耐高温木聚糖酶基因在两种酵母中的分泌表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以海栖热袍菌(Thermotoga maritima)MSB8菌株基因组DNA为模板,通过PCR获得木聚糖酶(XylanaseB)基因mxynB_(64)和mxynB_(577)。经与Karen E.Nelson等人在GertBank中注册的木聚糖酶基因xynB(AF100063)进行同源性比较得知,mxynB_(64)的第64位碱基由腺嘌呤(A)转变为鸟嘌呤(G),因此,该基因产物的第22位氨基酸由原来的天冬酰胺(Asn)转变为天冬氨酸(Asp);而mxynB_(577)的第577位碱基由胸腺嘧啶(T)转变为胞嘧啶(c),该基因产物的第193位氨基酸也由原来的酪氨酸(Tyr)转变为组氨酸(His)。将木聚糖酶基因mxynB_(64)克隆至表达载体pET-28a(+),转化大肠杆菌。该基因可在大肠杆菌细胞内高效表达。其表达产物具有酶活性高、耐90℃高温、纯化方便等特点,采用RBB-木聚糖法测定酶活为121.6U/mg蛋白,但其表达产物不能分泌至细胞外。
     分别将木聚糖酶基因mxynB_(64)和mxynB_(577)克隆至表达载体pPIC9K,通过转化整合至巴斯德毕赤酵母(Pichiapastoris)GS115菌株基因组中。摇瓶培养发现,重组木聚糖酶mXynB_(64)和mXynB_(577)分泌表达量较高,在甲醇诱导培养108小时后,胞外木聚糖酶酶活分别可达到0.6U/ml和0.5U/ml,并具有良好的酶学性质。两种重组木聚糖酶的最适反应温度分别为90℃和80℃,并在pH 5.0-10.8范围内稳定,推测该酶的第193位氨基酸残基仅与酶的耐热性有关,并不影响其pH稳定性。在5升自动发酵罐上对毕赤酵母重组菌株GS115-9K-mxynB_(64)Ⅱ进行高密度甲醇诱导产酶培养,经108小时培养后其细胞密度可达OD_(600)=144,酶活水平达到6U/ml,高于摇瓶水平10倍,适于工业化应用。
     本实验通过PCR分别获得了多形汉逊酵母(Hansenula polymorpha)中的3个启动子序列,并将酿酒酵母α因子分泌信号肽序列和整合外源基因(mxynB_(64))的rDNA序列组合,成功构建四种可在大肠杆菌和汉逊酵母中穿梭表达的载体,包括含有诱导型启动子的pMOXp-mxynB_(64)(10.6Kb),pFMDP-mxynB_(64)(9.7Kb),pAOX1p-mrynB_(64)(9.8Kb)和含有组成型启动子的pPMA1p-mxynB_(64)(11.1Kb)。将它们分别转化并整合至多形汉逊酵母A16菌株基因组中,摇瓶培养发现,重组耐高温木聚糖酶的分泌表达量比毕赤酵母略低,在摇瓶培养诱导108小时后,多形汉逊酵母重组菌株中,具有诱导型启动子的菌株A16-pMOXp-mxynB_(64)胞外木聚糖酶活力最高,达0.25U/ml,但比毕赤酵母菌株GS115-9K-mxynB_(64)Ⅱ的分泌水平低一倍。在7.5升自动发酵罐上的高密度培养结果证明,组成型表达的汉逊酵母菌株A16-pPMA1p-mxynB_(64)具有不需要甲醇诱导、生长迅速的特点,具有工业化应用的潜力。
In this study, Two mutated xylanase genes were obtained from PCR by using the genomic DNA of Thermotoga maritima MSB8 as template, termed as mxynB(64) and mxynB(577), which represented that the bases of the 64~(th) and 577~(th) sites of the gene xynB muftated from A to G and from T to C and the amino acids mutated correspondingly from Asn~(22) to Asp and from Tyr~(193) to His respectively, by comparing with the xylanase gene published in GenBank with the registration number of AE001693. With the assay of the advanced structure of xylanaseB by bioinformatics, vaxynB(64) was cloned into E. coli expression vector pET-28a (+) , and was successfully expressed in E. coli BL21 as solublef protein product. The recombinant mXynB_((64)) in E. coli showed great enzyme activity which reach to 121.6U/ml (tested by RBB-xylans methods), and it showed high activity in 90℃. The thermostability of this protein offered it to be purified easily. But the recombinant mXynB_((64)) expressed in E. coli could not be secreted out of the cell which would be an obstacle for it to be applied in practice.Both of the two xylanase genes, vaxynB__((64)) and mxynB_((577)) were inserted into the shuttle and integrated expression vector pPIC9k respectively and expressed by Pichia pastoris as an active extracellular product efficiently. The two recombinant xylanases expressed in P. pastoris still show extreme thermostability and pH stability. mXynB_((64)) and mXynB_((577)) were optimally active at 90℃ and 80℃ respectively and both quite stable over the pH range of pH 5.0-10.8 at 70℃, from which that the mutated amino acid in mXynB_((577)) only affected the thermostability of this enzyme but none on its pH properties could be suggested. In the conditions of high cell density cultivation, P. pastoris recombinant strain GS115-9K- mxynB_((64)) II could secreted the recombinant protein of mXynB_((64)) efficiently, which indicated that it was of great use in a variety of industrial and agricultural applications.Another methylotrophic yeast, Hansenula polymorpha, expression system was also established in this study. Three promoter sequences were obtained by PCR, and integrated into the four H. polymorpha shuttle and integrated expression vectors with the xylanase expression cassette, among which pMOX_p-mxynB_((64)) (10.6Kb) , pFMD_p-mxynB_((64)) (9.7Kb) , pAOX1_p-mxynB_((64)) (9.8Kb) were of inducible promoters, while pPMA1_p-mxynB_((64)) (11.1Kb) , constitutive promoter.. The four H. polymorpha expression vectors were used to heterologously express mxynB_((64) gene in H. polymorpha A16. After cultivation in shake flash for 108 hours, the H. polymorpha recombinant strain of A16-pMOX_p-mxynB_((64)) showed the highest intercellular xylanase activity of 0.25U/ml. High cell fermentation of H. polymorpha recombinant strain, A16- pPMA1_p-mxynB_((64)), showed
    that the relatively simple fermentation process would make better sense in future industrial application.
引文
1. Neeta Kulkarni, Abhay Shendye, Mala Rao. Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews. 1999, 23:411-456
    2. Ken K. Y. Wong, Larey U. L. Tan, and John N. Saddler. Multiplicity of β-1,4-xylanase in Microorganisms: Functions and applications. Microbiological Reviews. 1988, 52:305-317
    3. Coughlan M. P., and Hazlewood G. P. β-1,4-D-xylandegrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 1993, 17:259-317
    4.邹永龙,王国强 木聚糖降解酶系统.植物生理学通讯.1999,35:404-410
    5.何成新,张厚瑞 木聚糖水解酶的研究进展.广西轻工业.1998,4:12-15
    6. Beg QK, Kapoor M, Mahajan L, et al. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001, 56(3-4): 326-338
    7.曲音波,高培基,陈嘉川 制浆造纸用木聚糖酶的研究进展.生物工程进展.1998,18(6):36-40
    8.贺文明 木聚糖酶在美国KP厂的应用 国际造纸.2003,22(5):32-35
    9. Sunna A. and Antranikian G. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 1997, 17:39-67
    10. Robert Huber, Thomas A. Langworthy, Helmut Koning et al. Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90℃. Arch Microbiol. 1986, 144:324-333
    11. Simpson H.D., Haufler U.R. and Daniel R.M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga maritima, J.Biochem. 1991,277: 413-417
    12. Veikodvorskaya T. V., Volkov I. Yu's., Vasilevko V.T. et al. Purification and some properties of Thermotoga neapolitana thermostable xylanase B expressed in E.coli cells. Biochemistry (Moscow). 1997, 62:66-67
    13. Leif Dahlberg, Olle Hoist, Jakob K. Kristjansson. Thermostable xylanolytic enzymes from Rhodothermus marinus grown on xylan. Appl. Microbio. Biotechnol. 1993, 40:63-68
    14. Karen E. Nelson, Rebecca A. Clyton, S.R. Gill, et al. Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima. Nature. 1999, 399:323-329
    15. Chen C., Adolphson R., Dean J.F.D., et al. Release of lignin from kraft pulp by a hyperthermophilic xylanase from Thermotoga maritima. Enzyme Microb. Technol. 1997, 20: 39-45
    16.谢响明,何晓青.微生物的木聚糖酶及其生物漂白研究进展.北京林业大学学报.2003,25(3):111-116
    17.李孝辉.木聚糖酶在食品及饲料工业上的应用.粮食与饲料工业.1999,4:12-15
    18.侯炳炎.木聚糖酶及其应用.动物科学与动物医学.2002,19(4):52-53
    19.石军,陈安国.木聚糖酶的生产与应用研究进展.饲料工业.2001,22:40-43
    20. Biely P., Vrsanska M., Tenkanen M. et al. Endo-β-1,4-xylanase families: differences in catalytic properties, J. Biotechnol. 1997, 57: 151-166
    21. Dey D, Hinge J, Shendye A and Rao M. Purification properties of extracecellular endoxylanase from an alkalophilic thermophilic Bacillus sp.. Canadan Journal of Microbiology. 1992, 8: 436-442
    22. Haltrich D, Nidetzky B, Kulbe K D, et al. Production of fungal xylanase. Bioresources Technology. 1996, 58: 137-161
    23. Tony Collins , Charles Gerday, Georges Feller. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiology Reviews. 2005, 29: 3-23
    24. Bronnenmeier K, Kern A, Liebl W, Staudenbauer WL.Purification of Thermotoga maritima enzymes for the degradation of cellulosic materials. Appl Environ Microbiol. 1995, 61(4):1399-1407
    25. Karin B, Anja K, Wolfgang L, et al. Purification of Thermotoga maritima enzyme for the degradation of cellulosic materials. Applied and Environmental Microbiology. 1995, 61: 1399-1407
    26. Luthi E, Jasmat NB, Berquist PL. Xylanase from the extremely thermophilic bacterium "Caldocellum saccharolyticum": overexpression of the gene in Escherichia coli and characterization of the gene product. Applied and Environmental Microbiology. 1990, 56(9): 2677-2683
    27. Sung WL, Luck CK, Zahab DM.et al. Overexpression of the Bacillus subtilis and circulans xylanases in Escherichia coli. Protein Expression and Purification. 1993, 4(3): 200-206
    28. Shendye A, Rao M. Chromosomal gene integration and enhanced xylanase production in an alkalophilic thermophilic Bacillus sp. (NCIM 59). Biochemical and Biophysical Resource Commune. 1993, 195(2): 776-784
    29. Shendye A, Rao M. Cloning and extracellular expression in Escherichia coli of xylanases from an alkaliphilic thermophilic Bacillus sp. NCIM 59. FEMS Micribiology Letter, 1993, 108(3): 297-302
    30. Lapidot A, Mechly A, Shoham Y. Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. Journal of Biotechnology. 1996, 51(3): 259-264
    31.江正强 海栖热袍菌XynB基因的克隆和表达、重组木聚糖酶的提纯及其酶学性质:[博士学位论文].北京中国农业大学,2001.6
    32.江正强,李里特,林清 等.极端嗜热菌海栖热袍菌木聚糖酶B的克隆和表达.应用与环境生物学报.2002,8(3):280-284
    33. Jiang Zhengqiang, Kiyoshi Hayashi, Mohammad Mainul Ahsan, and Li Lite, 2002 Characterization of a thermostable family 10 endo-xylanase (XynB) from Thermotoga maritima that cleaves p-nitrophenyl-beta-D-xyloside. Journal of Bioscience and Bioengineering. 2001, 92(5):423~428
    34. Morosoli.R, Dupont C. Secretion of xylanase A2 in Streptomyces lividans: dependence on signal peptides length, number and composition. FEMS Microbiol Lett. 1999, 179(2):437-445
    35. Kim H, Junk KH, Pack MY. Molecular characterization of xynX, a gene encoding a multidomain xylanase with a thermostabilizing domain from Clostridium thermocellum. Appl Microbiol Biotechnol. 2000, 54(4):521-527
    36. Ruiz-Arribas A, Fernandea-Abalos JM, Sanchez P et al. Overproduction, purification, and biochemical characterization of a xylanase (Xys1) from Streptomyces halstedii JM8. Applied and Environmental Microbiology. 1995, 61(6): 2414-2419
    37. Berrin J G, Williamson G, Puigserver A, et al. High-level production of recombinant fungal endo-β-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein engineer and purification. 2000, 19: 179~187
    38. Monica C, Triches Damaso, Marcius S almeida, et al. Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Applied and Environmental Microbiology. 2003, 69(10): 6064-6072
    39.洪洄,王冬梅.应用酵母进行基因表达的研究进展.生物学通报,1999,17:12-14
    40. Romanos M A, Scorer C A and Clare J J. Forgein gene expression in yeast: a review. Yeast. 1992, 8: 423-488
    41. Buckholz R G and Gleeson M A G. Yeast system for the commercial production of heterologous proteins. Bio/Technology. 1991, 9: 1067-1072
    42.李育阳.外源基因在酵母中的表达.生命科学信息.1991,3(3):3-7
    43. Kamper K, Meinhardt F, Gunge N, et al. New recombinant linear DNA elements derived from Kluyveromyces lactis killer plasmids. Nucleic Acids Res. 1989, 17: 1781
    44. Heyer W D, Sipiczki M and Kholi J. Replicating plasmids in Schizosaccharomyces pombe: Improvement of symmetric segregation by a new genetic element. Mol Cell Biol. 1986, 6:80-89
    45. Heslot H. Genetics and geneic engineering of the industrial yeast Yarrowia Lipolytica. Adv Biochem Eng Biotechnol. 1990, 43: 43-47
    46. Koti Sreekristma, Robert G. Brankamp, Keith E. Kropp, et. al. Strategies for optimal synthesis and secretion of heterologous proteins in the methylotrophic yeast Pichia pastoris. Gene. 1997, 190: 52-62
    47. Giuseppin M L F, Van Eijk H M J and Bes B C M. Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol Bioeng. 1988, 32: 577-583
    48. Wegner GH. Emerging applications of the methylotrophic yeasts. FEMS Microbiol Rev. 1990, 7(3-4):279-83
    49. Wegner E H. Biochemical conversions by yeast fermentation at high-cell densities. U S Patent. 1983,44114329
    50. Clare J J, Rayment F B, Ballantine S P, et al. High-level expression of tetanus toxin fragment C in Pichia pastoris strains containing multiple tandem integrations of the gene. Bio/Technology. 1991, 9: 455-460
    51. Cregg J M, Vedivick T S and Raschke W C. Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology. 1993, 11: 905-910
    52. Ohya T, Ohyama M, Kobayashi K. Optimization of human serum albumin production in methylotrophic yeast Pichia pastoris by repeated fed-batch fermentation. Biotechnol Bioeng. 2005, 30;90(7):876-87
    53.陈偿.甲醇毕赤酵母表达体系.热带农业科学.1999,2:36-43
    54. Cregg J M, Madden K R. Development of the methylotrophic yeast Pichia pastoris as a host system for the production of foreign proteins. Dev. Ind. Microbio. 1988, 29: 33-41
    55. Couderc R, Baratti J. Oxidation of methanol by the yeast Pichia pastoris: purification and properties of alcohol oxidase. Agric. Biol. Chem. 1980, 44: 2279-2289
    56. Cregg J M. Functional characterization of the two alcohol oxidase genes from the yeast, Pichia pastoris. Mol Cell Biol. 1997, 9: 1316-1326
    57. Tschopp J F, Brust P F and Cregg J M, et al. Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris. Nucleic Acids Res. 1987, 15: 3859-3876
    58. Sreekrishina K, Tschopp J F and Fuke M. Invertase gene (SUC2) of Saccharomyces cereviciae as a dominant marker for transformation of Pichia pastoris. Gene. 1987, 59: 115-125
    59. Scorer C A, Clare J J, McCombie W R. Rapid selection using G418 of high copy number transformants of Pichia pastoris for high-level foreign gene expression. BIO/TECHNOLOGY. 1994, 12: 181~184
    60. Cregg J M, Barringer K J, Hessler A Y, et al. Pichia pastoris as a host system for transformations. Mol Cel Bio., 1985, 5(12): 3376-3385
    61. Romanos M. Advance in the use of Pichia pastoris for high-level gene expression. Curr Opin Biotechnol. 1995, 6: 527-533
    62. Berrin J G, Williamson G, Puigserver A, et al. High-level production of recombinant fungal endo-β-1,4-xylanase in the methylotrophic yeast Pichia pastoris. Protein engineer and purification. 2000, 19: 179~187
    63. Damaso M T, Almeida M S, Kurtenbach E, et al. Optimized expression of a Thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Applied and Environmental Microbiology. 2003, 69: 6064~6072
    64.江正兵,宋慧婷,马立新.短小芽孢杆菌木聚糖酶基因在毕赤酵母中的分泌表达及酶学性质研究.生物工程学报.2003,19(1):49~55
    65.陆键,曹钰,陈坚.运用定点突变提高重组木聚糖酶在毕赤酵母中的表达.微生物学报.2002,42(4):425~430
    66.张红莲,姚斌,王亚茹,等.链霉菌Streptomyces olivaceovirides AI木聚糖酶基因xynA在大肠杆菌及毕赤酵母中的高效表达.生物工程学报.2003,19(1):41~45
    67. Ledeboer A M, Edens L, Maat J et al. Molecular cloning and characterization of a gene coding for methanol oxidase in Hansenula polymorpha. Nucleic Acids Res. 1985, 13(9): 3063-3092
    68. Mayer A F, Hellmuth K, Schieker H et al. Progress in developing methylotrophic yeasts as expression systems. An expression system matures: a highly efficient and cost effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol Bioeng. 1999, 63(3):373-381
    69. Gellissen G, Weydemann U, Strasser A W et al. Progress in developing methylotrophic yeasts as expression systems. Optimisation of a host vector system for heterologous gene expression by Hansenula polymorpha. Trends Biotechnol. 1992, 10(12): 413-417
    70. Weydemann U, Keup P, Piontek M, Strasser A W, et al. High level secretion of hirudin by Hansenula polymorpha authentic processing of three different preprohirudins. Appl Microbiol Biotechnol. 1995, 44(3-4):377-385
    71. Sudbery P E. The expression of recombinant proteins in yeasts. Curr Opin Biotechnol. 1996, 7(5):517-524
    72. Faber K N, Westra S, Waterham H R et al. Foreign gene expression in Hansenula polymopha: a system for the synthesis of small functional peptides. Appl Microbiol Biotechnol. 1996, 45(12): 72-79
    73. Gellissen G, Hollenberg CP. Application of yeasts in gene expression studies: a comparison of Saccharomyces cerevisiae, Hansenula polymorpha and Kluyveromyces lactis—a review. Gene. 1997, 190: 87-97
    74. Gellissen G, Melber K. Methylotrophic yeast Hansenula polymorpha as production organism for recombinant pharmaceuticals. Arzneimittel-Forschung/Drug Res. 1996, 46: 943-948
    75.陈凤菊,卢善发,胡敦孝.多形汉逊酵母外源基因表达系统.生物工程学报.2001,17(3):246-249
    76. Faber KN, Westra S, Waterham HR, et al. Forgein gene-expression in Hansenula polymorpha—a system for the synthesis of small functional peptides. Appl Microbiol Biotechnol. 1996, 45: 72-79
    77. Fellinger AJ, Verbakel JMA, Veale RA, et al. Expression of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) by Hansenula polymorpha. Yeast. 1991, 7: 463-473
    78. Hodgkins M, Mead D, Balance DJ, et al. Expression of the glucose-oxidase gene from Aspergillus niger in Hansenula polymorpha and its use as a reporter gene to isolate regulatory mutations. Yeast. 1993, 9: 625-635
    79. Mayer A F, Hellmuth K, Schlieker H, et al. An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha. Biotechnol. Bioeng. 1999, 63: 373-381
    80. Veale RA, Giuseppin MLF, Vaneijk HMJ, et al. Development of a strain of a Hansenula polymorpha for the efficient expression ofguar α-galactosidase. Yeast. 1992, 8: 361-372
    81. Weydemann U, Keup P, Piontek M, et al. High-level secretion of hirudin by Hansenula polymorpha—authentic processing of three different preprohirudins. Appl Microbiol Biotechnol. 1995, 44: 377-385
    82. Yavuz MO, Ashton SMV, Deakin ED, et al. Expression of the major bean proteins from the obroma-cacao (cocoa) in the yeasts Hansenula polymorpha and Saccharomyces cerevisiae. J. Biotechnol, 1996, 46:43-54
    83. Zurek C, Kubis E, Kerup P, et al. Production of two aprotinin variants in Hansenula polymorpha. Proc Biochem. 1996, 31:679-689
    84. Houhui Song, Yong Li, Weihuan Fang, et al. Development of a set of expression vextors in Hansenula polymorpha. Biotechnol Lett. 2003, 25: 1999-2006
    85. Houhui Song, Li Zhou, Weihuan Fang, et al. High-level expression of codon optimized foot-and-mouth disease virus complex epitopes and cholera toxin B subunit chimera in Hansenula polymorpha. Biochemical and Biophysical Research Communications. 2004, 315: 235-239
    86. Hollenberg CP, Gellissen G. Production of recombinant proteins by methylotrophic yeasts. Curr Opin Biotechnol. 1997, 8:554-560
    87. Bacerends RJS, Salomons FA, Faber KN et al. Pex3p levels affect normal peroxisome formation in Hansenula polymorpha: high steady-state levels of the protein fully abolish matrix protein import. Yeast. 1997, 13:1437-1449
    88. Helen Cox, David Mead, Peter Sudbery, et al. Constitutive expression of recombinant proteins in the methylotrophic yeast Hansenula polymorpha using the PMA1 promoter. 2000 Yeast. 16:1191-1203
    89. Faber KN, Harder W, Veenhuis M. Review—methylotrophic yeasts as factories for the production of foreign proteins. Yeast. 1995, 11: 1331-1344
    90. Maleszka R, Clark-Walker GD. Yeasts have a four-fold variation in ribosomal DNA copy number. Yeast. 1993, 9:53-58
    91. Lopes TS, Klootwijk J, Veenstra AE, et al. High-copy number integration into the ribosomal DNA of Saccharomyces cerevisiae: a new vector for high-level expression. Gene. 1989, 79: 199-206
    92. Ralf van Dijk, Klaas Nico Faber, Jan A.K.W. Kiel, et al. The methylotrophic yeast Hansenula polymorpha: a versatile cell factory. Enzyme and Microbial Technology. 2000, 26: 793-800
    93. G. Gellissen Heterologous protein production in methylotrophic yeasts. Appl Microbiol Biotechnol. 2000, 54: 741-750
    94. Janowicz ZA, Melber K, Merckelbach A, et al. Simultaneous expression of the S-surface and L-surface antigens of hepatitis-B, and formation of mixed particles in the methylotrophic yeast, Hansenula polymorpha. Yeast. 1991,7: 431-443
    95. Gellissen G, Piontek M, Dahlems U, et al. Recombinant Hansenula polymorpha as a biocatalyst coexpression of the spinach glycolate oxidase (GO) and the Saccharomyces cerevisiae catalase T (CTT1) gene. Appl Microbiol Biotechnol. 1996, 46(1): 46-54
    96. Winterhalter C, Heinrich P, Candussuo A, et al. Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritima. Mol. Microbiol. 1995, 15(3): 431~444
    97. Winterhalter C, Liebl W. Two extremely thermostable xylanases of the hyperthermophilic bacterium Thermotoga maritima MSB8. Applied and Environmental Microbiology. 1995, 61(5): 1810~1815
    98. Suurnakki A, Tenkanen M, Buchert J, et al. Hemicellulases in the bleaching of chemical pulps. Adv Biochem Eng Biotechnol. 1997, 57: 261-287
    99.张龙翔 张庭芳 李令媛.《生化实验方法和技术》(第二版) 北京 高等教育出版社.1997,p138-140
    100.聂国兴,李春喜,张建等.底物浓度、DNS量对木聚糖酶活性测定结果的影响.饲料工业. 2002,23(11):24-25
    101. Lever M. Colorimetric and Fluorometric Carbohydrate Determination with p-hydroxybenzoie Acid Hydrazide. Biochemical Medicine. 1973, 7:274~281
    102. Pichia Fermentation Process Guidelines Version B Invitrogen Corporation (www.invitrogen.com)
    103.余小红 海栖热袍菌和重组毕赤酵母发酵产极耐高温木聚糖酶及酶的化学修饰:[硕士学位论文].北京中国农业大学,2004.6
    104. David J. Walsh and Peter L. Bergquist. Expression and secretion of a thermostable bacterial xylanase in Kluyveromyces lactis. Applied Environmental Microbiology. 1997, 63(8): 3297-3300
    105. Multi-Copy Pichia Expression Kit (version E): A manual of methods for the isolation and expression of recombinant proteins from Pichia pastoris strains containing multiple copies of a particular gene. Invitrogen Corporation (www.invitrogen.com)
    106.张嗣良,储炬.多尺度微生物过程优化化学工业出版社.2003
    107. Michael T. Madigan, John M. Martinko, Jack Parker. Brock Biology of Microorganisms (10th Edition) Pearson Education, Inc.2003, 468-471
    108.周祥山,范卫民,张元.不同甲醇流加策略对重组毕赤酵母高密度发酵生产水蛭素的影响.生物工程学报.2002,18(3):348-351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700