基于功能化聚降冰片烯的质子交换膜的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有结构紧凑、质量轻、燃料来源丰富及存储携带方便等优点,是目前优先发展的能源技术之一。
     质子交换膜(PEM)是直接甲醇燃料电池的核心组件之一。当前广泛使用的Nafion(?)膜,因为高的甲醇渗透率、高温及低湿条件下质子传导率大幅降低和成本高昂等制约了其大规模应用。开发高性价比的新型质子交换膜已成为燃料电池研究中的新热点。
     降冰片烯类单体的加成型聚合物的主链结构刚性极高,加上其坚固的环状结构限制了COC聚合物沿着主链的自由移动,因而呈现出较高的玻璃化转变温度。由于此材料无不饱和的双键,三键或芳香环结构,因此通常此种材料具备较佳的耐热温度与抗老化性能。其热裂解温度可高于400℃以上,此外,此材料更具低渗水性。基于该类高分子本身兼具:成膜性佳、热稳定度高、化学稳定度高以及耐电压性质等优点,因此是适合开发作为直接甲醇燃料电池用质子交换膜材料的环烯烃材料。
     本文以双-(β-酮萘亚胺)镍(Ⅱ)与B(C6F5)3的二元催化体系制备了降冰片烯的酯衍生物与降冰片烯的醚衍生物的共聚物,此聚合物脱酯后与2-溴-2-甲基-丙酰溴反应获得原子转移自由基聚合(ATRP)所需的大分子引发剂P(BN/NOH)Br。以HEMA作为单体,用此引发剂引发对甲基丙烯酸羟乙酯的原子转移自由基聚合得到以聚功能化降冰片烯为主链,侧链含多羟基的聚合物。将产物溶于四氢呋喃中加入4.5-咪唑二羧酸和H3PO4超声分散均匀成膜,加热时,这种聚合物和4.5-咪唑二羧酸通过PHEMA所带的-OH和4.5-咪唑二羧酸(IDA)所带的-COOH之间的酯化反应进行交联,加入的磷酸(H3PO4)与IDA形成咪唑-磷酸络合物,进行质子传输。在0.5 mol/L的H2SO4溶液中,膜的质子传导率随H3PO4含量的增加而增大,随温度的升高而升高,80℃时膜的最大质子传导率为0.0043 S/cm。聚合物的结构已通过核磁共振(1H NMR)和红外(FT-IR)谱图得到证明,[P(BN/NOH)Br-g-PHEMA]膜展示了好的机械性能(弹性模量为810.5 MPa)和高的热稳定性(高达320℃),分别由万能试验机(UTM)和热重分析(TGA)得到。
     我们用双-(β-酮萘亚胺)镍(Ⅱ)/B(C6F5)3催化体系制备了5-降冰片烯-2-甲基丁基醚(BN)及5-降冰片烯-2-亚甲氧基-己氧基联苯(BphN)的乙烯基加成型共聚物(P(BN/BphN)),并用浓硫酸作为磺化试剂对其进行磺化,得到磺化共聚物SP(BN/BphN),通过控制磺化时间控制磺化度,流延法成膜。为了得到甲醇透过率低、IEC值高的磺酸膜,将最长磺化时间控制为8h。此时膜的IEC值为1.11meq/g,高于Nafion(?) 115(0.88 meq/g);甲醇透过率为7.5×10-7 cm2/s,低于Nafion(?) 115(13 x 10-7 cm2/s)。随着磺化度的增大,SP(BN/BphN)膜的吸水率、甲醇透过率、质子传导率都增大;同时,质子传导率随着温度的升高而增大。因为低吸水率,SP(BN/BphN)膜的质子传导率低于Nafion(?)115,导致单电池性能不佳。通过透射电镜(TEM),扫描电镜(SEM)观察到SP(BN/BphN)膜中的微相分离及离子簇。SP(BN/BphN)膜具有优异的氧化稳性、良好的耐热性能、足够的机械强度,有望成为DMFC质子交换膜材料。
Direct methanol fuel cell (DMFC) with a compact structure, light weight, abundant fuel source and easi to be carried and stored, is one of priority development of the energy technologies.The proton exchange membrane (PEM), is the key component of the DMFCs. Nafion(?), one of the perfluorosulfonic acid membranes, is the current state-of-the-art PEM material. However, several drawbacks of Nafion(?), such as high cost, high methanol permeability, low humidity and a major reduction in conductivity at high temperatures, have led researchers to investigate promising alternatives.
     Vinyl addition type polynorbornenes have both high rigidity main chain and strong polymer ring structure which limits the COC to move freely along the main chain, show a higher glass transition temperature. Because all this materials that don't have unsaturated double bond, triple bond or aromatic ring structure, usually have excellent heat resistance and anti-aging properties. Its thermal decomposition temperature is higher than 400℃. This material also has low water permeability. Based on its good film-forming, thermal stability, high chemical stability, and dielectric properties etc., the vinyl addition type polynorbornene is suitable for development as a direct methanol fuel cell proton exchange membrane material.
     The graft copolymer poly(butoxymethylenenorbornene-co-norbornenemethylene bromoisobutyrylate) grafted poly(hydroxy ethyl acrylate) [P(BN/NOH)Br-g-PHEMA] was synthesized by the atom transfer radical polymerization (ATRP) of hydroxy ethyl acrylate (HEMA) from the copolymer prepared by two functional norbornene monomers via vinyl addition mechanism. The graft copolymer [P(BN/NOH)Br-g-PHEMA] is further crosslinked with 4,5-imidazole dicarboxylic acid (IDA) and then doped with phosphoric acid (H3PO4) to form imidazole-H3PO4 complexes. The results showed that the polynorbornene backbone and crosslinked micromorphology produced low methanol permeability of the membranes (from 1.5×10-7 to 3.8×10-6 cm2/s) and endowed the membranes with good mechanical properties (from 692.7 to 159.7 MPa of elastic modulus, from 2.7 to 22.7% of elongation at break, from 14.4 to 5.5 MPa of tensile strength at break) and excellent thermal stability (up to 280℃). Furthermore, the proton conductivities of the membranes increased with increasing temperature and increasing contents of IDA/H3PO4 in the membranes.
     The vinyl addition type copolymer Poly(butoxymethylene norbornene-co-biphenyl oxymethoxy norbornene) (P(BN/BphN)) was synthesized by using bis-(β-ketonaphthylimino)nickel(Ⅱ)/B(C6F5)3 catalytic system. P(BN/BphN) was sulfonated with concentrated sulfuric acid (98%) as sulfonating agent in a component solvent. Degree of sulfonation (DS) was controlled by the reaction time and the SP(BN/BphN) membranes were obtained by solution casting method. The ion exchange capacity (IEC), DS, water uptake and methanol permeability of the SP(BN/BphN)s were increased with the sulfonated time. The sulfonated time was controlled to be 8h as the highest to obtain lower methanol permeability. The methanol permeability of the SP(BN/BphN) membranes were in the range of 1.8×10-7 to 7.5×10-7 cm2/s, which were lower than the value 1.3×10-6 cm2/s of Nafion(?)115. FTIR,1H NMR were involved to confirm the structure of achieved monomer, copolymer and sulfonated copolymers. The proton conductivity of SP(BN/BphN) membranes increased with the increase of IEC values, temperature and water uptake. Water uptake of the SP(BN/BphN) membranes were lower than that of Nafion(?) 115 and lead to low proton conduction. Microscopic phase separation occurred in SP(BN/BphN) membrane and domains containing sulfonic acid groups were investigated by TEM and SEM. SP(BN/BphN) membranes had good mechanical properties, high thermal stability and excellent oxidative stability.
引文
[1]Wang J T, Wasmus S, Savinell R F. Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell [J]. Journal of The Electrochemical Society,1996, 143(4):1233~1239.
    [2]Ren X M, Wilson M S, Gottesfeld S. High Performance Direct Methanol Polymer Electrolyte Fuel Cell [J]. Journal of The Electrochemical Society,1996,143(1):L12~15.
    [3]Deluca N W, Elabd Y A. Polymer electrolyte membranes for the direct methanol fuel cell:a review [J]. Journal of Polymer Science: Part A: Polymer Chemistry,2006,44(16):2201~ 2225.
    [4]Neburchilov V, Mertin J, Wang H J, et al. A review of polymer electrolyte membranes for direct methanol fuel cells [J]. Journal of Power Sources,2007,169(2):221~238.
    [5]Haack J M, Taeger A, Vogel C, et al. Membranes from sulfonated block copolymers for use in fuel cells [J]. Separation and Purification Technology,2005,41(3):207~220.
    [6]Cui Z, Xiang Y, Zhang T. Investigation on Proton Conductivity Behavior of Sulfuric Acid Crosslinked Chitosan Membrane [J]. Acta Chimica Sinica,2007,65 (17):1902~1906.
    [7]Sancho T, Lemus J, Urbiztondo M, et al. Zeolites and zeotype materials as efficient barriers for methanol cross-over in DMFCs [J]. Microporous and mesoporous materials,2008,115(3): 206~213.
    [8]Zhai Y F, Zhang H M, Zhang Y, et al. A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells [J]. Journal of Power Sources,2007, 169(2):259~264.
    [9]Navarra M A, Abbati C, Scrosati B. Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane [J]. Journal of Power Sources,2008,183(1): 109~113.
    [10]Cui Z, Li N, Zhou X, et al. Surface-modified Nafion membrane by costing proton-conductivity polyelectrolyte complexes for direct methanol fuel cells [J]. Journal of Power Sources,2007,173(1):162~165.
    [11]Satterfield M B, Majsztrik P W, Ota H, et al. Mechanical Properties of Nafion and Titania/Nafion Composite Membranes for Polymer Electrolyte Membrane Fuel Cells [J]. Journal of Polymer Science:Part B:Polymer Physics,2006,44(16):2327~2345.
    [12]Navarra M A, Croce F, Scrosati B. New, high temperature superacid zirconia-doped NafionTM composite membranes [J]. Journal of Materials Chemistry,2007,17(30):3210~ 3215.
    [13]Tang H, Wan Z, Pan M, Jiang S P, et al. Self-assembled Nafion-silica nanoparticles for elevated-high temperature polymer electrolyte membrane fuel cells [J]. Electrochemistry Communications,2007,9(8):2003~2008.
    [14]Vichi F M, Colomer M T, Anderson M A. Nanopore ceramic membranes as novel electrolytes for proton exchange membranes [J]. Electrochemical and Solid-State Letters, 1999,2(7):313~316.
    [15]Liu J, Wang H T, Cheng S A, et al. Nafion-polyfurfuryl alcohol nanocomposite membranes with low methanol permeation [J]. Chemical Communications,2004, (6):728~729.
    [16]Xu F N, Innocent C, Bonnet B, et al. Chemical Modification of Perfluorosulfo-nated Membranes with Pyrrole for Fuel Cell Application, Preparation, Characterization and Methanol Transport [J]. Fuel Cells,2005,5(3):398~405.
    [17]Zhi G S, Xin W, Hsing I M. Composite Nafion/polyvinyl alcohol membranes for the direct methanol fuel cell [J]. Journal of Membrane Science,2002,210 (1):147~153.
    [18]Yamaguchi T, Hua Z, Nakazawa T, et al. A novel all aromatic pore-filling electrolyte membrane with extremely low methanol crossover characteristic for DMFC [J]. Advanced Materials,2007,19(4):592~596.
    [19]Yamaguchi T, Miyata F, Nakao S. Polymer electrolyte membranes with pore-filling structure for a direct methanol fuel cell [J]. Advanced Materials,2003,15(14):1198~1201.
    [20]Zhang X H, Tay S W, Liu Z L, et al. Restructure proton conducting channels by embedding starburst POSS-g-acrylonitrile oligomer in sulfonic perfluoro polymer matrix [J] Journal of Membrane Science,2009,329(1-2),228~235.
    [21]Gubler L, Gursel S A, Scherer G G. Radiation grafted membranes for polymer electrolyte fuel cells [J]. Fuel Cells,2005,5(3):317~335.
    [22]Gubler L, Kuhn H, Schmidt T J, et al. Performance and durability of membrane electrode assemblies based on radiation-grafted FEP-g-polystyrene membranes [J]. Fuel Cells,2004, 4(3):196~207.
    [23]Mitov S, Hubner G, Brack H P, et al. In situ spin resonance study of styrene grafting of electron irradiation fluoropolymer films for fuel cell membranes [J]. Journal of Polymer Science:Part B: Polymer Physics,2006,44(23):3323~3336.
    [24]Sarinen V, Himanen O, Kallio T, et al. Current distribution measurements with a free-breathing direct methanol fuel cell using PVDF-g-PSSA and Nafion 117 membranes [J]. Journal of Power Sources,2007,163(2):768~776.
    [25]Gubler L, Youcef H B, Gursel SA, et al. Cross-linker effect in ETFE-based radiation-grafted proton-conducting membranes [J]. Journal of The Electrochemical Society,2008,155(9): B921~B928.
    [26]Vie P, Paronen M, Rauhala E, et al. Fuel cell performance of proton irradiated and subsequently sulfonated poly(vinyl fluoride) membranes [J]. Journal of Membrane Science, 2002,204(1-2):295~301.
    [27]Walsby N, Sundholm F, Kallio T, et al. Radiation-grafted ion-exchange membranes: influence of the initial matrix on the synthesis and structure [J]. Journal of Polymer Science: Part A:Polymer Chemistry,2001,39(17):3008~3017.
    [28]Gubler L, Prost N, Gursel S A, et al. Proton exchange membranes prepared by radiation grafting of styrene/divinylbenzene onto poly(ethylenealt- tetrafluoroethylene) for low temperature fuel cells [J]. Solid State Ionics,2005,176(39-40):2849~2860.
    [29]Gubler L, Slaski M, Wallasch F, et al. Radiation grafted fuel cell membranes based on co-grafting of a-methylstyrene and methacrylonitrile into a fluoropolymer base film [J]. Journal of Membrane Science,2009,339(1-2):68~77.
    [30]Qing S, Huang W, Yan D. Synthesis and characterization of thermally stable sulfonated polybenzimidazoles [J]. European Polymer Journal,2005,41(7):1589~1595.
    [31]Xu H, Chen K, Guo X, et al. Synthesis of hyperbranched polybenzimidazoles and their membrane formation [J]. Journal of Membrane Science,2007,288(1-2):255~260.
    [32]Meyer G, Gebel G, Gonon L, et al. Degradation of sulfonated polyimide membranes in fuel cell conditions [J]. Journal of Power Sources,2006,157(1):293~301.
    [33]Jang W, Sundar S, Choi S, et al. Acid-base polyimide blends for the application as electrolyte membranes for fuel cells [J]. Journal of Membrane Science,2006,280(1-2): 321~329.
    [34]Park H B, Lee C H, Sohn J Y, et al. Effect of Crosslinked Chain Length in Sulfonated Polyimide Membranes on Water Sorption, Proton Conduction, and Methanol Permeation Properties [J]. Journal of Membrane Science,2006,285(1-2):432~443.
    [35]Fang J, Guo X., Xua H, et al. Sulfonated Polyimides: Synthesis, Proton Conductivity and Water Stability [J]. Journal of Power Sources,2006,159(1):4~11.
    [36]Rodgers M, Yang Y, Holdcrof S. A study of linear versus angled rigid rod polymers for proton conducting membranes using sulfonated polyimides [J]. European Polymer Journal, 2006,42(5):1075~1085.
    [37]Shang Y, Xie X, Jin H, et al. Synthesis and characterization of novel sulfonated naphthalenic polyimides as proton conductive membrane for DMFC applications [J]. European Polymer Journal,2006,42(11):2987~2993.
    [38]Daia H, Guan R, Li C, et al. Modification of sulfonated poly(ether sulfone) proton exchange membrane with reduced swelling [J]. Solid State Ionics,2007,178(5-6):339~345.
    [39]Li Y, Wang F, Yang J, et al. Synthesis and characterization of controlled molecular weight disulfonated poly(arylene ether sulfone) copolymers and their applications to proton exchange membranes [J]. Polymer,2006,47(11):4210~4217.
    [40]Fang J, Shen P K, Liu Q L, et al. Low methanol permeable sulfonated poly(phthalazinone ether sulfone) membranes for DMFCs [J]. Journal of Membrane Science, 2007,293(1-2):94~99.
    [41]Gu S, He G, Wu X, et al. Synthesis and characteristics of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) for direct methanol fuel cell (DMFC) [J]. Journal of Membrane Science,2006,281 (1-2):121~129.
    [42]Fu Y, Manthiram A, Guiver M D, et al. Blend membranes based on sulfonated poly(ether ether ketone) and polysulfone bearing benzimidazole side groups for proton exchange membrane fuel cells [J]. Electrochemistry Communications,2006,8(8):1386~1390.
    [43]Lin H, Yu T L, Chang W, et al. Preparation of a low proton resistance PBI/PTFE composite membrane [J]. Journal of Power Sources,2007,164(2):481~487.
    [44]Basile L, Paturzo A, Iulianelli I, et al. Sulfonated PEEK-WC membranes for proton-exchange membrane fuel cell: Effect of the increasing level of sulfonation on electrochemical performances [J]. Journal of Membrane Science,2006,281(1-2):377~385.
    [45]Ren S, Li C, Zhao X, et al. Surface modification of sulfonated poly(ether ether ketone) membranes using Nafion solution for direct methanol fuel cells [J]. Journal of Membrane Science,2005,247(1-2):59~63.
    [46]Kobayashi T, Rikukawa M, Sanui K, et al. Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene) [J]. Solid State Ionic, 1998,106(3-4):219~225.
    [47]Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes [J]. Journal of Membrane Science, 2004,229(1-2):95~106.
    [48]Carbone A, Pedicini R, Portale G, et al. Sulphonated poly(ether ether ketone) membranes for fuel cell application:thermal and structural characterization [J]. Journal of Power Sources, 2006,163(1):18~26.
    [49]Zhang F, Li N W, Cui Z M, et al. Novel acid-base polyimides synthesized from bi-naphthalene dianhydride and triphenylamine-containing diamine as proton exchange membranes [J]. Journal of Membrane Science,2008,314(1-2):24~32.
    [50]Feng S G, Shang Y M, Xie X F, et al. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications [J]. Journal of Membrane Science,2009,335(1-2):13~20.
    [51]Lee H S, Roy A, Lane O, et al. Hydrophilic-hydrophobic multiblock copolymers based on poly(arylene ether sulfone) via low-temperature coupling reactions for proton exchange membrane fuel cells [J]. Polymer,2008,49(3):715~723.
    [52]Fang J, Shen P K, Liu Q L. Low methanol permeable sulfonated poly(phthalazinone ether sulfone) membranes for DMFCs [J]. Journal of Membrane Science,2007,293(1-2):94~99.
    [53]方勇,苗睿瑛,王同涛,等.直接甲醇燃料电池用聚合物质子交换膜的研究进展[J].高分子学报,2009,(10):992-1006.
    [54]Erdogan T, Unveren E E, Inan T Y, et al. Well-defined block copolymer ionomers and their blend membranes for proton exchange membrane fuel cell [J]. Journal of Membrane Science, 2009,344(1-2):172~181.
    [55]Huang Y F, Chuang L C, Kannan A M, et al. Proton-conducting membranes with high selectivity from cross-linked poly(vinyl alcohol) and poly(vinyl pyrrolidone) for direct methanol fuel cell applications [J]. Journal of Power Sources,2009,186(1):22~28.
    [56]Deimede V, Voyiatzis G, Kallitsis J, et al. Miscibility behavior of polybenzimidazole/ sulfonated polysulfone blends for use in fuel cell applications [J]. Macromolecules,2000, 33(20):7609~7617.
    [57]Kerres J, Zhang W, Haering T. Covalently cross-linked ionomer (blend) membranes for fuel cells [J]. Journal of New Materials for Electrochemical Systems,2004,7:299~309.
    [58]Cui W, Kerres J, Eigenberger G. Development and characterization of ionexchange polymer blend membranes [J]. Separation and Purification Technology,1998,14(1-3):145~154.
    [59]Kim D W, Choi J, Hong Y T, et al. Phase separation and morphology control of polymer blend membranes of sulfonated and nonsulfonated polysulfones for direct methanol fuel cell application [J]. Journal of Membrane Science,2007,299(1-2):19~27.
    [60]Tsai J C, Cheng H P, Kuo J F, et al. Blend Nafion/SPEEK direct methanol fuel cell membranes for reduced methanol permeability [J]. Journal of Power Sources,2009,189(2): 958~965.
    [61]Oh Y, Lee H, Yoo M, et al. Azide-assisted cross-linked sulfonated poly (ether sulfone)s as stable and highly conductive membranes with low methanol diffusion coefficients [J]. Chemical Communications,2008, (17):2028~2030.
    [62]Oh Y, Lee H, Yoo M, et al. Synthesis of novel crosslinked sulfonated poly (ether sulfone)s using bisazide and their properties for fuel cell application [J]. Journal of Membrane Science, 2008,323(2):309~315.
    [63]Adjemian K T, Srinivasan S, Benziger J, et al. Investigation of PEMFC operation above 100 ℃ employing perfluorosulfonic acid silicon oxide composite membranes [J]. Journal of Power Sources,2002,109(2):356~364.
    [64]Shao Z G, Joghee P, Hsing I M, et al. Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells [J]. Journal of Membrane Science,2004,229(1-2): 43~51.
    [65]Miyake N, Wainright J S, Savinell R F, et al. Evaluation of a sol-gel derived Nafion/silica hybridmembranefor proton electrolytemembranefuel cell applications:I. Proton conductivity and water content [J]. Journal of The Electrochemical Society,2001,148(8):A898~A904.
    [66]Baradie B, Dodelet J P, Guay D. Hybrid Nafion(?)-inorganic membrane with potential applications for polymer electrolyte fuel cells [J]. Journal of Electroanalytical Chemistry, 2000,489(1-2):101~105.
    [67]Deng Q, Moore R B, Mauritz K A. Novel Nafion/ORMOSIL hybrids via in situ sol-gel reactions.1. Probe of ORMOSIL phase nanostructures by infrared spectroscopy [J]. Chemical of Materials,1995,7(12),2259~2268.
    [68]Deng Q, Moore R B, Mauritz K A. Nafion/(SiO2, ORMOSIL and dimethylsiloxane) hybrids via in situ sol-gel reactions:characterization of fundamental properties [J]. Journal of Applied Polymer Science,1998,68(5):747~763.
    [69]Watanabe M, Uchida H, Emori M. Polymer electrolyte membranes incorporated with nanometer-size particles of Pt and/or metal-oxides: experimental analysis of the self-humidification and suppression of gas-crossover in fuel cells [J]. The Journal of Physical Chemistry B,1998,102(17):3129~3137.
    [70]Zhou X Y, Weston J, Chalkova E, et al. High temperature transport properties of polyphosphazene membranes for direct methanol fuel cells [J]. Electrochim. A cta,2003, 48(14-16):2173~2189.
    [71]Staiti P, Arico A S, Baglio V, et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells [J]. Solid State Ionics,2001, 145(1-4):101~107.
    [72]Rhee C H, Kim H K, Chang H, et al. Nafion/sulfonated montmorillonite composite:a new concept electrolyte membranes for direct methanol fuel cells [J]. Chemical of Materials, 2005,17(7):1691~1697.
    [73]Rhee C H, Kim Y, Kim H K, et al. Nanocomposite membranes of surface-sulfonated titanate and Nafion for direct methanol fuel cells [J]. Journal of Power Sources,2006,159(2): 1015~1024.
    [74]Kim Y, Rhee C H, Kim H K, et al. Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic-inorganic composite membranes [J]. Journal of Power Sources,2006,162(1):180~185.
    [75]Pereira F, Valle K, Belleville P, et al. Advanced mesostructured hybrid silica-Nafion membranes for high-performance PEM fuel cell [J]. Chemical of Materials,2008,20(5): 1710~1718.
    [76]Gaylord N G, Mandal B M, Martan M. Peroxide-Induced Polymerization of Norbornene [J]. Journal of Polymer Science:Polymer Letters Edition,1976,14(9):555~559.
    [77]Toyota. Fuel Cell-Purpose Electrolyte Material and Production Method Therefor [P]. JP, 2001019723A,2001.
    [78]Ravikiran R, Rhodes L F, Bell A, et al. Polycyclic Polymers Containing Pendant Ion Conducting Moieties [P].US,0019638A1,2005.
    [79]Thrashera S R, Rezac M E. Transport of water and methanol vapors in alkyl substituted poly(norbornene) [J]. Polymer,2004,45(8):2641~2649.
    [80]Takamiya I, Yamashita M, Murotani E, et al. Polymerization of norbornene with a pendent sulfonyl fluoride group catalyzed by palladium complex bearing'Bu3P ligand [J]. Journal of Polymer Science Part A:Polymer Chemistry,2008,46(15):5133~5141.
    [81]李兴杰.环烯烃高分子质子传导膜之开发[D].国立中央大学,2007.
    [82]王佳田.新颖环烯烃共聚物/阳离子型光起始剂质子交换膜之物性及电学性质研究[D].国立台湾科技大学.
    [83]Wen S, Gong C L, Tsen W C, et al. Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells [J]. International Journal of Hydrogen Energy,2009,34(21):8982~8991.
    [84]Ghil L J, Kim C K, Rhee H W. Phosphonic acid functionalized poly(dimethyl siloxane) membrane for high temperature proton exchange membrane fuel cells [J]. Current Applied Physics,2009,9:56~59.
    [85]Beers K L, Gaynor S G, Matyjaszewski K, et al. The synthesis of Densely Grafted Copolymers by Atom Transfer Radical Polymerization [J]. Macromolecules,1998,31(26): 9413~9415.
    [86]Cheng G, Boker A, Zhang M, et al. Amphiphilic Cylindrical Core-Shell Brushes via a "Grafting From" Process Using ATRP [J]. Macromolecules,2001,34(20):6883~6888.
    [87]Borner H G, Beers K, Matyjaszewski K, et al. Synthesis of Molecular Brushes with Block Copolymer Side Chains Using Atom Transfer Radical Polymerization [J]. Macromolecules, 2001,34(13):4375~4383.
    [88]Zhang M, Mu"ller A H E. Highlight: Cylindrical Polymer Brushes [J]. Journal of Polymer Science Part A:Polymer Chemistry,2005,43(16),3461~3481.
    [89]Zhang M F, Russell T P. Graft Copolymers from Poly(vinylidene fluoride-co-chlorotrifluoroethylene) via Atom Transfer Radical Polymerization [J]. Macromolecules, 2006,39(10):3531~3539.
    [90]Kerres J A. Development of ionomer membranes for fuel cells [J]. Journal of Membrane Science,2001,185(1):3~27.
    [91]He X H, Yao Y Z, Luo X. Ni(II) Complexes Bearing N,O-Chelate Ligands:Synthesis, Solid-Structure Characterization and Reactivity toward the Polymerization of Polar Monomer [J]. Organometallics,2003,22(24):4952~4957.
    [92]王新东,王博,张红飞,等.一种燃料电池质子交换膜横向电导率的测试方法与装置[P].中国专利,CN1564014A,2005.
    [93]Matyjaszewski K, Xia J. Atom transfer radical polymerization [J]. Chemical Reviews,2001, 101(9):2921~2990.
    [94]Kim Y W, Park J T, Koh J H, et al. Anhydrous Proton Conducting Membranes Based On Crosslinked Graft Copolymer Electrolytes [J]. Journal of Membrane Science,2008,325(1), 319~325.
    [95]Kim J, Kim B, Jung B. Proton conductivities and methanol permeabilities of membranes made from partially sulfonated polystyrene-blockpoly (ethylene-ran- butylene)- block-polystyrene copolymers [J]. Journal of Membrane Science,2002,207(1):129~137.
    [96]Chuang S, Hsu S, Hsu C. Synthesis and properties of fluorine-containing polybenzi midazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications [J]. Journal of Power Sources,2007,168(1):172~177.
    [97]Staiti P, Lufrano F, Arico A S, et al. Sulfonated polybenzimidazole membranes- preparation and physico-chemical characterization [J]. Journal of Membrane Science,2001,188(1):71~ 78.
    [98]Staiti P, Minutoli M. Influence of composition and acidtreatment on proton conduction of composite polybenzimidazole membranes [J]. Journal of Power Sources,2001,94(1),9~13.
    [99]Pu HT, Wang D. Studies on Proton Conductivity of Polyimide/H3P04/Imidazole Blends [J]. Electrochimica Acta 2006,51(26):5612~5617.
    [100]Pu H T, Ye S, Wan D C. Anhydrous Proton Conductivity of Acid Doped Vinyltriazole-based Polymers [J]. Electrochimica Acta,2007,52(19):5879~5883.
    [101]Vargas J, Santiago A A, Tlenkopatchev M A, et al. Gas transport and ionic transport in membranes based on polynorbornenes with functionalized imide side groups [J]. Macromolecules,2007,40(3):563~570.
    [102]Ge J, Liu H. Experimental studies of a direct methanol fuel cell [J]. Journal of Power Sources,2005,142(1-2):56-69.
    [103]Falcao D S, Rangel C M, Pinho C, et al. Water Transport through a Proton-Exchange Membrane (PEM) Fuel Cell Operating near Ambient Conditions:Experimental and Modeling Studies [J]. Energy & Fuels,2009,23(1):397~402.
    [104]Moilanen D E, Spry D B, Fayer M D. Water Dynamics and Proton Transfer in Nafion Fuel Cell Membranes [J]. Langmuir,2008,24 (8):3690~3698.
    [105]Carretta N, Tricoli V, Picchioni F. Ionomeric membranes based on partially sulfonated poly(styrene): synthesis, proton conduction and methanol permeation [J]. Journal of Membrane Science,2000,166(2):189.
    [106]Elabd Y A, Napadensky E, Sloan J M, et al. Triblock copolymer ionomer membranes Part Ⅰ. Methanol and proton transport [J]. Journal of Membrane Science,2003,217(1-2): 227~ 242.
    [107]Gromadzki D, Ernoch P C, Janata M, et al. Morphological studies and ionic transport properties of partially sulfonated diblock copolymers [J]. European Polymer Journal,2006, 42(10):2486~2496.
    [108]Mokrini, Huneault M A, Gerard P. Partially fluorinated proton exchange membranes based on PVDF-SEBS blends compatibilized with methylmethacrylate block copolymers [J]. Journal of Membrane Science,2006,283(1-2):74~83.
    [109]魏永生,朱红,郭玉宝,等.直接甲醇燃料电池的单电池实验测试及性能优化[J].北京交通大学学报,2010,34(6):90~94.
    [110]Pedretti U, Gandini A, Roggero A, et al. Process for preparing modified poly-(2, 6-dimethyl-p-oxyphenylene) [P].US Patent 5169416,1992.
    [111]Basile A, Paturzo L, Iulianelli A, et al. Sulfonated PEEK-WC membranes for proton-exchange membrane fuel cell:Effect of the increasing level of sulfonation on electrochemical performances [J]. Journal of Membrane Science,2006,281(1-2):377~ 385.
    [112]Kibler C J, Lappin G R. Polyesters and polyesteramides containing ether groups and sulfonate groups in the form of a metallic salt [P].US Patent 3734874,1973.
    [113]Luo H, Vaivars G, Mathe M. Cross-linked PEEK-WC proton exchange membrane for fuel cell [J]. International Journal of Hydrogen Energy,2009,34(20):8616~8621.
    [114]Smitha B, Sridhar S, Khan A A. Synthesis and characterization of proton conducting polymer membranes for fuel cells [J]. Journal of Membrane Science,2003,225(1-2):63~ 76.
    [115]韩东梅,舒东,王拴紧等.一种新型含氟含芴聚芳醚酮质子交换膜的合成和表征[J].膜科学与技术,2010,30(1):54~59.
    [116]Strathmann H, Ion-Exchange Membrane Separation Processes [J]. Membrane Science and Technology,2004,9(3):118~121.
    [117]Kim D S, Liu B J, Guiver M D. Influence of silica content in sulfonated poly(arylene ether ether ketone ketone)(SPAEEKK) hybrid membranes on properties for fuel cell application [J]. Polymer,2006,47(23):7871~7880.
    [118]高启君,王宇新,许莉,等SPEEK-PES-C, SPEEK-SPES-C共混质子交换膜研究[J].高分子学报,2009,(1):46-52.
    [119]Jang W, Sundar S, Choi S, et al. Acid-base polyimide blends for the application as electrolyte membranes for fuel cells [J]. Journal of Membrane Science,2006,280(1-2): 321~329.
    [120]ZHANG G W, ZHOU Z T. Organic/inorganic composite membranes for application in DMFC [J]. Journal of Membrane Science,2005,261(1-2):107~113.
    [121]Li H T, Zhang G, Wu J, et al. A novel sulfonated poly(ether ether ketone) and cross-linked membranes for fuel cells [J]. Journal of Power Sources,2010 195(19):6443~6449.
    [122]王哲,吴清海,倪宏哲,等.磺化聚芳醚酮砜/聚吡咯复合型直接甲醇燃料电池用质子交换膜的制备与性能研究[J].高分子学报,2010,(7):835-841.
    [123]Zhao Y, Yin J. Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application [J]. Journal of Membrane Science,2010, 351(1-2):28~35.
    [124]黄绵延,王宇新,蔡雨泉,等.磺化聚醚醚酮/三羧基丁烷膦酸锆复合质子交换膜的研究[J].高分子学报,2007,(4):337-342.
    [125]黄绵延,陈华艳,郭剑钊,等.DMFC用PES/SPEEK共混阻醇质子交换膜[J].物理化学学报,2007,23(01):44-49.
    [126]Kim Y W, Choi J K, Park J T, et al. Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene) graft copolymer electrolyte membranes [J]. Journal of Membrane Science,2008,313(1-2):315~322.
    [127]Ding J F, Chuy C, Holdcroft S. A self-organized network of nanochannels enhances ion conductivity through polymer films [J]. Chemical of Materials,2001,13(7):2231~2233.
    [128]Huang H S, Chen C Y, Lo S C, et al. Identification of ionic aggregates in PVDF-g-PSSA membrane by tapping mode AFM and HADDF STEM [J]. Applied Surface Science,2006, 253(5):2685~2689.
    [129]Yang Y, Shi Z, Holdcroft S. Synthesis of sulfonated polysulfoneblock-PVDF copolymers: enhancement of proton conductivity in low ion exchange capacity membranes [J]. Macromolecules,2004,37(5):1678~1681.
    [130]Cho E B, Luu D X, Kim D K. Enhanced transport performance of sulfonated mesoporous benzene-silica incorporated poly(ether ether ketone) composite membranes for fuel cell application [J]. Journal of Membrane Science,2010,351(1-2):58~64.
    [131]Suryani, Liu Y L. Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes [J]. Journal of Membrane Science,2009,332(1-2):121~128.
    [132]Chen X B, Chen P, An Z W, et al. Crosslinked sulfonated poly(arylene ether ketone) membranes bearing quinoxaline and acid-base complex cross-linkages for fuel cell applications [J]. Journal of Power Sources,2011,196(4):1694~1703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700