kang, N. Park, K. S. Ryu, S. H. Chang, K. Kim. A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate [J]. Solar Energy Material & Solar Cells, 2006, 90: 574-581.
    [222] J. Nemoto, M. Sakata, T. Hoshi, H. Ueno, M. Kaneko. All-plastic dye-sensitized solar cell using a polysaccharide film containing excess redox electrolyte solution [J]. Journal of Electroanalytical Chemistry, 2007, 599: 23-30.
    [223] Z. D. Wei, S. G. Chen, Y. Liu, C. X. Sun, Z. G. Shao, P. K. Shen. Electrodepositing Pt by modulated pulse current on a nafion-bonded carbon substrate as an electrode for PEMFC [J]. J. Phys. Chem. C, 2007, 111: 15456-15460.
    [224] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Gr?tzel. Conversion of light to electricity by cis-X2bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl?, Br?, I?, CN?, and SCN?) on nanocrystalline titanium dioxide electrodes [J]. J. Am. Chem. Soc. 1993, 115: 6382-6390.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700