基于乙烯基加成型聚降冰片烯衍生物质子交换膜的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接甲醇燃料电池(DMFC)具有使用安全、能量密度高、环境友好等特点,已成为当今能源领域的研究热点。其中质子交换膜是直接甲醇燃料电池的核心组件之一,目前商用的Nafion(?)膜,因其甲醇透过率高、高温低湿条件下质子传导率急剧降低、尺寸稳定性差、环境污染严重及制备成本昂贵等缺点,制约了其进一步推广。开发高性价比的新型质子交换膜已成为直接甲醇燃料电池研究中热点。加成型聚降冰片烯(PNB)材料有良好的成膜性、热稳定性、高的玻璃化转变温度、优异的阻醇性能及良好的化学稳定性等优点,并且其主链中保留了双环结构因而具有高尺寸稳定性、优异的抗离子蚀刻能力和电绝缘性能是适合开发作为直接甲醇燃料电池用质子交换膜的良好材料。
     本文以双-(β-酮萘亚胺)镍(Ⅱ)与B(C6F5)3的二元催化体系催化5-降冰片烯-2-亚甲基丁基醚(2-butoxymethylenyl-5-norbornene, NBF1, NB=norbornene, F1=-CH2-O-CH2CH2CH2CH3)与5-降冰片烯-2-亚甲基醋酸酯(2-methylenyl acetate-5-norbornene, NBF2, F2=-CH2-O-COCH3)加成聚合,得到共聚物聚(5-降冰片烯-2-亚甲基丁基醚-共-5-降冰片烯-2-亚甲基醋酸酯)(PNBF1/NBF2-91,91表示NBF1与NBF2的摩尔投料比为9:1),然后脱酯得到含羟基的聚(5-降冰片烯-2-亚甲基丁基醚-共-5-降冰片烯-2-亚甲醇)(PNBF1/NBF3-91, F3=-CH2-OH)。PNBF1/NBF3-91溶于THF,然后加入不同比例的咪唑-4,5-二羧酸(IDA)和H3P04,使IDA的羧酸基团与PNBF1/NBF3-91的羟基发生酯化交联,H3P04与IDA形成咪唑-磷酸络合物,制备系列PNBF1/NBF3-91/IDA/H3PO4交联膜(PNBIH)。对其断面形貌、吸水率、质子传导率、甲醇透过率、热稳定性和机械他性能等进行了表征,结果表明PNBIH膜的质子传导率随着温度和IDA/H3PO4含量的增加而增大,PNBIH膜有优异的阻醇性能其甲醇透过率为0.25×10-6至0.42×10-6cm2·s-1,比商业化的Nafion115(N115)膜低一个数量级。
     在上述催化体系下,改变NBF1和NBF2的投料比合成系列聚合物PNBF1/NBF3-xx (xx表示NBF1与NBF2的摩尔投料比从9:1到5:5),利用活性基团-OH与1,4-丁磺酸内酯反应,成功合成了含有磺酸基团的磺化聚降冰片烯(SPNBF1/NBF3-xx),通过1HNMR、FT-IR证实了共聚物的结构。SPNBF1/NBF3-xx的溶解性能较差,仅SPNBF1/NBF3-91可溶于THF制备了质子交换膜。为了增强该膜的质子传导率,我们往SPNBF1/NBF3-91聚合物溶液中加入一定量的PNBF1/NBF3-91、IDA和H3P04制备了复合质子交换膜。复合膜和SPNBF1/NBF3-91膜都有很好的尺寸稳定性和阻醇性能,SPNBF1/NBF3-91与复合膜的甲醇透过率分别为0.87×10-7cm2·s-1和1.83×10-7 cm2·s-1,远低于N115(11.73×10-7 cm2·s-1),但是SPNBF1/NBF3-91质子传导率过低,不能得到单电池的相关数据。复合膜组装的MEA在70℃和2mol·L-1的甲醇的工作环境下,开路电压为0.483 V略低于N115的0.559 V,但其输出功率仅有1.35mW·cm-2要低于N115(16mW-cm-2)。
Direct methanol fuel cells (DMFCs) have been one of priority development of the energy technologies due to their high power density, environment friendly and security. The proton exchange membrane (PEM) is one of the key components determining the performance of the fuel cells. Nafion(?) is the current state-of-the-art PEM material, while several drawbacks of Nafion(?), such as high cost, high methanol permeability, low humidity and a major reduction in conductivity at high temperatures, has limited its industrial applications. These limitations have stimulated worldwide research activities for developing new materials with high performance as proton exchange membrane.
     Vinyl addition type polynorbornenes exhibit good membrane formation, high thermal stability, excellent methanol resistant, high glass transition temperature and good chemical stability. Because all this materials that have dual-ring structure, usually have high dimensional stability and excellent dielectric properties etc., the vinyl addition type polynorbornene is suitable for development as a direct methanol fuel cell proton exchange membrane material.
     The poly (2-butoxymethylenyl-5-norbornene-co-2-methylenyl acetate-5-norbornene) (PNBF1/NBF2-91,91 indicate the mole feed rate of NBF,:NBF2 is 9:1) was successfully synthesized via the vinyl addition copolymerization of 2-butoxymethylenyl-5-norbornene (NBF1, NB=norbornene, F1=-CH2-O-CH2CH2CH2CH3) and 2-methylenyl acetate-5-norbornene (NBF2, F2=-CH2-O-COCH3) by using bis-((β-ketonaphthylamino)nickel(Ⅱ)/B(C6F5)3 catalytic system. The poly (2-butoxymethylenyl-5-norbornene-co-2-methylol-5-norbornene) (PNBF1/ NBF3-91, F3=-CH2-OH) was obtained by the de-esterification of PNBFi/NBF2-91. Then PNBF1/NBF3-91 was crosslinked with 4,5-imidazole dicarboxylic acid (IDA) via the esterification of the-OH groups and the-COOH groups of IDA. Upon doping with phosphoric acid (H3PO4) to form imidazole-H3PO4 complexes to obtain the PNBF1/NBF3-91/IDA/H3PO4 (PNBIH) cross-linked membranes and the corresponding morphology, water uptake, proton conductivity, methanol permeability, thermal stability, as well as tensile properties were investigated. The results indicate that the crosslinked membranes showed higher proton conductivity at higher temperatures and lower methanol permeability after incorporation of more content of IDA and H3PO4. The PNBIH membranes showed lower methanol permeability from 0.25×10-6 to 0.4×10-6 cm2·s-1, which is order of magnitude lower than that of N115.
     The sulfonated functional polynorbornenes (SPNBF1/NBF3-xx) are successfully prepared via the sulfobutylation of the PNBF1/NBF3-xx (xx is the mole feed ratio of NBF1 and NBF2 is from 9:1 to 5:5) with 1,4-butane sultone, and the chemical structures of the polymers are confirmed by the 1H NMR and the FT-IR. Except for SPNBF1/NBF3-91, the rest SPNBF1/NBF3-xx can not be dissolved in common organic solvents. So the PEM membrane is only from SPNBF1/NBF3-91, With the purpose of improving the proton conductivity of SPNBF1/NBF3-91 membrane, a composite membrane with a proper content of PNBF1/NBF3-91 copolymer, IDA and H3PO4, has been prepared. The SPNBF1/NBF3-91 and its blend membranes have excellent methanol resistant and dimensional stability, and the methanol permeability of the SPNBF1/NBF3-91 and its blend membranes are 0.87×10-7 cm2 and 1.83×10-7 cm2·s-1, respectively. But SPNBF1/NBF3-91 membrane with so poor proton conductivity that can not obtained its DMFC performance. Compare with the N115 (0.559 V,16 mW·cm-2), open circuit voltages (0.483 V) of the blend membrane at 2 mol·L-1 methanol (70℃) exhibited only slightly lower, while its power density decreases sharply to 1.35 mW·cm-2.
引文
[1]Das P K, Li X G, Liu Z S, A three-dimensional agglomerate model for the cathode catalyst layer of PEM fuel cells [J]. Journal of Power Sources,2008,179(1):186-199.
    [2]Hogarth W H J, Diniz da Costa J C, Lu G Q. Solid Acid Membranes for High Temperature (>140℃) Proton Exchange Membrane Fuel Cells [J]. Journal of Power Sources,2005, 142(122):223-237.
    [3]Mawardi A, Pitchumani R. Effects of parameter uncertainty on the performance variability of proton exchange membrane (PEM) fuel cells [J]. Journal of Power Sources,2006,160(1): 232-245.
    [4]Deluca N W, Elabd Y A. Polymer electrolyte membranes for the direct methanol fuel cell:A review [J]. Journal of Polymer Science Part B:Polymer Physics,2006,44(16):2201-2225.
    [5]王立.直接甲醇燃料电池用全氟磺酸质子交换膜研究[D].上海交通大学,2008.
    [6]Hickner M A, Ghassemi H, Kim Y S, et al. Alternative Polymer Systems for Proton Exchange Membranes (PEMs) [J]. Chemical Reviews,2004,104(10):4587-4612.
    [7]石建恒,于宏燕,曾心苗.燃料电池质子交换膜的研究现状[J].膜科学与技术,2009,29(2):94-98.
    [8]方勇,苗睿瑛,王同涛.直接甲醇燃料电池用聚合物质子交换膜的研究进展[J].高分子学报,2009(10):992-1006.
    [9]毛宗强.燃料电池[M].北京:化学工业出版社,2005.
    [10]Eikerling M, Kornyshev A A, Kuznetsov A M, et al. Mechanisms of proton conductance in polymer electrolyte membranes [J]. Journal of Physical Chemistry B,2001,105(17):3646-3662.
    [11]Eikerling M, Paddison S J, Zawodzinski T A. Molecular orbital calculations of proton dissociation and hydration of various acidic moieties for fuel cell polymers [J]. Journal of New Materials for Electrochemical Systems,2002,5(1):15-23.
    [12]Eikerling M, Kornyshev A A. Proton transfer in a single pore of a polymer electrolyte membrane [J]. Journal of Electroanalytical Chemistry,2001,502(1-2):1-14.
    [13]Paddison S J, Paul R. The nature of proton transport in fully hydrated Nafion(?) [J]. Physical Chemistry Chemical Physics,2002,4(7):1158-1163.
    [14]Paddison S J, Paul R, Kreuer K D. Theoretically computed proton diffusion coefficients in hydrated PEEKK membranes [J]. Physical Chemistry Chemical Physics,2002,4(7): 1151-1157.
    [15]Paddison S J, Paul R, Zawodzinski T A. Proton friction and diffusion coefficients in hydrated polymer electrolyte membranes:computations with a non-equilibrium statistical mechanical method [J]. Journal of Chemical Physics,2001,115(16):7753-7761.
    [16]Li T, Wlaschin A, Balbuena P B. Theoretical studies of proton transfer in water and model polymer electrolyte systems [J]. Industrial & Engineering Chemistry Research,2001, 40(22):4789-4800.
    [17]Hsu W Y, Gierke T D. Ion transport and clustering in nafion perfluorinated membranes [J]. Journal of Membrane Science,1983,13(3):307-326.
    [18]Gierke T D, Munn G E, Wilson F C. The morphology in nafion(?) perfluorinated membrane products, as determined by wide- and small-angle x-ray studies [J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(11):1687-1704.
    [19]Roche E J, Pineri M, Duplessix R, et al. Small-angle scattering studies of nafion membranes [J]. Journal of Polymer Science:Polymer Physics Edition,1981,19(1):1-11.
    [20]Roche E J, Pineri M, Duplessix R. Phase separation in perfluorosulfonate ionomer membranes [J]. Journal of Polymer Science:Polymer Physics Edition,1982,20(1):107-116.
    [21]Fujimura M, Hashimoto R, Kawai H. Small-angle x-ray scattering study of perfluorinated ionomer membranes.1. Origin of two scattering maxima [J]. Macromolecules,1981,14(5): 1309-1315.
    [22]Fujimura M, Hashimoto R, Kawai H. Small-angle x-ray scattering study of perfluorinated ionomer membranes.2. Models for ionic scattering maximum [J]. Macromolecules,1982, 15(1):136-144.
    [23]Haubold H G, Vad T, Jungbluth H, et al. Nano structure of NAFION:a SAXS study [J]. Electrochimica Acta,2001,46(10-11):1559-1563.
    [24]Rubatat L, Rollet A L, Gebel G, et al. Evidence of elongated polymeric aggregates in Nafion [J]. Macromolecules,2002,35(10):4050-4055.
    [25]Dreyfus B, Gebel G, Aldebert P, et al. Distribution of the 《 micelles》in hydrated perfluorinated ionomer membranes from SANS experiments [J]. Journal de Physique Archives,1990,51(12):1341-1354.
    [26]Kreuer K D, Weppner W, Rabenau A. Vehicle Mechanism, A New Model for the Interpretation of the Conductivity of Fast Proton Conductors [J]. Angewandte Chemie International Edition in English,1982,21(3):208-209.
    [27]Breslau B R, Miller I F. A Hydrodynamic Model for Electroosmosis [J]. Industrial & Engineering Chemistry Fundamentals,1971,10(4):554-565.
    [28]Krynicki K, Green C D, Sawyer D W. Pressure and temperature dependence of self-diffusion in water [J]. Faraday Discussions of the Chemical Society,1978,66:199-208. DOI: 10.1039/DC9786600199.
    [29]Harris K R, Woolf L A. Pressure and temperature dependence of the self diffusion coefficient of water and oxygen-18 water [J]. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases,1980,76:377-385. DOI: 10.1039/F19807600377
    [30]Dippel T, Kreuer K D. Proton transport mechanism in concentrated aqueous solutions and solid hydrates of acids [J]. Solid State Ionics,1991,46(1-2):3-9.
    [31]Han J H, Liu H T. Real time measurements of methanol crossover in a DMFC [J]. Journal of Power Sources,2007; 164(1):166-173.
    [32]Ren X, Zawodzinski T A, Gottesfeld S. Methanol Transport Through Nation Membranes. Electro-osmotic Drag Effects on Potential Step Measurements [J]. Journal of The Electrochemical Society,2000,147(2):466-474.
    [33]Divisek J, Eikerling M, Mazin V, et al. A Study of Capillary Porous Structure and Sorption Properties of Nafion Proton-Exchange Membranes Swollen in Water [J]. Journal of The Electrochemical Society,1998,145(8):2677-2683.
    [34]VerbruggeM W. Methanol Diffusion in Perfluorinated Ion-Exchange Membranes [J]. Journal of The Electrochemical Society,1989,136(2):417-423.
    [35]Pan Y H. Advanced air-breathing direct methanol fuel cells for portable applications [J]. Journal of Power Sources,2006,161(1):282-289.
    [36]Liu F Q, Lu G Q, Wang C Y. Low crossover of methanol and water through thin membranes in direct methanol fuel cells [J]. Journal of the Electrochemical Society,2006,153(3): A543-A553.
    [37]Mu S C, Tang H L, Wan Z H, et al. Au nanoparticles self-assembled onto Nafion membranes for use as methanol-blocking barriers [J]. Electrochemistry Communications,2005,7(11): 1143-1147.
    [38]Park Y S, Yamazaki Y. Low methanol permeable and high proton-conducting Nafion/calcium phosphate composite membrane for DMFC [J]. Solid State Ionics,2005, 176(11-12):1079-1089.
    [39]Rhee C H, Kim Y, Lee J S, et al. Nanocomposite membranes of surface-sulfonated titanate and Nafion(?) for direct methanol fuel cells [J]. Journal of Power Sources,2006,159(22): 1015-1024.
    [40]Shao Z G, Xu H F, Li M Q, et al. Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell [J]. Solid State Ionics,2006,177(7-8):779-785.
    [41]Mistry M K, Choudhury N R, Dutta N K, et al. Novel Organic Inorganic Hybrids with Increased Water Retention for Elevated Temperature Proton Exchange Membrane Application [J]. Chemistry of Materials,2008,20(21):6857-6870.
    [42]Bebin P, Caravanier M, Galiano H. Nafion(?)/clay-SO3H membrane for proton exchange membrane fuel cell application [J]. Journal of Membrane Science,2006,278(1-2):35-42.
    [43]Pereira F, Valle K, Belleville P, et al. Advanced Mesostructured Hybrid Silica Nafion Membranes for High-Performance PEM Fuel Cell [J]. Chemistry of Materials,2008,20(5): 1710-1718.
    [44]Zhang W J, Li M K S, Yue P L, et al. Exfoliated Pt-Clay/Nafion Nanocomposite Membrane for Self-Humidifying Polymer Electrolyte Fuel Cells [J]. Langmuir 2008,24(6):2663-2670.
    [45]Tang H L, Pan M Synthesis and Characterization of a Self-Assembled Nafion/Silica Nanocomposite Membrane for Polymer Electrolyte Membrane Fuel Cells [J]. Journal of the American Chemical Society Part C,2008,112(30):11556-11568.
    [46]Mahreni A, Mohamad A B, Kadhum A A H, et al. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity [J]. Journal of Membrane Science,2009,327(1-2):32-40.
    [47]Lin H D, Zhao C J, Ma W J, et al. Low water swelling and high methanol resistant proton exchange membrane fabricated by cross-linking of multilayered polyelectrolyte complexes [J]. Journal of Membrane Science,2009,345(1-2):242-248.
    [48]Choi S W, Fu Y Z, Ahn Y R, et al. Nafion-impregnated electrospun polyvinylidene fluoride composite membranes for direct methanol fuel cells [J] Journal of Power Sources,2008, 180(1):167-171.
    [49]Wycisk R, Chisholm J, Lee J, et al. Direct methanol fuel cell membranes from Nafion-polybenzimidazole blends [J]. Journal of Power Sources,2006,163(1):9-17.
    [50]Liu Y H, Nguyen T, Kristian N, et al. Reinforced and self-humidifying composite membrane for fuel cell applications [J]. Journal of Membrane Science,2009,330(1-2):357-362.
    [51]侯宏英,孙公权,吴智谋等.直接甲醇燃料电池用磷酸氢锆/Nafion115的研究[J].电源技术,2009,33(1):17-20.
    [52]Shang F J, Li L, Zhang Y M, et al. PWA/silica/PFSA composite membrane for direct methanol fuel cells [J]. Journal of Materials Science,2009,44(16):4383-4388.
    [53]Wang C H, Chen C C, Hsu H C, et al. Low methanol-permeable polyaniline/Nafion composite membrane for direct methanol fuel cells [J]. Journal of Power Sources,2009, 190(2):279-284.
    [54]Chen W F, Wu J S, Kuo P L. Poly(oxyalkylene)diamine-Functionalized Carbon Nanotube/ Perfiuorosulfonated Polymer Composites:Synthesis, Water State, and Conductivity [J]. Chemistry of Materials,2008,20(18):5756-5767.
    [55]Xu K, Chanthad C, Gadinski M R, et al. Acid-Functionalized Polysilsesquioxane-Nafion Composite Membranes with High Proton Conductivity and Enhanced Selectivity [J]. Applied Materials & Interfaces,2009,1(11):2573-2579.
    [56]Beattie P D, Orfino F P, Basura V I, et al., Ionic conductivity of proton exchange membranes [J]. Journal of Electroanalytical Chemistry,2001,503(1-2):45-56.
    [57]Basura V I, Chuy C, Beattie P D, et al., Effect of equivalent weight on electrochemical mass transport properties of oxygen in proton exchange membranes based on sulfonated α,α,β-trifluorostyrene (BAM(?)) and sulfonated styrene-(ethylene-butylene)-styene triblock (DAIS-analytical) copolymers [J]. Journal of Electroanalytical Chemistry,2001,501(1-2): 77-88
    [58]Saarinen V, Kallio T, Paronen M, et al. New ETFE-based membrane for direct methanol fuel cell [J]. Electrochimica Acta,2005,50(16-17):3453-3460.
    [59]肖书琴,陈义旺,周魏华等.聚偏氟乙烯-六氟丙烯接枝聚丙烯酸磺酸丙酯制备质子膜[J].过程工程学报,2008,8(6):1223-1227
    [60]Xiao S Q, Chen Y W, Zhou W H, et al. Synthesis of Proton-conducting Electrolytes Based on Poly(vinylidene fluoride-co-hexafluoropropylene) via Atom Transfer Radical [J]. Polymerization High Performance Polymers,2009,21(4):484-500.
    [61]Kim Y W, Park J T, Koh J H, et al. Anhydrous proton conducting membranes based on crosslinked graft copolymer Electrolytes [J]. Journal of Membrane Science,2008,325(1): 319-325.
    [62]Kim Y W, Choi J K, Park J T, et al. Proton conducting poly(vinylidene fluoride-co-chlorotrifluoroethylene)graft copolymer electrolyte membranes [J]. Journal of Membrane Science,2008,313(1-2):315-322.
    [63]Li W, Fu Y Z, Manthiram A, et al. Blend Membranes Consisting of Sulfonated Poly(ether ether ketone) and Polysulfone Bearing 4-Nitrobenzimidazole for Direct Methanol Fuel Cells [J]. Journal of The Electrochemical Society,2009,156(2):B258-B263
    [64]Tripathi B P, Kumar M, Shahi V K. Highly stable proton conducting nanocomposite polymer electrolyte membrane (PEM) prepared by pore modifications:An extremely low methanol permeable PEM [J]. Journal of Membrane Science,2009,327(1-2):145-154.
    [65]Tao Y. Composite membrane of sulfonated poly(ether ether ketone) and sulfated poly(vinyl alcohol) for use in direct methanol fuel cells [J]. Journal of Membrane Science,2009, 342(1-2):221-226.
    [66]Luo H Z, Vaivars G, Mathe M. Covalent-ionically cross-linked polyetheretherketone proton exchange membrane for direct methanol fuel cell [J]. Journal of Power Sources,2010, 195(16):5197-5200.
    [67]Zhang C J, Kang S, Ma X, et al. Synthesis and characterization of sulfonated poly(arylene ether phosphine oxide)s with fluorenyl groups by direct polymerization for proton exchange membranes [J]. Journal of Membrane Science,2009,329(1-2):99-105.
    [68]Li W, Manthiram A, Guiver M D, et al. High performance direct methanol fuel cells based on acid-base blend membranes containing benzotriazole [J]. Electrochemistry Communications,2010,12(4):607-610.
    [69]Lin C K, Kuo J F, Chen C Y. Preparation of nitrated sulfonated poly(ether ether ketone) membranes for reducing methanol permeability in direct methanol fuel cell applications [J]. Journal of Power Sources,2009,187(2):341-347.
    [70]Feng S G, Shang Y M, Wang Y W, et al. Synthesis and crosslinking of hydroxyl-functionalized sulfonated poly(ether ether ketone) copolymer as candidates for proton exchange membranes [J]. Journal of Membrane Science,2010,352(1-2):14-21.
    [71]Luo H Z, Vaivars G, Mathe M. Cross-linked PEEK-WC proton exchange membrane for fuel cell [J]. International Journal of Hydrogen Energy,2009,34(20):8616-8621.
    [72]Gosalawit R, Chirachanchai S, Basileb A, et al. Thermo and electrochemical characterization of sulfonated PEEK-WC membranes and Krytox-Si-Nafion(?) composite membranes [J]. Desalination,2009,235(1-3):293-305.
    [73]Kim T W, Sahimi M, Tsotsis T T. Preparation and Characterization of Hybrid Hydrotalcite-Sulfonated Polyetheretherketone (SPEEK) Cation-Exchange Membranes [J]. Industrial & Engineering Chemistry Research,2009,48(21):9504-9513.
    [74]Li Z F, Dong F L, Xu L J, et al. Preparation and properties of medium temperature membranes based on zirconium sulfophenylphosphate/sulfonated poly(phthalazinone ether sulfone ketone) for direct methanol fuel cells [J]. Journal of Membrane Science,2010, 351(1-2):50-57.
    [75]Colicchio I, Wen F, Keul H, et al. Sulfonated poly(ether ether ketone)-silica membranes doped with phosphotungstic acid. Morphology and proton conductivity [J]. Journal of Membrane Science,2009,326(1):45-57.
    [76]de Bonis C, D'Epifanio A, DiVona M L, et al. Proton Conducting Hybrid Membranes Based on Aromatic Polymers Blends for DirectMethanol Fuel Cell Applications [J]. Fuel Cells, 2009,9(4):387-393.
    [77]Zhou W H, Xiao J C, Chen Y W, et al. Synthesis and Characterization of Sulfonated Poly(ether sulfone ether ketone ketone) for Proton Exchange Membranes [J]. Journal of Applied Polymer Science,2010,117(3):1436-1445.
    [78]Zhou W H, Xiao J C, Chen Y W, et al. Sulfonated Carbon Nanotubes/Sulfonated Poly(ether sulfone ether ketone ketone) Composites for Polymer Electrolyte Membranes [J]. Polymers for Advanced Technologies,2010,21:1-6. DOI:10.1002/pat.1666.
    [79]Bae B, Miyatake K, Watanabe M. Synthesis and Properties of Sulfonated Block Copolymers Having Fluorenyl Groups for Fuel-Cell Applications [J]. Applied Materials & Interfaces, 2009,1(6):1279-1286.
    [80]Decker B, Hartmann-Thompson C, Carver P I, et al. Sulfonated Polyhedral Oligosilsesquioxane (S-POSS)-Sulfonated Polyphenylsulfone (S-PPSU) Composite Proton Exchange Membranes [J]. Chemistry of Matericals,2010,22 (3):942-948.
    [81]Lufrano F, Baglio V, Staiti P, et al. Investigation of sulfonated polysulfone membranes as electrolyte in a passive-mode direct methanol fuel cell mini-stack [J]. Journal of Power Sources,2010,195(23):7727-7733.
    [82]Parvole J, Jannasch P. Polysulfones Grafted with Poly(vinylphosphonic acid) for Highly Proton Conducting Fuel Cell Membranes in the Hydrated and Nominally Dry State [J]. Macromolecules,2008,41(11):3893-3903.
    [83]Geormezi M, Deimede V, Gourdoupi N, et al. Novel Pyridine-Based Poly(ether sulfones) and their Study in High Temperature PEM Fuel Cells [J]. Macromolecules,2008,41(23): 9051-9056.
    [84]Matsumoto K, Higashihara T, Ueda M. Locally and Densely Sulfonated Poly(ether sulfone)s as Proton Exchange Membrane [J]. Macromolecules,2009,42(4):1161-1166.
    [85]Tigelaar D M, Palker A E, Jackson C M, et al. Synthesis and Properties of Novel Proton-Conducting Aromatic Poly(ether sulfone)s That Contain Triazine Groups [J]. Macromolecules,2009,42 (6):1888-1896.
    [86]Kim D S, Robertson G P, Kim Y S, et al. Copoly(arylene ether)s Containing Pendant Sulfonic Acid Groups as Proton Exchange Membranes [J]. Macromolecules,2009,42(4): 957-963.
    [87]Li N W, Zhang S B, Liu J, et al. Synthesis and Properties of Sulfonated Poly[bis (benzimidazobenzisoquinolinones)] as Hydrolytically and Thermooxidatively Stable Proton Conducting Ionomers [J]. Macromolecules,2008,41(12):4165-4172.
    [88]Yu S, Benicewicz B C. Synthesis and Properties of Functionalized Polybenzimidazoles for High-Temperature PEMFCs [J]. Macromolecules,2009,42(22):8640-8648
    [89]Jouanneau J, Mercier R, Gonon L, et al. Synthesis of Sulfonated Polybenzimidazoles from Functionalized Monomers:Preparation of Ionic Conducting Membranes [J]. Macromolecules, 2007,40(4):983-990.
    [90]Chen X B, Yin Y, Chen P, et al. Synthesis and properties of novel sulfonated polyimides derived from naphthalenic dianhydride for fuel cell application [J]. Journal of Membrane Science,2008,313(1-2):106-119.
    [91]Loredo D E S, Paredes M L L, Sena M E. Synthesis and characterization of sulfonated poly(ether imide) membranes using thermo-analysis and dialysis process [J]. Materials Letters,2008,62(19):3319-3321.
    [92]Yin Y, Fang J H, Cui Y F, et al. Synthesis, proton conductivity and methanol permeability of a novel ulfonated polyimide from 3-(2',4'-diaminophenoxy)propane sulfonic acid [J]. Polymer,2003,44(16):4509-4518.
    [93]Qiu Z M, Wu S Q, Li Z Y, et al. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes [J]. Macromolecules,2006, 39(19):6425-6432.
    [94]金朝辉,高华晶,郭瑛等.燃料电池用磺化聚酰亚胺质子交换膜的合成及性能[J].弹性体,2010,20(6):48-52.
    [95]Shao K, Zhu J, Zhao C J, et al. Naphthalene-Based Poly(arylene ether ketone) Copolymers Containing Sulfobutyl Pendant Groups for Proton Exchange Membranes [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47(21):5772-5783.
    [96]Zhang Y, Wan Y, Zhao C J, et al. Novel side-chain-type sulfonated poly(arylene ether ketone) with pendant sulfoalkyl groups for direct methanol fuel cells [J]. Polymer,2009, 50(19):4471-4478.
    [97]Zhu J, Shao K, Zhang G, et al. Novel side-chain-type sulfonated hydroxynaphthalene-based Poly(aryl ether ketone) with H-bonded for proton exchange membranes [J]. Polymer,2010, 51(14):3047-3053.
    [98]Li H T, Cui Z M, Zhao C J, et al. Synthesis and property of a novel sulfonated poly(ether ether ketone) with high selectivity for direct methanol fuel cell applications [J]. Journal of Membrane Science,2009,343(1-2):164-170.
    [99]Li H T, Wu J, Zhao C J, et al. Proton-conducting membranes based on benzimidazole-containing sulfonated poly(ether ether ketone) compared with their carboxyl acid form [J]. International journal of hydrogen energy,2009,34(20):8622-8629.
    [100]Lin H D, Zhao C J, Cui Z M, et al. Novel sulfonated poly(arylene ether ketone) copolymers bearing carboxylic or benzimidazole pendant groups for proton exchange membranes [J]. Journal of Power Sources,2009,193(2):507-514.
    [101]Zhang Y, Shao K, Zhao C J, et al. Novel sulfonated poly(ether ether ketone) with pendant benzimidazole groups as a proton exchange membrane for direct methanol fuel cells [J]. Journal of Power Sources,2009,194(1):175-181.
    [102]Zhang Y, Wan Y, Zhang G, et al. Preparation and properties of novel cross-linked sulfonated poly(arylene ether ketone) for direct methanol fuel cell application [J]. Journal of Membrane Science,2010,348(1-2):353-359.
    [103]Zhao C J, Lin H D, Na H. Novel cross-linked sulfonated poly (arylene ether ketone) membranes for direct methanol fuel cell [J]. International journal of hydrogen energy,2010, 35(5):2176-2182.
    [104]Zhang Y, Fei X, Zhang G, et al. Preparation and properties of epoxy-based cross-linked sulfonated poly(arylene ether ketone) proton exchange membrane for direct methanol fuel cell applications [J]. International journal of hydrogen energy,2010,35(12):6409-6417.
    [105]Lin H D, Zhao C J, Na H. Nafion-assisted cross-linking of sulfonated poly(arylene ether ketone) bearing carboxylic acid groups and their composite membranes for fuel cells [J]. Journal of Power Sources,2010,195(11):3380-3385.
    [106]Zhao C J, Lin H D, Han M M, et al. Covalently cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer [J]. Journal of Membrane Science,2010,353(1-2):10-16.
    [107]张妮,刘惠玲,李君敬等.用于燃料电池的磺化聚芳醚砜质子交换膜材料的直接合成与性能研究[J].高分子学报,2009(4):375-380.
    [108]Fang J, Shen P K, Liu Q L. Low methanol permeable sulfonated poly(phthalazinone ether sulfone) membranes for DMFCs [J]. Journal of Membrane Science,2007,293(1-2):94-99.
    [109]Kim D S, Robertson G P, Guiver M D. Comb-Shaped Poly(arylene ether sulfone)s as Proton Exchange Membranes [J]. Macromolecules,2008,41(6):2126-2134.
    [110]Yoshimura K, Iwasaki K. Aromatic Polymer with Pendant Perfluoroalkyl Sulfonic Acid for Fuel Cell Applications [J]. Macromolecules,2009,42(23):9302-9306.
    [111]高启君,王宇新,许莉等. SPEEK/PES-C、SPEEK/SPES-C共混质子交换膜研究[J].高分子学报,2009(1):45-52.
    [112]Wen S, Gong C, Tsen W C, et al. Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells [J]. International Journal of Hydrogen Energy,2009,34(21):8982-8991.
    [113]Subramanian M Sankara, Sasikumar G. Sulfonated Polyether Sulfone-Poly(vinylidene fluoride) Blend Membrane for DMFC Applications [J]. Journal of Applied Polymer Science, 2010,117(2):801-808.
    [114]Joo S H, Pak C, Kim E A, et al. Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance [J]. Journal of Power Sources,2008,180(1):63-70.
    [115]Kwon Y H, Kim S C, Lee S Y. Nanoscale Phase Separation of Sulfonated Poly(arylene ether sulfone)/Poly(ether sulfone) Semi-IPNs for DMFC Membrane Applications [J]. Macromolecules,2009,42(14):5244-5250.
    [116]Tsai J C, Lin C K, Kuo J F, et al. Preparation and properties of crosslinked sulphonated poly(arylene ether sulphone) blend s for direct methanol fuel cell applications [J]. Journal of Power Sources,2010,195(13):4072-4079.
    [117]Titvinidze G, Kaltbeitzel A, Manhart A, et al. Synthesis and Characterisation of Sulphonated Poly(arylene sulphone) Terpolymerswith Triphenylphosphine OxideMoieties for Proton Exchange Membrane Fuel Cells [J]. Fuel Cells,2010,10(3):390-400.
    [118]毕慧平,王佳力,陈守文等.磺化聚芳醚砜/磺化聚酰亚胺复合质子交换膜的制备与性能研究[J].高分子学报,2010(8):966-972.
    [119]Lee C H, Min K A, Park H B, et al. Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC) [J]. Journal of Membrane Science,2007,303(1-2):258-266.
    [120]Feng S G, Shang Y M, Xie X F, et al. Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications [J]. Journal of Membrane Science,2009,335(1-2):13-20.
    [121]Tan N, Xiao G, Yan D, et al. Preparation and properties of polybenzimidazoles with sulfophenylsulfonyl pendant groups for proton exchange membranes [J]. Journal of Membrane Science,2010,353(1-2):51-59.
    [122]Kerres J A. Blended and Cross-Linked Ionomer Membranes for Application in Membrane Fuel Cells [J]. Fuel Cells,2005,5(2):230-247.
    [123]Wang J, Song Y, Zhang C, et al. Alternating Copolymer of Sulfonated Poly(ether ether ketone-benzimidazole)s (SPEEK-BI) Bearing Acid and Base Moieties [J]. Macromolecular Chemistry and Physics,2008,209(14):1495-1502.
    [124]Bai H, Ho W S W. New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells [J]. Journal of the Taiwan Institute of Chemical Engineers,2009,40(3):260-267.
    [125]Suryani, Liu Y L. Preparation and properties of nanocomposite membranes of polybenzimidazole/sulfonated silica nanoparticles for proton exchange membranes [J]. Journal of Membrane Science,2009,332(1-2):121-128.
    [126]Kurdakova V, Quartarone E, Mustarelli P, et al. PBI-based composite membranes for polymer fuel cells [J]. Journal of Power Sources,2010,195(23):7765-7769.
    [127]Yin Y, Suto Y, Sakabe T, et al. Water stability of sulfonated polyimide membranes [J]. Macromolecules,2006,39 (3):1189-1198.
    [128]Hu Z X, Yin Y, Chen S W, et al. Synthes is and properties of novel sulfonated (co)polyimides bearing sulfonated aromatic pendant groups for PEFC applications [J]. Journal of Polymer Science:Part A:Polymer Chemistry,2006,44(9):2862-2872.
    [129]Zhang F, Li N W, Cui Z M, et al. Novel acid-base polyimides synthesized from binaphthalene dianhydrie and triphenylamine-containing diamine as proton exchange membranes [J]. Journal of Membrane Science,2008,314(1-2):24-32.
    [130]Chhabra P, Choudhary V. Synthesis and characterization of sulfonated naphthalenic polyimides based on 4,4'-diaminodiphenylether-2,2'-disulfonic acid and bis[4-(4-aminophenoxy) phenylhexafluoropropane] for fuel cell applications [J]. European Polymer Journal,2009,45(5):1467-1475.
    [131]Chen K C, Hu Z X, Endo N, et al. Sulfonated polyimides bearing benzimidazole groups for direct methanol fuel cell applications [J]. Journal of Membrane Science,2010,351(1-2): 214-221.
    [132]Zhang X, Chen S S, Liu J M, et al. Preparation and properties of sulfonated poly(phenylene arylene)/sulfonated polyimide (SPA/SPI) blend membranes for polymer electrolyte membrane fuel cell applications [J]. Journal of Membrane Science,2011,371(1-2): 276-285.
    [133]Liu D, Geng L, Fu Y, et al. In situ sol-gel route to novel sulfonated polyimide-SiO2 hybrid proton exchange membranes for direct methanol fuel cells [J]. Polymer International,2010, 59(12):1578-1585(8).
    [134]Berron B J, Payne P A, Jennings G K. Sulfonation of Surface-Initiated Polynorbornene Films [J]. Industrial & Enginnering Chemisitry Research,2008,47(20):7707-7714.
    [135]Compan V, Fernandez-Carretero F J, Riande E, et al. Electrochemical Properties of Ion-Exchange Membranes Based on Sulfonated EPDM-Polypropylene Blends [J]. Journal of the Electrochemical Society,2007,154(2):B159-B164.
    [136]Berron B J, Faulkner C J, Fischer R E, et al. Surface-Initiated Growth of Ionomer Films from Pt-Modified Gold Electrodes [J]. Langmuir,2009,25(21):12721-12728.
    [137]Vargas J, Santiago A A, Tlenkopatchev M A. Gas Transport and Ionic Transport in Membranes Based on Polynorbornenes with Functionalized Imide Side Groups [J]. Macromolecules,2007,40(3):563-570.
    [138]Thrasher S R, Rezac M E. Transport of water and methanol vapors in alkyl substituted poly(norbornene) [J]. Polymer,2004,45(8):2641-2649.
    [139]Toyota. Fuel Cell-Purpose Electrolyte Material and Production Method Therefor [P]. JP, 2001019723A.2001.
    [140]Ravikiran R, Rhodes L F, Bell A, et al. Polycyclic Polymers Containing Pendant Ion Conducting Moieties [P].US,0019638A1,2005.
    [141]Fei S T, Wood R M, Lee D K, et al. Inorganic-organic hybrid polymers with pendent sulfonated cyclic phosphazene side groups as potential proton conductivematerials for directmethanol fuel cells [J]. Journal of Membrane Science,2008,320(1-2):206-214.
    [142]Chen L, Hallinan D T, Jr, et al. Highly Selective Polymer Electrolyte Membranes from Reactive Block Polymers [J]. Macromolecules,2009,42(16):6075-6085.
    [143]Chen L K, Wu C S, Chen M C, et al. Cross-linked norbornene sulfonated poly(ether ketone)s for proton exchange membrane [J]. Journal of Membrane Science,2010,361(1-2): 143-153.
    [144]贺晓慧,何福平,聂华荣等.5-丁氧基亚甲基-2-降冰片烯的合成及其加成聚合反应[J].应用化学,2011,28(1):10-15.
    [145]He X H, Chen Y W, Liu Y M, et al. Addition polymerization of norbornene using bis((3-ketoamino)nickel(II)/tris(pentafluorophenyl)borane catalytic systems [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45(20):4733-4743.
    [146]Breunig S, Risse W. Transition-metal-catalyzed vinyl addition polymerizations of norbornene derivatives with ester groups [J]. Macromolecular Chemistry and Physics,1992, 193(11):2915-2927.
    [147]He F P, Chen Y W, He X H, et al. Copolymerization of Norbornene and 5-Norbornene-2-yl Acetate Using Novel Bis(β-ketonaphthylamino)Ni(II)/B(C6F5)3/AlEt3 Catalytic System [J]. Journal of Polymer Science Part A:Polymer Chemistry,2009,47(16):3990-4000.
    [148]Mathew J P, Reinmuth A, Melia J, et al. (η3-Allyl) palladium(II) and Palladium(II) Nitrile Catalysts for the Addition Polymerization of Norbornene Derivatives with Functional Groups [J]. Macromolecules,1996,29(8):2755-2763.
    [149]Tsai J C, Cheng H P, Kuo J F, et al. Blended Nafion(?)/SPEEK direct methanol fuel cell membranes for reduced methanol permeability [J]. Journal of Power Sources,2009,189(2): 958-965.
    [150]Fu R Q, Hong L, Lee J Y. Membrane Design for Direct Ethanol Fuel Cells:A Hybrid Proton-Conducting Interpenetrating Polymer Network [J]. Fuel Cells,2008,8(1):52-61.
    [151]Wang L, Yi B L, Zhang H M, et al. Characteristics of Polyethersulfone/Sulfonated Polyimide Blend Membrane for Proton Exchange Membrane Fuel Cell [J]. The Journal of Physical Chemistry B,2008,112(14):4270-4275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700