改良人血清白蛋白融合蛋白在毕赤酵母中分泌表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毕赤酵母能够在高效表达外源蛋白的同时,对外源蛋白进行翻译后的正确折叠和加工修饰,已成为目前表达外源蛋白尤其是人源药物蛋白所广泛采用的表达宿主之一。然而随着越来越多外源蛋白在毕赤酵母中分泌表达,发现某些外源蛋白在分泌表达过程中存在胞内聚集而导致分泌表达量较低,宿主蛋白酶对外源蛋白存在不同程度的降解等问题。本研究室前期研究结果也表明,采用相同的载体和宿主表达系统,在各自优化后的培养和表达条件下,多种人血清白蛋白(HSA)融合蛋白在毕赤酵母中的分泌表达量较HSA显著降低,分泌表达过程中HSA融合蛋白降解较严重,对表达产物的后期纯化带来了相当的困难。基于毕赤酵母存在的以上不足,本论文通过基因工程的手段,从以下三个方面对已有HSA融合蛋白的毕赤酵母分泌表达系统进行了改造:
     1、为避免诱导碳源甲醇对发酵制备HSA融合蛋白可能带来的不利影响,以毕赤酵母GS115作为出发菌株,成功构建筛选获得一株甘油醛3-磷酸脱氢酶基因启动子(PGAP)调控的分泌表达rhIL-2-HSA融合蛋白的菌株。该菌株能在多种单一碳源的培养基中组成型分泌表达rhIL-2-HSA融合蛋白。以葡萄糖为碳源时,rhIL-2-HSA融合蛋白的表达量最高。5L罐发酵实验结果显示,rhIL-2-HSA融合蛋白的PGAP表达菌株,在以葡萄糖为单一碳源的发酵培养基中发酵60h,rhIL-2-HSA融合蛋白的表达量可达约250mg·L-1。由此纯化获得的rhIL-2-HSA融合蛋白的体外活性约为1.040×106IU·mg-1,与甲醇诱导型的PAOX1表达系统获得的rhIL-2-HSA融合蛋白的体外活性水平相当。
     2、为促进HSA融合蛋白的分泌表达,选择折叠酶PDI、Ero1、分子伴侣BiP、以及囊泡转运过程参与调控膜融合的SM蛋白Sec1和Sly1作为分泌辅助因子进行共表达,并分析共表达以上分泌辅助因子对rhIL-2-HSA融合蛋白分泌表达的影响。共表达分泌辅助因子PDI、Ero1、BiP、Sec1和Sly1对分泌表达融合蛋白rhIL-2-HSA菌株的正常生长没有影响,分别使融合蛋白rhIL-2-HSA的分泌表达量提高了120%,130%,90%,150%和90%。Western blot对共表达PDI,Ero1,BiP,Sec1和Sly1的各个共表达菌株细胞内胞质蛋白组分和膜偶联蛋白组分进行半定量发现,胞质蛋白组分和膜偶联蛋白组分中rhIL-2-HSA融合蛋白的含量也显著增加。定量PCR分析发现,共表达菌株中相关分泌辅助因子的基因转录也显著增强。
     3、为了减少HSA融合蛋白在分泌表达过程中的降解,以毕赤酵母GS115菌株为亲本菌株,分别敲除毕赤酵母各个Yapsin蛋白酶编码基因YPS1,YPS2,YPS3,MKC7和YPS7,构建了毕赤酵母单基因敲除菌株Yps1Δ,Yps2Δ,Yps3Δ,Mkc7Δ,Yps7Δ和多基因敲除菌株GBD2,GBD3,GBD4,GBD5。将融合蛋白HSA-ADAM15的表达载体转入以上构建的单基因敲除菌株,发现敲除单个Yapsin蛋白酶基因YPS1,YPS2,YPS3,MKC7或YPS7,对融合蛋白HSA-ADAM15分泌表达时的降解没有明显改善。在多重Yapsin蛋白酶基因敲除菌株GBD4(yps1Δyps2Δyps3Δ)和GBD5(yps1Δyps2Δyps3Δyps7Δ)中分泌表达HSA-ADAM15融合蛋白,HSA-ADAM15的降解得到部分缓解:GBD4菌株表达的完整目标蛋白含量约为对照GS115菌株中的133%,降解片段d1和d2的含量则分别降低了50%和52%。这表明多个Yapsin蛋白酶缺陷的毕赤酵母菌株能够部分缓解分泌表达过程中融合蛋白HSA-ADAM15的降解。此外,对各个蛋白酶缺陷菌株的生长表型进行分析,发现在获得的蛋白酶缺陷菌株中,Yps7Δ菌株对CalcofluorWhite,刚果红和SDS三种细胞壁胁迫性物质的抗性增强。与GS115菌株相比,Yps7Δ突变体细胞侧生细胞壁(lateral cell wall)部分的几丁质含量降低, β-1,3-葡聚糖含量则显著增加。透射电镜观察也发现Yps7Δ突变体细胞壁中由β-1,3-葡聚糖组成的细胞壁内层结构厚度也显著增加,表明毕赤酵母的Yps7参与细胞壁组分合成的调控。生长表型分析还发现,Yps7Δ菌株对由KCl和NaCl引起的渗透胁迫也表现出显著增强的抗性。渗透胁迫条件下,Yps7Δ菌株自身胞内甘油积累量显著高于GS115菌株的积累量,表明毕赤酵母的Yps7还参与渗透胁迫响应的调控。
Due to the potential of producing soluble, correctly folded protein with high yield, theyeast Pichia pastoris is currently one of the most widely used hosts for the expression ofheterologous proteins, especially for those recombinant human proteins. However, limitationsof expression efficiency and proteolytic degradation are often reported for many differentheterologous proteins. Secretory expression of a series of peptides genetically fused to humanserum albumin (HSA) in P. pastoris was successfully achieved in previous work of mylaboratory. The secretion levels of different HSA fusion proteins in P. pastoris were muchlower compared with HSA when using the same strain and expression vector under theoptimal cultivation condition. In addition, different HSA fusion proteins usually underwentproteolytic degradation in different degree during secretory expression. To circumvent thesedefects and improve the secretory expression of HSA fusion proteins in P. pastoris, weinvestigated the possible effects of genetic engineering the Pichia expression system of HSAfusion proteins by following three aspects:
     (1) To avoid the possible negative effect of methanol on the expressed HSA fusion protein,a constitutive expression vector for secretory expression of rhIL-2-HSA fusion protein in P.pastoris was constructed. The coding gene was placed in frame with the Saccharomycescerevisiae α-factor secretion signal sequence under control of the GAP promoter. Theresulting recombinant plasmid pGAPzαA-rhIL-2-HSA was integrated into the genome of theP. pastoris GS115by electroporation. The effect of different carbon sources on secretoryexpression of rhIL-2-HSA fusion protein was evaluated in shaking flask cultures. We foundthat recombinant P. pastoris grew well and rhIL-2-HSA fusion protein was the mostefficiently secreted into the medium when using glucose as carbon source. Fed-batchfermentation strategy using glucose as carbon source for constitutive expression ofrhIL-2-HSA fusion protein was investigated in5-L bioreactor. The expression level ofrhIL-2-HSA could reach about250mg·L-1after60h fermentation. The rhIL-2-HSA fusionprotein produced by this constitutive expression system was purified and exhibited a specificbioactivity of1.040×106IU·mg-1in vitro, which is similar to the rhIL-2-HSA produced byAOX1derived expression system.
     (2) Several steps in the secretory pathway, such as folding within the ER and vesicletrafficking are suggested to be bottlenecks during recombinant protein secretion in yeast.Three ER resident proteins including immunoglobulin binding protein(BiP), protein disulfideisomerase (PDI) and ER oxidoreductin (Ero1), and two putative Sec1/Munc18(SM) proteins(Sec1and Sly1) involved in membrane fusion during vesicle trafficking were cloned from P.pastoris and selected as potential secretion helper factors to investigate the effects of theiroverexpression on secretory expression of HSA fusion protein rhIL-2-HSA. Constitutiveoverexpression of the five selected secretion factors did not have obvious negative effect oncell growth of the rhIL-2-HSA secreting strain. Among the five secretion helper factors,individually co-overexpression of the Ero1, PDI, BiP, Sec1, and Sly1improved the secretionlevel of rhIL-2-HSA by about120%,130%,90%,150%, and90%comparing to the controlstrain. Western blot analysis of the intracellular level of IL-2-HSA protein showed that thecontent of IL-2-HSA protein in the cytosolic protein fraction and membrane-associated protein fraction in each of the five co-overexpression strains were also increased comparing tothat in the control strain. qPCR analysis also showed that the transcription levels of someother secretion helper factor genes were increased when one secretion helper factor wasoverexpressed.
     (3) To alleviate the degradation of HSA fusion protein during secretory expression in P.pastoris, the five Yapsin protease genes assigned as YPS1, YPS2, YPS3, YPS7and MKC7in P.pastoris were disrupted individually or simultaneously. We then evaluated the expression of aHSA fusion protein (HSA-ADAM15) in various P. pastoris protease disruption strains (yps1Δ,yps2Δ, yps3Δ, yps7Δ and mkc7Δ). Unfortunately, the degradation of this HSA fusion protein(HSA-ADAM15) during secretory expression was not alleviated in thesesingle-protease-deficient strains. We further constructed several multiple-protease-deficientstrains and used them as hosts for expression of HSA-ADAM15fusion protein in shake-flaskcultivation. SDS-PAGE analysis of the HSA fusion protein (HSA-ADAM15) expressed bythese multiple-protease-deficient strains showed that double disruptants (yps1Δyps2Δ andyps1Δyps3Δ) did not reduce the amount of degradation bands d1(~66kDa) and d2(~45kDa)comparing to the parental strain GS115. The amount of intact HSA-ADAM15in GBD4(yps1Δyps2Δyps3Δ) was about133%of that in strain GS115, and the amount of degradationbands d1and d2were reduced by about50%and52%, respectively, comparing to that instrain GS115. These results showed that the multiple disruptants of Yapsin protease genes arepotential industrially valuable hosts for secretory expression of HSA-ADAM15fusion protein.In addition, among these putative GPI-linked aspartyl proteases, we unexpectly found thatdisruption of PpYPS7gene conferred the yps7Δ mutant cell increased resistance to cell wallperturbing reagents Congo red (CR), Calcofluor white (CW) and SDS. Quantitative analysisof cell wall components showed lower content of chitin and increased amounts ofβ-1,3-glucan. Further staining the cell with Calcofluor white demonstrated that disruption ofPpYPS7gene caused a reduction of the chitin content in lateral cell wall. Consistently, TEMshowed that the inner layer of mutant cell wall, mainly composed of chitin and β-1,3-glucan,was much thicker than that in parental strain GS115. Additionally, yps7Δ mutant alsoexhibited increased resistance to KCl and NaCl compared with parental strain GS115. Thiscould be due to the dramatically elevated intracellular glycerol level in yps7Δ mutant. Theseresults suggested that PpYPS7’s function is involved in cell wall integrity and response toosmotic stress.
引文
1Stadlmayr G, Mecklenbrauker A, Rothmuller M, et al. Identification and characterisation of novelPichia pastoris promoters for heterologous protein production[J]. J Biotechnol,2010,150(4):519-529
    2van der Klei I J, Yurimoto H, Sakai Y, et al. The significance of peroxisomes in methanol metabolismin methylotrophic yeast[J]. Biochim Biophys Acta,2006,1763(12):1453-1462.
    3Ozimek P, Veenhuis M, van der Klei I J. Alcohol oxidase: a complex peroxisomal, oligomericflavoprotein[J]. FEMS Yeast Res,2005,5(11):975-983.
    4Cregg J M, Madden K R, Barringer K J, et al. Functional characterization of the two alcohol oxidasegenes from the yeast Pichia pastoris[J]. Mol Cell Biol,1989,9(3):1316-1323.
    5Hasslacher M, Schall M, Hayn M, et al. High-level intracellular expression of hydroxynitrile lyasefrom the tropical rubber tree Hevea brasiliensis in microbial hosts[J]. Protein Expr Purif,1997,11(1):61-71.
    6Werten M W, van den Bosch T J, Wind R D, et al. High-yield secretion of recombinant gelatins byPichia pastoris[J]. Yeast,1999,15(11):1087-1096.
    7Vogl T, Glieder A. Regulation of Pichia pastoris promoters and its consequences for proteinproduction[J]. N Biotechnol,2013,30(4):385-404.
    8Kobayashi K, Kuwae S, Ohya T, et al. Addition of oleic acid increases expression of recombinanthuman serum albumin by the AOX2promoter in Pichia pastoris[J]. J Biosci Bioeng,2000,89(5):479-484.
    9Godecke S, Eckart M, Janowicz Z A, et al. Identification of sequences responsible for transcriptionalregulation of the strongly expressed methanol oxidase-encoding gene in Hansenula polymorpha[J]. Gene,1994,139(1):35-42.
    10Komeda T, Yurimoto H, Kato N, et al. Cis-acting elements sufficient for induction of FDH1expression by formate in the methylotrophic yeast Candida boidinii[J]. Mol Genet Genomics,2003,270(3):273-280.
    11Ohi H, Miura M, Hiramatsu R, et al. The positive and negative cis-acting elements for methanolregulation in the Pichia pastoris AOX2gene[J]. Mol Gen Genet,1994,243(5):489-499.
    12Inan M. Studies on the alcohol oxidase (AOX1) promoter of Pichia pastoris[D]: Ph.D. Lincoln,Nebraska: University of Nebraska,2000.
    13Kranthi B V, Kumar R, Kumar N V, et al. Identification of key DNA elements involved in promoterrecognition by Mxr1p, a master regulator of methanol utilization pathway in Pichia pastoris[J]. BiochimBiophys Acta,2009,1789(6-8):460-468.
    14Lin-Cereghino G P, Godfrey L, de la Cruz B J, et al. Mxr1p, a key regulator of the methanolutilization pathway and peroxisomal genes in Pichia pastoris[J]. Mol Cell Biol,2006,26(3):883-897.
    15Zhang P, Zhang W, Zhou X, et al. Catabolite repression of Aox in Pichia pastoris is dependent onhexose transporter PpHxt1and pexophagy[J]. Appl Environ Microbiol,2010,76(18):6108-6118.
    16Kranthi B V, Balasubramanian N, Rangarajan P N. Isolation of a single-stranded DNA-bindingprotein from the methylotrophic yeast, Pichia pastoris and its identification as zeta crystallin[J]. NucleicAcids Res,2006,34(14):4060-4068.
    17Bhatnagar A, Raghavendra P R, Kranthi B V, et al. Yeast cytochrome c is a sequence-specificDNA-binding protein[J]. Biochem Biophys Res Commun,2004,321(4):900-904.
    18Cregg J M, Cereghino J L, Shi J, et al. Recombinant protein expression in Pichia pastoris[J]. MolBiotechnol,2000,16(1):23-52.
    19Zhang A L, Zhang T Y, Luo J X, et al. Constitutive expression of human angiostatin in Pichia pastorisby high-density cell culture[J]. J Ind Microbiol Biotechnol,2007,34(2):117-122.
    20Sinha J, Plantz B A, Inan M, et al. Causes of proteolytic degradation of secreted recombinant proteinsproduced in methylotrophic yeast Pichia pastoris: case study with recombinant ovine interferon-tau[J].Biotechnol Bioeng,2005,89(1):102-112.
    21Jahic M, Wallberg F, Bollok M, et al. Temperature limited fed-batch technique for control ofproteolysis in Pichia pastoris bioreactor cultures[J]. Microb Cell Fact,2003,2(1):6-17.
    22Hohenblum H, Gasser B, Maurer M, et al. Effects of gene dosage, promoters, and substrates onunfolded protein stress of recombinant Pichia pastoris[J]. Biotechnol Bioeng,2004,85(4):367-375.
    23Gasser B, Saloheimo M, Rinas U, et al. Protein folding and conformational stress in microbial cellsproducing recombinant proteins: a host comparative overview[J]. Microb Cell Fact,2008,7:11-29.
    24Waterham H R, Digan M E, Koutz P J, et al. Isolation of the Pichia pastorisglyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter[J]. Gene,1997,186(1):37-44.
    25Baumann K, Maurer M, Dragosits M, et al. Hypoxic fed-batch cultivation of Pichia pastoris increasesspecific and volumetric productivity of recombinant proteins[J]. Biotechnol Bioeng,2008,100(1):177-183.
    26Qin X, Qian J, Yao G, et al. GAP promoter library for fine-tuning of gene expression in Pichiapastoris[J]. Appl Environ Microbiol,2011,77(11):3600-3608.
    27Goodrick J C, Xu M, Finnegan R, et al. High-level expression and stabilization of recombinant humanchitinase produced in a continuous constitutive Pichia pastoris expression system[J]. Biotechnol Bioeng,2001,74(6):492-497.
    28Oledzka G, Dabrowski S, Kur J. High-level expression, secretion, and purification of the thermostableaqualysin I from Thermus aquaticus YT-1in Pichia pastoris[J]. Protein Expr Purif,2003,29(2):223-229.
    29Yu Z L, Wu X J, Li D Y, et al. Enhancement of the production of SAM by overexpression of SAMsynthetase in Pichia pastoris[J]. Acta Bioch Bioph Sin,2003,35(2):127-132.
    30Zhang A L, Luo J X, Zhang T Y, et al. Recent advances on the GAP promoter derived expressionsystem of Pichia pastoris[J]. Mol Biol Rep,2009,36(6):1611-1619.
    31Delroisse J M, Dannau M, Gilsoul J J, et al. Expression of a synthetic gene encoding a Triboliumcastaneum carboxylesterase in Pichia pastoris[J]. Protein Expr Purif,2005,42(2):286-294.
    32Doring F, Klapper M, Theis S, et al. Use of the glyceraldehyde-3-phosphate dehydrogenase promoterfor production of functional mammalian membrane transport proteins in the yeast Pichia pastoris[J].Biochem Biophys Res Commun,1998,250(2):531-535.
    33Vassileva A, Chugh D A, Swaminathan S, et al. Expression of hepatitis B surface antigen in themethylotrophic yeast Pichia pastoris using the GAP promoter[J]. J Biotechnol,2001,88(1):21-35.
    34Boer H, Teeri T T, Koivula A. Characterization of Trichoderma reesei cellobiohydrolase Cel7Asecreted from Pichia pastoris using two different promoters[J]. Biotechnol Bioeng,2000,69(5):486-494.
    35Shen S, Sulter G, Jeffries T W, et al. A strong nitrogen source-regulated promoter for controlledexpression of foreign genes in the yeast Pichia pastoris[J]. Gene,1998,216(1):93-102.
    36Ahn J, Hong J, Lee H, et al. Translation elongation factor1-alpha gene from Pichia pastoris:molecular cloning, sequence, and use of its promoter[J]. Appl Microbiol Biotechnol,2007,74(3):601-608.
    37de Almeida J R, de Moraes L M, Torres F A. Molecular characterization of the3-phosphoglyceratekinase gene (PGK1) from the methylotrophic yeast Pichia pastoris[J]. Yeast,2005,22(9):725-737.
    38Menendez J, Valdes I, Cabrera N. The ICL1gene of Pichia pastoris, transcriptional regulation and useof its promoter[J]. Yeast,2003,20(13):1097-1108.
    39Liu H, Tan X, Russell K A, et al. PER3, a gene required for peroxisome biogenesis in Pichia pastoris,encodes a peroxisomal membrane protein involved in protein import[J]. J Biol Chem,1995,270(18):10940-10951.
    40Ahn J, Hong J, Park M, et al. Phosphate-responsive promoter of a Pichia pastoris sodium phosphatesymporter[J]. Appl Environ Microbiol,2009,75(11):3528-3534.
    41Hartner F S, Ruth C, Langenegger D, et al. Promoter library designed for fine-tuned gene expressionin Pichia pastoris[J]. Nucleic Acids Res,2008,36(12): e76.
    42Bao W G, Huo K K, Li Y Y, et al. Protein disulphide isomerase genes of Kluyveromyces lactis[J].Yeast,2000,16(4):329-341.
    43Nombela C, Gil C, Chaffin W L. Non-conventional protein secretion in yeast[J]. Trends Microbiol,2006,14(1):15-21.
    44Lodish H, Berk A, Zipursky S L, et al. Molecular Cell Biology[M]:5th edition. New York: W. H.Freeman,2003.702-702.
    45Idiris A, Tohda H, Kumagai H, et al. Engineering of protein secretion in yeast: strategies and impacton protein production[J]. Appl Microbiol Biotechnol,2010,86(2):403-417.
    46Anelli T, Sitia R. Protein quality control in the early secretory pathway[J]. EMBO J,2008,27(2):315-327.
    47Schroder M, Kaufman R J. ER stress and the unfolded protein response[J]. Mutat Res,2005,569(1-2):29-63.
    48Dorner A J, Kaufman R J. Analysis of synthesis, processing, and secretion of proteins expressed inmammalian cells[J]. Methods Enzymol,1990,185:577-596.
    49Steel G J, Fullerton D M, Tyson J R, et al. Coordinated activation of Hsp70chaperones[J]. Science,2004,303(5654):98-101.
    50Schroder M. Engineering eukaryotic protein factories[J]. Biotechnol Lett,2008,30(2):187-196.
    51Tsai B, Rodighiero C, Lencer W I, et al. Protein disulfide isomerase acts as a redox-dependentchaperone to unfold cholera toxin[J]. Cell,2001,104(6):937-948.
    52Tu B P, Weissman J S. The FAD-and O(2)-dependent reaction cycle of Ero1-mediated oxidativeprotein folding in the endoplasmic reticulum[J]. Mol Cell,2002,10(5):983-994.
    53Gerber J, Muhlenhoff U, Hofhaus G, et al. Yeast ERV2p is the first microsomal FAD-linkedsulfhydryl oxidase of the Erv1p/Alrp protein family[J]. J Biol Chem,2001,276(26):23486-23491.
    54Sevier C S, Cuozzo J W, Vala A, et al. A flavoprotein oxidase defines a new endoplasmic reticulumpathway for biosynthetic disulphide bond formation[J]. Nat Cell Biol,2001,3(10):874-882.
    55Yoshida H. ER stress and diseases[J]. FEBS J,2007,274(3):630-658.
    56Damasceno L M, Anderson K A, Ritter G, et al. Cooverexpression of chaperones for enhancedsecretion of a single-chain antibody fragment in Pichia pastoris[J]. Appl Microbiol Biotechnol,2007,74(2):381-389.
    57van der Heide M, Hollenberg C P, van der Klei I J, et al. Overproduction of BiP negatively affects thesecretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha[J]. Appl MicrobiolBiotechnol,2002,58(4):487-494.
    58Payne T, Finnis C, Evans L R, et al. Modulation of chaperone gene expression in mutagenizedSaccharomyces cerevisiae strains developed for recombinant human albumin production results inincreased production of multiple heterologous proteins[J]. Appl Environ Microbiol,2008,74(24):7759-7766.
    59Xu P, Raden D, Doyle F J,3rd, et al. Analysis of unfolded protein response during single-chainantibody expression in Saccaromyces cerevisiae reveals different roles for BiP and PDI in folding[J].Metab Eng,2005,7(4):269-279.
    60Inan M, Aryasomayajula D, Sinha J, et al. Enhancement of protein secretion in Pichia pastoris byoverexpression of protein disulfide isomerase[J]. Biotechnol Bioeng,2006,93(4):771-778.
    61Li Z, Moy A, Gomez S R, et al. An improved method for enhanced production and biological activityof human secretory leukocyte protease inhibitor (SLPI) in Pichia pastoris[J]. Biochem Biophys ResCommun,2010,402(3):519-524.
    62Vad R, Nafstad E, Dahl L A, et al. Engineering of a Pichia pastoris expression system for secretion ofhigh amounts of intact human parathyroid hormone[J]. J Biotechnol,2005,116(3):251-260.
    63Zhang W, Zhao H L, Xue C, et al. Enhanced secretion of heterologous proteins in Pichia pastorisfollowing overexpression of Saccharomyces cerevisiae chaperone proteins[J]. Biotechnol Prog,2006,22(4):1090-1095.
    64Guerfal M, Ryckaert S, Jacobs P P, et al. The HAC1gene from Pichia pastoris: characterization andeffect of its overexpression on the production of secreted, surface displayed and membrane proteins[J].Microb Cell Fact,2010,9:49-61.
    65Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response[J]. NatRev Mol Cell Biol,2007,8(7):519-529.
    66Ng D T, Spear E D, Walter P. The unfolded protein response regulates multiple aspects of secretoryand membrane protein biogenesis and endoplasmic reticulum quality control[J]. J Cell Biol,2000,150(1):77-88.
    67Valkonen M, Penttila M, Saloheimo M. Effects of inactivation and constitutive expression of theunfolded-protein response pathway on protein production in the yeast Saccharomyces cerevisiae[J]. ApplEnviron Microbiol,2003,69(4):2065-2072.
    68Gasser B, Maurer M, Gach J, et al. Engineering of Pichia pastoris for improved production ofantibody fragments[J]. Biotechnol Bioeng,2006,94(2):353-361.
    69Martoglio B, Dobberstein B. Signal sequences: more than just greasy peptides[J]. Trends Cell Biol,1998,8(10):410-415.
    70Halic M, Beckmann R. The signal recognition particle and its interactions during protein targeting[J].Curr Opin Struct Biol,2005,15(1):116-125.
    71Kida Y, Morimoto F, Sakaguchi M. Two translocating hydrophilic segments of a nascent chain spanthe ER membrane during multispanning protein topogenesis[J]. J Cell Biol,2007,179(7):1441-1452.
    72Rapoport T A. Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasmamembranes[J]. Nature,2007,450(7170):663-669.
    73Idiris A, Tohda H, Sasaki M, et al. Enhanced protein secretion from multiprotease-deficient fissionyeast by modification of its vacuolar protein sorting pathway[J]. Appl Microbiol Biotechnol,2010,85(3):667-677.
    74Kanjou N, Nagao A, Ohmiya Y, et al. Yeast mutant with efficient secretion identified by a novelsecretory reporter, Cluc[J]. Biochem Biophys Res Commun,2007,358(2):429-434.
    75Hou J, Tyo K, Liu Z, et al. Engineering of vesicle trafficking improves heterologous protein secretionin Saccharomyces cerevisiae[J]. Metab Eng,2012,14(2):120-127.
    76Wentz A E, Shusta E V. A novel high-throughput screen reveals yeast genes that increase secretion ofheterologous proteins[J]. Appl Environ Microbiol,2007,73(4):1189-1198.
    77Gasser B, Maurer M, Rautio J, et al. Monitoring of transcriptional regulation in Pichia pastoris underprotein production conditions[J]. BMC Genomics,2007,8179-197.
    78Gasser B, Sauer M, Maurer M, et al. Transcriptomics-based identification of novel factors enhancingheterologous protein secretion in yeasts[J]. Appl Environ Microbiol,2007,73(20):6499-6507.
    79De Schutter K, Lin Y C, Tiels P, et al. Genome sequence of the recombinant protein production hostPichia pastoris[J]. Nat Biotechnol,2009,27(6):561-566.
    80Chung B K, Selvarasu S, Andrea C, et al. Genome-scale metabolic reconstruction and in silicoanalysis of methylotrophic yeast Pichia pastoris for strain improvement[J]. Microb Cell Fact,2010,9:50-65.
    81Sohn S B, Graf A B, Kim T Y, et al. Genome-scale metabolic model of methylotrophic yeast Pichiapastoris and its use for in silico analysis of heterologous protein production[J]. Biotechnol J,2010,5:705-715.
    82Stadlmayr G, Benakovitsch K, Gasser B, et al. Genome-scale analysis of library sorting (GALibSo):Isolation of secretion enhancing factors for recombinant protein production in Pichia pastoris[J].Biotechnol Bioeng,2010,105(3):543-555.
    83Jones E W. Three proteolytic systems in the yeast Saccharomyces cerevisiae[J]. J Biol Chem,1991,266(13):7963-7966.
    84Zhang Y, Liu R, Wu X. The proteolytic systems and heterologous proteins degradation in themethylotrophic yeast Pichia pastoris[J]. Ann Microbiol,2007,57(4):553-560.
    85Hilt W, Wolf D H. Stress-induced proteolysis in yeast[J]. Mol Microbiol,1992,6(17):2437-2442.
    86Van Den Hazel H B, Kielland-Brandt M C, Winther J R. Review: biosynthesis and function of yeastvacuolar proteases[J]. Yeast,1996,12(1):1-16.
    87Moehle C M, Tizard R, Lemmon S K, et al. Protease B of the lysosomelike vacuole of the yeastSaccharomyces cerevisiae is homologous to the subtilisin family of serine proteases[J]. Mol Cell Biol,1987,7(12):4390-4399.
    88Nebes V L, Jones E W. Activation of the proteinase B precursor of the yeast Saccharomycescerevisiae by autocatalysis and by an internal sequence[J]. J Biol Chem,1991,266(34):22851-22857.
    89Ramos C, Winther J R, Kielland-Brandt M C. Requirement of the propeptide for in vivo formation ofactive yeast carboxypeptidase Y[J]. J Biol Chem,1994,269(9):7006-7012.
    90Kominami E, Hoffschulte H, Leuschel L, et al. The substrate specificity of proteinase B from baker'syeast[J]. Biochim Biophys Acta,1981,661(1):136-141.
    91Dreyer T. Substrate specificity of proteinase yscA from Saccharomyces cerevisiae[J]. Carlsberg ResCommun,1989,54(3):85-97.
    92Bohni P C, Deshaies R J, Schekman R W. SEC11is required for signal peptide processing and yeastcell growth[J]. J Cell Biol,1988,106(4):1035-1042.
    93Fuller R S, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2gene product) is aCa2+-dependent serine protease[J]. Proc Natl Acad Sci U S A,1989,86(5):1434-1438.
    94Fuller R S, Brake A J, Thorner J. Intracellular targeting and structural conservation of aprohormone-processing endoprotease[J]. Science,1989,246(4929):482-486.
    95Egel-Mitani M, Flygenring H P, Hansen M T. A novel aspartyl protease allowing KEX2-independentMF alpha propheromone processing in yeast[J]. Yeast,1990,6(2):127-137.
    96Krysan D J, Ting E L, Abeijon C, et al. Yapsins are a family of aspartyl proteases required for cellwall integrity in Saccharomyces cerevisiae[J]. Eukaryot Cell,2005,4(8):1364-1374.
    97Cawley N X, Chen H C, Beinfeld M C, et al. Specificity and kinetic studies on the cleavage of variousprohormone mono-and paired-basic residue sites by yeast aspartic protease3[J]. J Biol Chem,1996,271(8):4168-4176.
    98Komano H, Rockwell N, Wang G T, et al. Purification and characterization of the yeastglycosylphosphatidylinositol-anchored, monobasic-specific aspartyl protease yapsin2(Mkc7p)[J]. J BiolChem,1999,274(34):24431-24437.
    99Olsen V, Guruprasad K, Cawley N X, et al. Cleavage efficiency of the novel aspartic protease yapsin1(Yap3p) enhanced for substrates with arginine residues flanking the P1site: correlation withelectronegative active-site pockets predicted by molecular modeling[J]. Biochemistry,1998,37(9):2768-2777.
    100Hasilik A. The early and late processing of lysosomal enzymes: proteolysis and compartmentation[J].Experientia,1992,48(2):130-151.
    101Koelsch G, Mares M, Metcalf P, et al. Multiple functions of pro-parts of aspartic proteinasezymogens[J]. FEBS Lett,1994,343(1):6-10.
    102Gagnon-Arsenault I, Tremblay J, Bourbonnais Y. Fungal yapsins and cell wall: a unique family ofaspartic peptidases for a distinctive cellular function[J]. FEMS Yeast Res,2006,6(7):966-978.
    103Ash J, Dominguez M, Bergeron J J, et al. The yeast proprotein convertase encoded by YAP3is aglycophosphatidylinositol-anchored protein that localizes to the plasma membrane[J]. J Biol Chem,1995,270(35):20847-20854.
    104Komano H, Fuller R S. Shared functions in vivo of a glycosyl-phosphatidylinositol-linked aspartylprotease, Mkc7, and the proprotein processing protease Kex2in yeast[J]. Proc Natl Acad Sci U S A,1995,92(23):10752-10756.
    105Caro L H, Tettelin H, Vossen J H, et al. In silicio identification ofglycosyl-phosphatidylinositol-anchored plasma-membrane and cell wall proteins of Saccharomycescerevisiae[J]. Yeast,1997,13(15):1477-1489.
    106Mayor S, Riezman H. Sorting GPI-anchored proteins[J]. Nat Rev Mol Cell Biol,2004,5(2):110-120.
    107Sievi E, Suntio T, Makarow M. Proteolytic function of GPI-anchored plasma membrane proteaseYps1p in the yeast vacuole and Golgi[J]. Traffic,2001,2(12):896-907.
    108Cawley N X, Olsen V, Zhang C F, et al. Activation and processing of non-anchored yapsin1(Yap3p)[J]. J Biol Chem,1998,273(1):584-591.
    109Olsen V, Cawley N X, Brandt J, et al. Identification and characterization of Saccharomyces cerevisiaeyapsin3, a new member of the yapsin family of aspartic proteases encoded by the YPS3gene[J]. Biochem J,1999,339(Pt2)407-411.
    110Bourbonnais Y, Faucher N, Pallotta D, et al. Multiple cellular processes affected by the absence of theRpb4subunit of RNA polymerase II contribute to the deficiency in the stress response of the yeastrpb4(delta) mutant[J]. Mol Gen Genet,2001,264(6):763-772.
    111Garcia R, Bermejo C, Grau C, et al. The global transcriptional response to transient cell wall damagein Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway[J]. J Biol Chem,2004,279(15):15183-15195.
    112Travers K J, Patil C K, Wodicka L, et al. Functional and genomic analyses reveal an essentialcoordination between the unfolded protein response and ER-associated degradation[J]. Cell,2000,101(3):249-258.
    113Bourbonnais Y, Ash J, Daigle M, et al. Isolation and characterization of S. cerevisiae mutantsdefective in somatostatin expression: cloning and functional role of a yeast gene encoding an aspartylprotease in precursor processing at monobasic cleavage sites[J]. EMBO J,1993,12(1):285-294.
    114Davies D R. The structure and function of the aspartic proteinases[J]. Annu Rev Biophys BiophysChem,1990,19:189-215.
    115Azaryan A V, Wong M, Friedman T C, et al. Purification and characterization of a paired basicresidue-specific yeast aspartic protease encoded by the YAP3gene. Similarity to the mammalianpro-opiomelanocortin-converting enzyme[J]. J Biol Chem,1993,268(16):11968-11975.
    116Albrecht A, Felk A, Pichova I, et al. Glycosylphosphatidylinositol-anchored proteases of Candidaalbicans target proteins necessary for both cellular processes and host-pathogen interactions[J]. J BiolChem,2006,281(2):688-694.
    117Komano H, Seeger M, Gandy S, et al. Involvement of cell surfaceglycosyl-phosphatidylinositol-linked aspartyl proteases in alpha-secretase-type cleavage and ectodomainsolubilization of human Alzheimer beta-amyloid precursor protein in yeast[J]. J Biol Chem,1998,273(48):31648-31651.
    118Kerry-Williams S M, Gilbert S C, Evans L R, et al. Disruption of the Saccharomyces cerevisiae YAP3gene reduces the proteolytic degradation of secreted recombinant human albumin[J]. Yeast,1998,14(2):161-169.
    119Kang H A, Kim S J, Choi E S, et al. Efficient production of intact human parathyroid hormone in aSaccharomyces cerevisiae mutant deficient in yeast aspartic protease3(YAP3)[J]. Appl MicrobiolBiotechnol,1998,50(2):187-192.
    120Cho E Y, Cheon S A, Kim H, et al. Multiple-yapsin-deficient mutant strains for high-level productionof intact recombinant proteins in Saccharomyces cerevisiae[J]. J Biotechnol,2010,149(1-2):1-7.
    121Egel-Mitani M, Andersen A S, Diers I I, et al. Yield improvement of heterologous peptides expressedin yps1-disrupted Saccharomyces cerevisiae strains[J]. Enzyme Microb Technol,2000,26(9-10):671-677.
    122Werten M W, de Wolf F A. Reduced proteolysis of secreted gelatin and Yps1-mediated alpha-factorleader processing in a Pichia pastoris kex2disruptant[J]. Appl Environ Microbiol,2005,71(5):2310-2317.
    123Wu M, Shen Q, Yang Y, et al. Disruption of YPS1and PEP4genes reduces proteolytic degradation ofsecreted HSA/PTH in Pichia pastoris GS115[J]. J Ind Microbiol Biotechnol,2013,40(6):589-599.
    124Aloulou A, Grandval P, De Caro J, et al. Constitutive expression of human pancreatic lipase-relatedprotein1in Pichia pastoris[J]. Protein Expr Purif,2006,47(2):415-421.
    125Wang X, Sun Y, Ke F, et al. Constitutive expression of Yarrowia lipolytica lipase LIP2in Pichiapastoris using GAP as promoter[J]. Appl Biochem Biotechnol,2012,166(5):1355-1367.
    126朱旭芬.基因工程实验指导[M].北京:高等教育出版社,2010.236-242.
    127萨姆布鲁克J,拉塞尔D W.分子克隆实验指南[M]:下册.第3版.黄培堂等译.北京:科学出版社,2002.627-628.
    128Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J].Nature,1970,227(5259):680-685.
    129Hao Y, Chu J, Wang Y, et al. Expression and aggregation of recombinant human consensusinterferon-alpha mutant by Pichia pastoris[J]. Biotechnol Lett,2006,28(12):905-909.
    130Wu D, Hao Y Y, Chu J, et al. Inhibition of degradation and aggregation of recombinant humanconsensus interferon-alpha mutant expressed in Pichia pastoris with complex medium in bioreactor[J].Appl Microbiol Biotechnol,2008,80(6):1063-1071.
    131Malik R, Roy I. Probing the mechanism of insulin aggregation during agitation[J]. Int J Pharm,2011,413(1-2):73-80.
    132Yao X Q, Zhao H L, Xue C, et al. Degradation of HSA-AX15(R13K) when expressed in Pichiapastoris can be reduced via the disruption of YPS1gene in this yeast[J]. J Biotechnol,2009,139(2):131-136.
    133Lei J, Guan B, Li B, et al. Expression, purification and characterization of recombinant humaninterleukin-2-serum albumin (rhIL-2-HSA) fusion protein in Pichia pastoris[J]. Protein Expr Purif,2012,84(1):154-160.
    134Damasceno L M, Huang C J, Batt C A. Protein secretion in Pichia pastoris and advances in proteinproduction[J]. Appl Microbiol Biotechnol,2012,93(1):31-39.
    135Shen Q, Wu M, Wang H B, et al. The effect of gene copy number and co-expression of chaperone onproduction of albumin fusion proteins in Pichia pastoris[J]. Appl Microbiol Biotechnol,2012,96(3):763-772.
    136Frand A R, Kaiser C A. The ERO1gene of yeast is required for oxidation of protein dithiols in theendoplasmic reticulum[J]. Mol Cell,1998,1(2):161-170.
    137Macauley-Patrick S, Fazenda M L, McNeil B, et al. Heterologous protein production using the Pichiapastoris expression system[J]. Yeast,2005,22(4):249-270.
    138Kang H A, Kang W, Hong W K, et al. Development of expression systems for the production ofrecombinant human serum albumin using the MOX promoter in Hansenula polymorpha DL-1[J].Biotechnol Bioeng,2001,76(2):175-185.
    139Lodi T, Neglia B, Donnini C. Secretion of human serum albumin by Kluyveromyces lactisoverexpressing KlPDI1and KlERO1[J]. Appl Environ Microb,2005,71(8):4359-4363.
    140van der Heide M, Hollenberg C P, van der Klei I J, et al. Overproduction of BiP negatively affects thesecretion of Aspergillus niger glucose oxidase by the yeast Hansenula polymorpha[J]. Appl MicrobiolBiotechnol,2002,58(4):487-494.
    141Hashizume K, Cheng Y S, Hutton J L, et al. Yeast Sec1p Functions before and after VesicleDocking[J]. Mol Biol Cell,2009,20(22):4673-4685.
    142Shen Q, Wu M, Wang H B, et al. The effect of gene copy number and co-expression of chaperone onproduction of albumin fusion proteins in Pichia pastoris[J]. Appl Microbiol Biotechnol,2012,96(3):763-772.
    143Harding H P, Zhang Y H, Ron D. Protein translation and folding are coupled by anendoplasmic-reticulum-resident kinase[J]. Nature,1999,397(6716):271-274.
    144Brostrom C O, Brostrom M A. Regulation of translational initiation during cellular responses tostress[J]. Prog Nucleic Acid Re,1998,5879-125.
    145Bertolotti A, Zhang Y, Hendershot L M, et al. Dynamic interaction of BiP and ER stress transducers inthe unfolded-protein response[J]. Nat Cell Biol,2000,2(6):326-332.
    146Fleer R, Yeh P, Amellal N, et al. Stable Multicopy Vectors for High-Level Secretion of RecombinantHuman Serum-Albumin by Kluyveromyces Yeasts[J]. Bio-Technol,1991,9(10):968-975.
    147Bobik T V, Vorob'ev I I, Ponomarenko N A, et al. Expression of human serum albumin inmethylotrophic yeast Pichia pastoris and its structural and functional analysis[J]. Russ J Bioorg Chem+,2008,34(1):49-55.
    148Sleep D, Belfield G P, Goodey A R. The secretion of human serum albumin from the yeastSaccharomyces cerevisiae using five different leader sequences[J]. Biotechnology (N Y),1990,8(1):42-46.
    149Ganatra M B, Vainauskas S, Hong J M, et al. A set of aspartyl protease-deficient strains for improvedexpression of heterologous proteins in Kluyveromyces lactis[J]. FEMS Yeast Res,2011,11(2):168-178.
    150Pan R, Zhang J, Shen W L, et al. Sequential deletion of Pichia pastoris genes by a self-excisablecassette[J]. FEMS Yeast Res,2011,11(3):292-298.
    151De Schutter K. Genome Database of the Pichia pastoris [EB/OL]. http://www.pichiagenome.org/,2009-05-24.
    152Kang H A, Choi E S, Hong W K, et al. Proteolytic stability of recombinant human serum albuminsecreted in the yeast Saccharomyces cerevisiae[J]. Appl Microbiol Biotechnol,2000,53(5):575-582.
    153Idiris A, Tohda H, Bi K W, et al. Enhanced productivity of protease-sensitive heterologous proteins bydisruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe[J]. Appl MicrobiolBiotechnol,2006,73(2):404-420.
    154Elorza M V, Rico H, Sentandreu R. Calcofluor white alters the assembly of chitin fibrils inSaccharomyces cerevisiae and Candida albicans cells[J]. J Gen Microbiol,1983,129(5):1577-1582.
    155Bulawa C E. CSD2, CSD3, and CSD4, genes required for chitin synthesis in Saccharomycescerevisiae: the CSD2gene product is related to chitin synthases and to developmentally regulated proteinsin Rhizobium species and Xenopus laevis[J]. Mol Cell Biol,1992,12(4):1764-1776.
    156Martin H, Dagkessamanskaia A, Satchanska G, et al. KNR4, a suppressor of Saccharomycescerevisiae cwh mutants, is involved in the transcriptional control of chitin synthase genes[J]. Microbiology,1999,145(Pt1)249-258.
    157Trilla J A, Duran A, Roncero C. Chs7p, a new protein involved in the control of protein export fromthe endoplasmic reticulum that is specifically engaged in the regulation of chitin synthesis inSaccharomyces cerevisiae[J]. J Cell Biol,1999,145(6):1153-1163.
    158Imai K, Noda Y, Adachi H, et al. A novel endoplasmic reticulum membrane protein Rcr1regulateschitin deposition in the cell wall of Saccharomyces cerevisiae[J]. J Biol Chem,2005,280(9):8275-8284.
    159Klis F M, Mol P, Hellingwerf K, et al. Dynamics of cell wall structure in Saccharomyces cerevisiae[J].FEMS Microbiol Rev,2002,26(3):239-256.
    160Roncero C, Duran A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: invivo activation of chitin polymerization[J]. J Bacteriol,1985,163(3):1180-1185.
    161Carotti C, Ferrario L, Roncero C, et al. Maintenance of cell integrity in the gas1mutant ofSaccharomyces cerevisiae requires the Chs3p-targeting and activation pathway and involves an unusualChs3p localization[J]. Yeast,2002,19(13):1113-1124.
    162Lesage G, Shapiro J, Specht C A, et al. An interactional network of genes involved in chitin synthesisin Saccharomyces cerevisiae[J]. BMC Genet,2005,68.
    163Ram A F, Kapteyn J C, Montijn R C, et al. Loss of the plasma membrane-bound protein Gas1p inSaccharomyces cerevisiae results in the release of beta1,3-glucan into the medium and induces acompensation mechanism to ensure cell wall integrity[J]. J Bacteriol,1998,180(6):1418-1424.
    164Vadaie N, Dionne H, Akajagbor D S, et al. Cleavage of the signaling mucin Msb2by the aspartylprotease Yps1is required for MAPK activation in yeast[J]. J Cell Biol,2008,181(7):1073-1081.
    165Saito H, Tatebayashi K. Regulation of the osmoregulatory HOG MAPK cascade in yeast[J]. JBiochem,2004,136(3):267-272.
    166Alonso-Monge R, Navarro-Garcia F, Molero G, et al. Role of the mitogen-activated protein kinaseHog1p in morphogenesis and virulence of Candida albicans[J]. J Bacteriol,1999,181(10):3058-3068.
    167Garcia-Rodriguez L J, Duran A, Roncero C. Calcofluor antifungal action depends on chitin and afunctional high-osmolarity glycerol response (HOG) pathway: evidence for a physiological role of theSaccharomyces cerevisiae HOG pathway under noninducing conditions[J]. J Bacteriol,2000,182(9):2428-2437.
    168Levin D E. Cell wall integrity signaling in Saccharomyces cerevisiae[J]. Microbiol Mol Biol Rev,2005,69(2):262-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700